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Abstract. NORX is a second round candidate of the ongoing CAESAR
competition for authenticated encryption. It is a nonce based authenti-
cated encryption scheme based on the sponge construction. Its two vari-
ants denoted by NORX32 and NORX64 provide a security level of 128
and 256 bits, respectively. In this paper, we present a state/key recovery
attack for both variants with the number of rounds of the core permuta-
tion reduced to 2 (out of 4) rounds. The time and data complexities of
the attack for NORX32 are 2119 and 266 respectively, and for NORX64
are 2234 and 2132 respectively, while the memory complexity is negligi-
ble. Furthermore, we show a state recovery attack against NORX in the
parallel mode using an internal differential attack for 2 rounds of the
permutation. The data, time and memory complexities of the attack for
NORX32 are 27.3, 2124.3 and 2115 respectively and for NORX64 are 26.2,
2232.8 and 2225 respectively. Finally, we present a practical distinguisher
for the keystream of NORX64 based on two rounds of the permutation
in the parallel mode using an internal differential-linear attack. To the
best of our knowledge, our results are the best known results for NORX
in nonce respecting manner.

Keywords: Authenticated encryption, CAESAR, NORX, Guess and
determine, Internal differential attack, State recovery, Nonce respect.

1 Introduction

Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness (CAESAR) [1] is a competition for designing authenticated encryption
schemes. 57 algorithms were submitted to the first round of this competition.
After over a year of analysis, the CAESAR committee announced 29 schemes
as the second round candidates. NORX [2, 5] is one of them. It is a sponge
based scheme which uses a permutation as its core, supports associated date
and does not allow nonce to be repeated (known as nonce respecting). To pro-
vide efficiency in wide range of platforms, the only operations used in the core
permutation of NORX are AND, XOR, rotation and shift. NORX consists of two



variants denoted by NORX32 and NORX64. NORX32 provides 128-bit security
and NORX64 provides 256-bit security. An interesting feature of NORX, com-
pared to some other sponge based candidates of CAESAR such as for instance
Ascon [13] and Keyak [8], is its level of parallelism. More precisely, NORX’s de-
signers proposed a parallel mode that enables users to process several message
blocks in parallel. This feature could be interesting in applications that need
high throughput, e.g. video streaming.

Among the second round candidates of CAESAR, NORX is one of the
fastest [16] and uses simple bitwise operations which makes it a good candidate
for a wide range of platforms, assuming that it provides the desired security.
On the other hand, no previous security analysis of NORX as a full AEAD,
e.g. integrity and confidentiality, is known and the only known results [4, 11]
more dedicated to the permutation of NORX rather than the application of the
permutation in the mode.

Related work. In [4], Aumasson et al. analysed the differential property of
the core permutation of NORX. They provided upper bounds on the differential
probability for the reduced permutation. More precisely, by assuming that an
attacker can only modify the nonce during initialisation, any single round differ-
ential characteristic has probabilities of less than 2−60 (for NORX32) and 2−53

(for NORX64). They extended their results to full (four) round permutation and
showed that the best characteristics for four rounds have probabilities of 2−584

and 2−836 for NORX32 and NORX64, respectively.
In [11], Das et al. analysed the higher order differential properties of the

core permutation of NORX. These results cover more rounds compared to the
first order differential analysis provided in [4]. More precisely, they identified the
higher order differential properties that allow practical distinguisher of the full
round permutation of NORX64 and 3.5-round permutation of NORX32. The
used approach is similar to zero-sum distinguishers [6], but it is probabilistic.

Although the results in [4,11] can reach full rounds, it seems hard to exploit
them to break integrity or confidentiality of NORX. In particular, the attacker’s
ability to control difference for the core permutation is significantly limited in
the nonce respecting setting.

Our contribution. In this paper, we present several cryptanalysis against
reduced-round NORX with respect to security notions claimed by the designers;
recovering key or breaking confidentiality in the nonce respecting setting. We
discuss two different types of attacks; guess and determine attack and internal
differential attack. The attack results are summarised in Table 1.

Guess and determine attack is a widely used technique in analyzing stream
ciphers and authenticated encryption schemes. The attack by Dinur and Jean [12]
against authenticated encryption FIDES [10] is an example. The attacker first
learns a part of the internal state values leaked from a plaintext-ciphertext pair.
Then he partially guesses the hidden part of the state and recovers as many other
state bits as possible. Since the NORX core permutation is invertible, recovering



Table 1. Summary of our attacks. “KR” represents “key recovery” and “KD” repre-
sents “keystream distinguisher”.

Approach Goal Target Rounds Data Time Memory Ref.

Guess and determine KR NORX64 2/4 2132 2234 negl. Sect. 4
Guess and determine KR NORX32 2/4 266 2119 negl. Sect. 4

Internal difference KR NORX64 2/4 74 2232.8 2225 Sect. 5.2
Internal difference KR NORX32 2/4 158 2124.3 2115 Sect. 5.2

Internal differential-linear KD NORX64 2/4 90 negl. negl. Sect. 5.3

the internal state immediately allows to recover the secret key. We first describe
a simple guess and determine attack that works up to 1.5 (out of 4) rounds of
NORX. Then we show how to extend the attack to 2 rounds with the method
of solving linear equations. Our attacks works for both NORX32 and NORX64.

While differential cryptanalysis [9] is generally difficult to apply in the nonce
respecting setting, Jean et al. [14] have recently showed that difference between
two parallel computations under the same nonce, could be exploited by the
attacker and have applied it to fully parallelizable block cipher based scheme
Silver [17]. The approach is called internal differential attack [18]. On the other
hand, sponge based schemes generally have the serial structure, thus internal
difference does not exist. However, it is still possible to introduce parallel com-
putation to the sponge based schemes, and NORX is one of such designs. Hence,
we mount an attack by exploiting the difference between two computations in
the parallel mode of NORX. In the parallel mode, the same internal state is
first duplicated, and the counter value, 0, 1, 2, · · · , is XORed to each state to
make them distinct. Here, we focus on the very low Hamming wight difference
caused by the counter values, which leads to high probability multiple differen-
tials for 1 round. Using these differentials the internal state of the NORX with
the permutation reduced to two rounds can be recovered. Moreover, we use the
slow diffusion property of the NORX round function to present a practical dis-
tinguisher for the keystream of NORX64 with a permutation reduced to two
rounds in parallel mode. This attack employs a deterministic truncated differen-
tial in forward direction for 1.5 round of the NORX64’s permutation, followed
by a probabilistic linear attack for a halve round of the permutation in backward
direction.

Outline. The rest of the paper is organized as follows: in Sect. 2 we provide
the required notations and also describe NORX as much as necessary for our
analysis. In Sect. 3, we list several useful properties of the core permutation. In
Sect. 4 we present a guess and determine attack. Our internal differential attack
is described in Sect. 5. We present our distinguisher for NORX64 in Sect. 5.3.
Finally, we provide closing remarks in Sect. 6.



2 Preliminaries

2.1 Notation

In this paper we mostly follow the notation used by the designer of NORX [5].
Depends on the context, a word is either a 32-bit or a 64-bit bit-string. The state
of NORX is generally denoted by S. Each state includes 16 words and we denote
the i-th word of S by si, for 0 ≤ i ≤ 15. If we specify the state right after round
j of the permutation, we denote it by Sj and denote its i-th word by sji and the

z-th bit of that word by sji [z]. In the parallel mode of NORX, there are more
than one lanes to process message blocks. In this case we denote the state of all
lanes by S̄ and we denote the state of the i-th lane by S̄i and the j-th word of
the i-th lane by s̄i,j . In general, we denote truncation of bit-string x from the
i-th bit toward least significant bit (LSB) and up to the j-th bit toward most
significant bit (MSB) by x[j ∼ i]. The i-th bit of x is denoted by x[i].

To denote bitwise AND, OR and XOR we use ∧, ∨ and ⊕ respectively. By
x � n, x � n, x ≪ n and x ≫ n we denote left-shift, right-shift, left-rotate
and right-rotate of bit-string x by n bits.

We use ∆x to denote the difference in bit-string x and x′, i.e. ∆x = x⊕ x′.
By Mi and Ci we denote the i-th block of plaintext (message) and ciphertext.

The nonce and the secret key are denoted by N and K respectively and their
i-th words are denoted by ni and ki, respectively.

2.2 Specification of NORX

NORX [5] is a monkeyDuplex construction [7] based AEAD. It uses a 16w-bit
to 16w-bit permutation, parameterized by a word size w ∈ {32, 64}. It has two
variants denoted by NORX32 (where w = 32) and NORX64 (where w = 64).
NORX is also parameterized by a parallelism degree 0 ≤ p ≤ 255, number of
rounds 0 ≤ l ≤ 63 and a tag size t ≤ 4w and is denoted as NORXw-l-p-t.
A high level representation of the NORX construction for p = 1 (serial mode
of operation) and p = 2 (parallel mode of operation with two parallel lanes)
are represented in Fig. 1 and Fig. 2 respectively. In these figures we have not
considered the processes related to any auxiliary data, e.g. associated data.

The state S of NORXw consists of sixteen words s0, . . . , s15, each of size w
bits. The state’s words s0, . . . , s11 are called the rate words and the state’s words
s12, . . . , s15 are called the capacity words. In each iteration of the permutation
a block of message or associated data is XORed with the rate fraction of the
state and a domain septation constant is XORed with the capacity fraction of the
state (more details can be found in [5]). NORXw initiates the state by predefined
constant U = u0‖ . . . ‖u9, the nonce N = n0‖n1 and the key K = k0‖ . . . ‖k3.
The matrix representation of S and the rule of assigning the words of constants,
nonce and key in the initialization phase are as follows:

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 =


n0 n1 u0 u1
k0 k1 k2 k3
u2 u3 u4 u5
u6 u4 u8 u9


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Fig. 1. The layout of NORX construction for p = 1 (fully serial) [5], where Fl denotes
an l-round permutation of NORX.
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Fig. 2. The layout of NORX construction for p = 2 (include two parallel lanes) [5].

More details on the constants can be found in [2] but it does not affect our
results. Each round of the permutation, called F, includes the application of a
function called G to each column of state followed by applying it to each diagonal
of state. Hence F(s0, . . . , s15) consists of column steps as follows:

G(s0, s4, s8, s12),G(s1, s5, s9, s13),G(s2, s6, s10, s14),G(s3, s7, s11, s15),

followed by the following diagonal steps:

G(s0, s5, s10, s15),G(s1, s6, s11, s12),G(s2, s7, s8, s13),G(s3, s4, s9, s14).

The function G(a, b, c, d) computes the following 8 operations:

1. a = H(a, b), 2. d = (a⊕ d) ≫ r0, 3. c = H(c, d), 4. b = (b⊕ c) ≫ r1,

5. a = H(a, b), 6. d = (a⊕ d) ≫ r2, 7. c = H(c, d), 8. b = (b⊕ c) ≫ r3,

where H(x, y) = (x⊕ y)⊕
(
(x ∧ y) � 1

)
. The rotation offsets (r0, r1, r2, r3) are

(8, 11, 16, 31) for NORX32 and (8, 19, 40, 63) for NORX64.
It must be noted, to enhance the performance, compared to NORX V1 orig-

inally submitted to CAESAR [3], designers have excluded s10 and s11 from



capacity words and appended them to the rate words in NORX V2.0 tweaked
for the second round [5]. This tweak has not changed the security claim. The
security claims for both of integrity and confidentiality are 128 bits for NORX32
and 256 bits for NORX64 [5, Table 3.1].

Parallel mode of NORX. As depicted in Fig. 2 NORX supports parallel
message processing, p > 1. In this case the state S is extended to a multi-state
vector S̄, where S̄i indicates the input sate of the i-th lane. To ensure that the
input state to each lane is a unique string, a counter i which indicates the lane
number updates s̄i,13 to s̄i,13 ⊕ i. Among 5 recommended parameters by the
designers [5], only 1 parameter, NORX64-4-4-256 supports the parallel mode.

3 Properties of Round Function

In this section, we show several properties of round function G that allow us to
exploit relatively slow diffusion in backward direction, i.e. G−1.

Computing G−1. We begin with the observation that G−1 cannot be computed
trivially. To compute G−1, it is necessary to find x for a given pair of H(x, y) and
y. We argue that this can be efficiently computed bit-by-bit from the LSB. Con-
sidering � 1, computation for the LSB is a simple XOR, thus x[0] is computed
by H(x, y)[0]⊕ y[0]. After x[0] is fixed, x[1] can be computed similarly, and then
the entire x is eventually computed. The cost of G−1 should be higher than G.
For the sake of simplicity, we assume that the cost for G and G−1 are identical.

Computing G−1 with partially known state. For sponge-based AE schemes
the rate words can be in general be recovered from a plaintext-ciphertext pair.
For NORX, s0 to s11 are known and s12 to s15 are secret. This motivates us to
consider tracing known bit positions of (a, b, c, d)← G−1(a′, b′, c′, d′) when three
words of a′, b′, c′, d′ are known.

– b can be computed from given b′, c′, d′ by G−1.
– c can be computed from given a′, c′, d′ by G−1.

These simple properties can be extended so that several bits of the unknown
word is known. This corresponds to the situation that attackers guess several
bits of s12 to s15 during the attack. We again begin with analyzing H−1 with
partially known x′ = H(x, y) and y.

Property 1. From all bits of x′ and t consecutive bits of y, the corresponding t
bits of x can be computed with a cost of 1-bit guess. Moreover, the guess is not
necessary when t consecutive bits start from the LSB.

The property is depicted in Fig. 3. Attackers need to guess 1 bit of (x ∧ y)� 1
which is the lowest bit of consecutive t bits in y. Based on the guess, t consecutive
bits of y can be recovered bit-by-bit. When t consecutive bits of x′ are located
in the LSB, t bits of x can be computed uniquely without guess.
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Fig. 6. Property 4: G−1 with partially known d′.

Property 2. From t consecutive bits of x′ and all bits of y, the corresponding t
bits of x can be computed with a cost of 1-bit guess. Moreover, the guess is not
necessary when t consecutive bits start from the LSB.

Property 3. Suppose that t1 consecutive bits of x′ and t2 consecutive bits of y are
known. Then, the corresponding x in overlapped bit positions can be computed
with a cost of 1-bit guess.

Property 2 and Property 3 are depicted in Fig. 4 and Fig. 5, respectively. The
mechanism is the same as Property 1. In Property 3, attackers need to guess 1
bit of (x ∧ y)� 1, which is the lowest bit of overlapped bit positions. Then the
other overlapped bits can be computed bit-by-bit.

Based on those properties of H−1, we analyze the known bit positions of
(a, b, c, d)← G−1(a′, b′, c′, d′) when three words are fully known and t bits of the
last word are also known. In the property below, we assume t > r2.

Property 4. Suppose that a′, b′, c′ are fully known and t bits of d′ are known.
Then, t bits of a, t bits of b, t−r2 bits of c, and t bits of d can be computed with
a cost of 3-bit guess. Moreover, the guess is reduced to 1-bit when t consecutive
bits of d′ start from the LSB.

The property is depicted in Fig. 6. Numbers in red color represent the number
of known bits and numbers in blue color [n1 ∼ n2] represent known bit positions.
In Fig. 6, four H−1 functions are computed from the end to the beginning. The
first H−1 is the case of Property 1. t bits of word c are computed with 1-bit



guess, and the guess can be omitted if the known bits start from the LSB. No
difficulty exists in the second H−1. The third H−1 is the case of Property 3. The
number of known bits depends on r2. Note that d′ ≪ r2 is computed instead of
d′ ≫ r2 during G−1. The fourth H−1 is again the case of Property 1. The 1-bit
guess can be omitted for the LSB case.

Property 5. Suppose that a′, b′, d′ are fully known and t bits of c′ are known.
Then, t − r1 bits of a, t − r1 bits of b, t bits of c, and t bits of d can be
computed with a cost of 4-bit guess. Moreover, the guess is reduced to 1-bit
when t consecutive bits of c′ start from the LSB.

Property 6. Suppose that a′, c′, d′ are fully known and t bits of b′ are known.
Then, t − r1 bits of a, t bits of b, all bits of c, and t bits of d can be computed
with a cost of 2-bit guess.

Property 7. Suppose that b′, c′, d′ are fully known and t bits of a′ are known.
Then, t bits of a, all bits of b, t bits of c, and t − r0 bits of d can be computed
with a cost of 3-bit guess. Moreover, the guess can be omitted when t consecutive
bits of a′ start from the LSB.

Extending Properties 4 to 7. The number of overlapped bits in Properties 4
to 7 can be generalized more. For example, in Property 4, t− r2 bits of c can be
replaced with t3 bits of c, where t3 takes one of the following 4 values depending
on the relation of t, r2 and the word size w.

t3 = 0, when t− 1 < r2 and r2 + t ≤ w,
t3 = t− r2, when t− 1 ≥ r2 and r2 + t ≤ w,
t3 = 2t− w, when t− 1 ≥ r2 and r2 + t > w,

t3 = r2 + t− w, when t− 1 < r2 and r2 + t > w.

Note that the third case is the combination of t−r2 consecutive bits and r2+t−w
consecutive bits instead of 2t−w consecutive known bits. Thus to preserve 2t−w
bit vales, the cost is 2-bit guess per H−1. Also note that even with the third case,
preserving either of t − r2 or r2 + t − w with the cost of 1-bit guess per H−1 is
possible, and this is actually the case of Property 4 assuming t > r2.

The similar extension can be applied to Properties 5 to 7. To avoid redun-
dancy, we omit the details. Those extension may be useful for future analysis.

Recovering the input/output words of G. If 4 or more words among the 8
words (a, b, c, d, a′, b′, c′, d′) of the input/output of G are known, it is possible to
recover all of the other words for certain cases.

Property 8. Suppose that a, b, c, b′, c′ are fully known. Then, all the other words
in the input/output of G can be recovered with a cost of single G−1 function.

Property 9. Suppose that a, a′, b′, c′ are fully known. Then, all the other words
in the input/output of G can be recovered with a cost of single G−1 function.



Property 10. Suppose that d, a′, b′, c′ are fully known. Then, all the other words
in the input/output of G can be recovered with a cost of single G−1 function.

4 Guess and Determine Attack

The encryption part of NORX leaks a large portion of the internal state, which
may be exploited using a guess and determine attack. In this section, we will
describe a simple guess and determine attack on 1.5 rounds NORX and then
show how to extend it to 2 rounds with the method of solving linear equations.

4.1 Attack on 1.5 Rounds NORX

The 1.5 rounds NORX permutation involves four frames of internal states: the
initial state, the state after the first column step, the state after the first diagonal
step and the state after the second column step (the final state), which are
denoted as S0, S0.5, S1, and S1.5 respectively. Thus, we refer to any bit in the
computation with the notation sxy [z], where x is the frame index, y is the word
index ranged from 0 to 15, and z is the bit index ranged from 0 to w − 1.

In the latest version of NORX [5], s00, . . . , s
0
11 and s1.50 , . . . , s1.511 can be easily

obtained by an adversary in a known plaintext scenario. Assuming those words
are known at the input and output of the permutation by querying messages with
at least two blocks, then we can exploit the slow backward diffusion of round
function G of NORX by guessing 3 of the 4 unknown words of the state S1.5

and propagating the information backward to recover the full internal state. The
procedure of the guess and determine attack is given below, and is also depicted
in Fig. 7.

1. Guess the words s1.512 , s
1.5
13 , s

1.5
14 in S1.5. With the other known state words of

S1.5, recover s10, s
1
1, s

1
2, s

1
4, s

1
5, s

1
6, s

1
8, s

1
9, s

1
10, s

1
12, s

1
13, s

1
14.

2. With the known values of s14, s
1
9, s

1
14 and using Property 7, recover s0.54 . With

the known values of s12, s
1
8, s

1
13 and using Property 6, recover s0.58 .

3. Using Property 8, recover s012, s
0.5
0 , s0.512 from s00, s

0
4, s

0
8, s

0.5
4 , s0.58 .

4. Using Property 9, recover s115 from s0.50 , s10, s
1
5, s

1
10.

5. Using Property 10, recover s1.515 from s115, s
1.5
0 , s1.55 , s1.510 .

Thus, the full state of S1.5 is recovered. We can compute backward to verify if
the guessed words are correct. We want to note that this 1.5 rounds attack works
for both NORX32 and NORX64 as all the operations are performed on the word
level. We estimate that one guess and to determine the trail require roughly 2
NORX operations, the time complexity of the attack is 297 for NORX32 and
2193 for NORX64.

4.2 Attack on 2 Rounds NORX

Now we will show how to extend the guess and determine attack to 2 rounds of
NORX. The additional 0.5 round does not allow to establish the relation of S0

and S0.5 using the previous strategy, i.e. guessed words. Hence, we need to guess
more bits and analyze the information propagation at bit level.



Fig. 7. Guess and determine attack on 1.5 rounds NORX. The order of
known/recovered words is green(1)→blue(2)→yellow(3)→red(4).

Overview of the attack. Suppose that the five state frames of 2 rounds NORX
are denoted by S0, S0.5, S1, S1.5, S2 and the words s00, . . . , s

0
11, s20, . . . , s

2
11 are

known. In addition to guess s212, s213, s214, we further guess parts of the word s215.
Next, we set all the unknown bits in S0 as linear bits which related to them-

selves. With the forward computation of the NORX operations, any state bit
can be classified into one of the three categories: known bits, linear bits and non-
linear bits, such that a known bit can be computed with the known bits in S0;
a linear bit can be expressed as a linear combination of the unknown bits in S0

XORed with some constant; and a non-linear bit can be expressed as non-linear
combinations of the unknown bits in S0 XORed with some constant. In this
paper, We use ′u′, ′k′, ′l′, ′n′ to denote the unknown bits, known bits and linear
bits, non-linear bits respectively.

Then, we do the same for the the bits in S2 (assuming the guessed bits are
known) and propagate backward.

If a bit in the internal state is linear/known in the forward computation while
linear/known in the backward computation, we can establish a linear relation
between the guessed/known bits in S0 and the known bits in S2. If there are
enough linear equations, then we can solve the unknown bits in S2, and thus
recover the full internal state of S2.

To establish more linear equations, we use a trick to increase the number
of linear bits in the backward computation. In the H function, if a bit-relation
x′i = xi⊕ yi⊕ (xi−1 ∧ yi−1) is computed, with x′i = ′k′, xi = ′u′, yi = ′l′, xi−1 =
′k′ and yi−1 = ′k′. Then, if x′i = 1 ⊕ (xi−1 ∧ yi−1), we have xi ∧ yi = 0, which
is the non-linear term in computing x′i+1. Note that we can control the value of
any known bit by collecting more data and choose the needed ones. Hence, we
can eliminate the non-linear part of the H function in many cases at the cost of
increasing data complexity.

Since NORX64 and NORX32 have different word sizes, we will describe the
attacks on NORX64 and NORX32 separately.

Attack on NORX64. For NORX64, we experimentally tested different choices
of the guessed bits numbers and positions in s215. To minimize the time complex-
ity, the optimal choice we found is to guess s215[0, . . . , 40].

We start the attack by building the linear system. Set the bits in s00, . . . , s
0
11,

s20, . . . , s
2
14 and s215[0, . . . , 40] as known bits. Set all the other unknown bits in

S0 and S2 as linear bits. Then propagate the bit relations of S0 forward and



bit relations of S2 backward. In the backward propagation, we control certain
values of known bits to increase the number of linear bits with the technique
mentioned previously.

Two linear equations can be established on bits s010[0] and s011[0], as those bits
are known in the forward direction while linear in the backward direction. The
rest of the equations can be derived from the last column of S0.5, see Table 2.

Table 2. Bit patterns of the last column of S0.5. Red bits are used to establish linear
equations.

Forward pattern
llllllllllllllll llllllllllllllll llllllllllllllll llllllllllllllll
nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnln
nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnl
llllllllllllllll llllllllllllllll llllllllllllllll llllllllllllllll

Backward pattern
nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnllllllllk kkkkkkkkkkkkkkkk
nnnnnnnnnnnnnnnn nnnnnnnlkkkkkkkk kkkkkkkkkkkkklll llllllllllllllll
nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnl
nnnnnnnnnnnnnnnn nnnnnnnlllllllll llllllllllllllll llllllllllllllll

The reason of choosing this column is that only the unknown bits in s015 and
s215 are involved. At this point, the number of linear equations is still less than
the unknown variables. To obtain more equations we make use of Property 2. By
guessing s011[18] to be 0, the bits s015[27, . . . , 43] can be recovered. This is derived
from the known bits in s03, s07, s011 and the partially recovered bits s0.53 [0, . . . , 16].
The bit patterns are updated as Table 3.

Table 3. Updated bit patterns of the last column of S0.5 for NORX64. Red bits are
used to establish linear equations.

Forward pattern
llllllllllllllll llllllllllllllll lllllllllllllllk kkkkkkkkkkkkkkll
nnnnnnnnnnnnnnnn nnnnnnnnnnllllll llllllllllnnnnnn nnnnnnnnnnnnnnln
nnnnnnnnnnnnnnnn nnnnnnnnnnnlllll lllllllllllnnnnn nnnnnnnnnnnnnnnl
llllllllllllllll llllllllllllllll llllllllllllllll llllllllllllllll

Backward pattern
nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnllllllllk kkkkkkkkkkkkkkkk
nnnnnnnnnnnnnnnn nnnnnnnlkkkkkkkk kkkkkkkkkkkkklll llllllllllllllll
nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnl
nnnnnnnnnnnnnnnn nnnnnnnlllllllll llllllllllllllll llllllllllllllll

There are 69 matched bits in the last column of S0.5. Together with the two
linear equations from bits s010[0] and s011[0], there are 71 linear equations can be
established. On the other hand, there are 70 unknown bits involved in the linear
system, after the 17 derived bits s015[27, . . . , 43] are excluded. We verified the
coefficient matrix of the linear system to confirm that it has rank 70. Hence, a
unique solution can be derived from the linear system. Note that the linear bits



in the backward direction computation require certain value of 131 known bits.
The attack can be summarized as follows.

1. Find an output of NORX encryption satisfied the conditions on the known
bits. There are 131 conditions on the output bits and 1 condition on the
input bits.

2. Guess the bits s212, s213, s214, s215[0, . . . , 40]. So totally 233 bits are guessed.

3. Determine the bits s215[41, . . . , 63] using the solutions of linear equations
which have been derived.

4. Compute backward and verify the solution with the known bits in S0.

We estimate that one guess and to determine trail require roughly 2 NORX
operations. Then, the estimated time complexity of this attack is 2234 NORX
operations. We expect to query for 2132 blocks to find a suitable input/output
pair. So the data complexity is 2132 and memory complexity is negligible.

Attack on NORX32. Similar approach can be applied to attack reduced
NORX32. In this case, we will first guess the bits s212, s213, s214, s215[0, . . . , 21].
By setting the value of bit s011[10] to 0, the bits s015[19, . . . , 24] can be recovered.
The bit patterns of the last column of S0.5 are given in Table 4. Here, we control
65 conditions on the output bits to increase the number of linear bits.

39 linear equations can be established from the last column of S0.5. After
excluded the derived bits, the number of unknown bits is 36. We computed the
rank of the coefficient matrix which turned out to be 36. After further dropping
the bits s27[1] and s211[0] from the system (to reduce the linear bits needed), a
unique solution can be derived from the linear system with 37 equations.

The attack procedure is similar to NORX64, so we omit the details here.
Since we guess a total number of 118 bits in the attack, the estimated time
complexity is 2119, and data complexity is 266.

Table 4. Updated bit patterns of the last column of S0.5 for NORX32. ‘l’, ‘n’ and ‘k’
represent linear bit, non-linear bit and known bit, respectively. Red bits are used to
establish linear equations.

Forward pattern
llllllll llllllll llllllll llkkkkll
nnnnnnnn nnnnnlll llnnnnnn nnnnnnln
nnnnnnnn nnnnnnll lllnnnnn nnnnnnnl
llllllll llllllll llllllll llllllll

Backward pattern
nnnnnnnn nnnnnnnn nnllllll llkkkkkk
nnnnnnnn nnlkkkkk kkkkklll llllllll
nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnl
nnnnnnnn nnllllll llllllll llllllll



5 Internal Differential Attack

5.1 Basic Key Recovery with Internal Differential Attack

This section explains the key recovery attack on the NORX reduced to 2 rounds
with differential cryptanalysis in the nonce-respect setting.

Overall strategy. To exploit the difference under the same nonce, we exploit
the parallel mode of NORX shown in Fig. 2, and focus on the difference between
two lanes. As shown in Fig. 2, the state is duplicated and the lane number is
XORed. For p = 2, lane numbers 0 and 1 make 1-bit difference in the state (LSB
of s13). This difference expands in the subsequent permutation F. Here, we build
a high probability differential characteristic for the first 1 round.

Attackers only can observe the value of the rate words (s0 to s11) in each
lane after 2 rounds. Hence, we perform some backward computation for the last
1 round with guessing capacity words (s12 to s15). The number of secret bits
in the state is 4w, and the number of security bits claimed is also 4w. Here,
the difficulty is that the 4w-bit secret value is completely different for the first
lane and the second lane. Thus, we need to analyze 8w-bit secret bits in a pair.
This setting is quite different from conventional differential attack against block
ciphers in which secret exists in the key and is common for both values in a pair.

To overcome this problem, we adopt the meet-in-the-middle approach. Namely,
we guess up to 4w bits of the secret in the first lane, and recover several bits of
the state after 1 backward round as the guess-and-determine attack in Sect. 4.
The results are stored in a table with memory size up to 4w bits. Then, we do
the same computation for the second lane, and compare the results of two lanes
for picking up pairs satisfying the differential characteristic after 1 round. Sup-
pose that the number of matched bits is 4w. Then, among up to 24w · 24w = 28w

pairs, only up to 28w/24w = 24w pairs will remain as the candidates satisfying
the differential characteristic. Finally, for each of the remaining candidate, we
exhaustive guess the unguessed bits, and identify the correct state value.

We first discuss a simple attack against NORX64 in Sect. 5.1, and then show
several optimization techniques and application to NORX32 in Sect. 5.2.

1-round differential characteristic. Lane number 0 and lane number 1 make
1-bit difference in the LSB of s13. We trace the propagation of this difference.

Construction of differential characteristic is simple. The only non-linear com-
ponent is the AND operation in H. We set 1-bit condition for each active bit to
control its output difference. Because of the small number of rounds, we found
that the probability of the characteristic is maximized by setting output differ-
ence of all active bits to 0. The obtained characteristic is shown in Table 5. To
keep the probability of the characteristic high, we only specify the difference of
8 words in 2 diagonals, i.e. (∆s1, ∆s2, ∆s6, ∆s7, ∆s8, ∆s11, ∆s12, ∆s13).

The characteristic in Table 5 includes 5 active bits in the first 0.5 round
and 16 active bits in the next 0.5 round, in total 21 active bits. Therefore, the
characteristic can be satisfied with probability at least 2−21.



Table 5. 1-Round Differential Characteristic. ‘0’ and ‘1’ represent inactive bit and
active bit, respectively. After 1 round, we only need the difference of 8 words. ‘?’
represents that difference is not specified in that bit.

Initial difference
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000001 0000000000000000 0000000000000000

Difference after 0.5 round (column step)
0000000000000000 0000002000000000 0000000000000000 0000000000000000
0000000000000000 4200004000020000 0000000000000000 0000000000000000
0000000000000000 2100000000010000 0000000000000000 0000000000000000
0000000000000000 2000000000010000 0000000000000000 0000000000000000

Difference after 1 round (diagonal step)
???????????????? 0000002000000400 0020000400000000 ????????????????
???????????????? ???????????????? 4040000840000800 0800000a00000200
0420000100000100 ???????????????? ???????????????? 2020000420000000
2020000400000000 0400000100000000 ???????????????? ????????????????

Lane 0 

2194+𝑡  

Table 𝑡 𝑡𝐿 

𝑎𝑙𝑙 𝑡 

𝑡𝐿
− 𝑎𝑙𝑙 

𝑡𝐿
− 𝑡 

𝑎𝑙𝑙 𝑎𝑙𝑙 𝑡𝐿 𝑎𝑙𝑙 

𝑎𝑙𝑙 𝑎𝑙𝑙 𝑎𝑙𝑙 𝑡𝐿 

𝑡𝐿
− 𝑎𝑙𝑙 𝑎𝑙𝑙 𝑎𝑙𝑙 

𝑎𝑙𝑙 𝑡 𝑎𝑙𝑙 𝑎𝑙𝑙 

𝑘𝑛𝑜𝑤𝑛 

𝑎𝑙𝑙 𝑡𝐿 𝑎𝑙𝑙 𝑎𝑙𝑙 

Round 1.5 
(column) 

Round 2 
(diagonal) 

Cost: 0 

Property 6, Cost 0 

Property 4, Cost 2 

Property 7, Cost 0 

Property 5, Cost 0 

Fig. 8. Backward computation. all, t, tL and t−L represent that all bits are known, t
middle bits are known, t LSBs are known and t− 24 LSBs are known, respectively.

1-round backward computation. For a plaintext-ciphertext pair for each
lane, we recover the value of the rate words, i.e. s̄0,0 to s̄0,11 and s̄1,0 to s̄1,11.
Then for the first lane, we exhaustively guess all bits of (s̄0,12, s̄0,14, s̄0,15) and
t LSBs of s̄0,13, where the value of t will be determined later. For each guess,
we can compute 1 round in backwards with the properties introduced in Sect. 3.
The 1-round backward computation is depicted in Fig. 8.

For the first 0.5-round backward computation, 3 diagonals are fully known,
which can be inverted easily. The remaining diagonal, (s̄0,2, s̄0,7, s̄0,8, s̄0,13) ←
G−1(s̄′0,2, s̄

′
0,7, s̄

′
0,8, s̄

′
0,13), is the case of Property 4 with t LSBs in d′. Here, given

that r2 = 40 for NORX64, we replace “ ≫ r2” with “ ≪ (64−r2)” to make the
analysis simpler. The overlapped bit positions becomes t− 24 bits starting from
the LSB. In the end, we obtain t LSBs of s̄0,2 and s̄0,7, t − (64 − r2) = t − 24
LSBs of s̄0,8, and t middle bits of s̄0,13. Because all partially known bits start
from the LSB in H−1, we do not need additional bit guess.

The next 0.5-round can be computed with Properties 4 to 7 as follows.

– The first column is the case of Property 5, in which we know t− 24 LSBs of
s̄′0,8. Different from Property 5, we only compute 2 words; s̄0,8 and s̄0,12. This



can avoid 1-bit guess, and thus t− 24 bits of s̄0,8 and s̄0,12 can be computed
without any guess.

– The second column is the case of Property 4 in which the consecutive t bits
start from middle bits. Property 4 requires 3-bit guess to recover 4 input
variables. Here, we only need to recover 2 input variables, a and d in Fig. 6,
and this saves us to guess 1 bit. As a result, we need 2-bit guess to compute
the corresponding t bits of s̄0,1 and s̄0,13.

– The third column is the case of Property 7. t bits of s̄0,2 and all bits of s̄0,6
can be computed without guess.

– The fourth column is the case of Property 6, which requires 2-bit guess to
recover 4 input variables. Here, we only need to recover 2 input variables, b
and c and this can be done without guess. Hence, t bits of s̄0,7 and all bits
of s̄0,11 can be computed without guess.

In summary, we guess 192 bits of s̄0,12, s̄0,14, s̄0,15, t bits of s̄0,13 after round 2
and 2 bits in the middle, which leads to 2(t−24)+2t+(t+64)+(t+64) = 6t+80
bits of (s̄0,1, s̄0,2, s̄0,6, s̄0,7, s̄0,8, s̄0,11, s̄0,12, s̄0,13) after round 1. Those are stored
in a table with a memory of size 2194+t.

After the computation of the first lane, we apply the same computation for
the second lane, i.e. for state S̄1, with 194 + t-bit guess. For each result, we
XOR the difference in two diagonals specified by the characteristic, and check
the match with the table generated for the first lane. If the match is found, we
guess the remaining 64 − t bits of s̄0,13 for the first lane, and compute back to
the initial value (IV) of NORX64. Only if the pair satisfies the characteristic and
the guess is correct, the IV appears, which recovers the key simultaneously.

Attack procedure. Associated data is irrelevant. Hereafter, we set A to be
empty. The attack procedure is described in Algorithm 1. Due to the probability
of the characteristic, 221 pairs are analyzed, which corresponds to 221 iterations
in Step 1. The 1-round backward computation is performed for each of 221 pairs.

Complexity evaluation and choice of t. In Algorithm 1, for each of i in
Step 1, Step 6 requires 2194+t G computations and Step 9 requires 2194+t G
computations. After the match in Step 10, 22(194+t)−(6t+80) = 2308−4t pairs will
remain. Then, Step 12 requires 2308−4t+64−t = 2372−5t NORX64 operations.
Those are iterated 221 times for the iteration in Step 1. Hence, time complexity
is less than 221(2194+t +2194+t +2372−5t) NORX64 operations. This is optimized
when t = 30, which leads to 2246.2 NORX64 operations.

Data complexity is only caused by Step 3. Two message blocks are queried
in each iteration of Step 1. Thus, data complexity is 222 message blocks.

Memory complexity is dominated by Step 6, which stores the result of 2194+t

computations. Thus, memory complexity is 2224 when t = 30.

5.2 Optimized Key Recovery with Internal Differential Attack

Differential. The probability of the characteristic in Sect. 5.1 was 2−21. This
can be improved by using the differential instead of a single characteristic. Rig-



Algorithm 1: 2-round key recovery with internal-differential attack.

1 Input: characteristic with probability 2−21, 194 + t guessed-bit positions
2 Output: K

1: for i = 0, 1, . . . , 221 − 1 do
2: Randomly choose a nonce N i and a 2-block message M i

0‖M i
1.

3: Query (N i,M i
0‖M i

1) in the parallel mode to obtain (Ci
0‖Ci

1).
4: Compute s̄0,0, . . . , s̄0,11 ←M i

0 ⊕ Ci
0 and s̄1,0, . . . , s̄1,11 ←M i

1 ⊕ Ci
1.

5: for 192 + t bits of s̄0,12, s̄0,13, s̄0,14, s̄0,15 and 2 bits in the middle do
6: Obtain 6t + 80 bits of s̄0 after round 1 and store them in a table T0.
7: end for
8: for 192 + t bits of s̄1,12, s̄1,13, s̄1,14, s̄1,15 and 2 bits in the middle do
9: Obtain 6t + 80 bits of s̄1 after round 1 and xor the difference in Table 5.

10: Check the match with T0. If the match is found, go to the next step.
11: for the remaining 64− t bits of s̄0,13 do
12: Compute back to the initial value of NORX64.
13: if the result satisfies the form of

(u0, n0, n1, u1, k0, k1, k2, k3, u2, u3, u4, u5, u6, u7, u8, u9) then
14: return K = (k0, k1, k2, k3).
15: end if
16: end for
17: end for
18: end for

orously evaluating the probability of the differential is hard. However, thanks to
the high probability of the characteristic, we can evaluate it experimentally.

We chose 224 pairs at uniformly random, and 6937 pairs could satisfy the
output difference with respect to the 6t+80 bits computed during the backward
computation. Thus, the probability of the differential is 6937/224 ≈ 2−11.23,
which improves the complexity of Algorithm 1 by roughly 10 bits.

Multiple lanes. NORX64-4-4-256 supports 4 parallel lanes. When a 4-block
message is processed, lane numbers XORed to the duplicated states is 0, 1, 2
and 3. Thus, we can make the pair with ∆S̄13 = 0x01 between lane 0 and lane
1 and between lane 2 and lane 3. Besides, we can also consider the internal
difference between lane 0 and lane 2 and between lane 1 and lane 3, which
makes ∆S̄13 = 0x02. The best characteristic for this difference is obtained by
rotating Table 5 by 1 bit. We also experimentally verified the probability of
the differential, which is 7532/224 ≈ 2−11.12, slightly better than the case with
∆S̄13 = 0x01. The average probability for two cases is 2−11.18.

In summary, we can make 4 pairs per 4-block message query, which halves
the data complexity evaluation in Sect. 5.1.

Multiple differentials. While the characteristic in Table 5, 2−21, is optimized,
we found that there are 25 characteristics having the same probability.



Recall the complexity evaluation in Sect. 5.1. Let Npair, Tmitm, and Tveri be
number of pairs to analyze, time complexity for the meet-in-the-middle match
per pair, and time complexity for verifying matched candidates, respectively.
Roughly, the total complexity is given by Npair(Tmitm + Tveri). Now, suppose
that there are D characteristics with the same probability and we aim to find a
pair satisfying any of D choices. This reduces the number of pairs to Npair/D,
while the number of valid candidates after the match becomes D times, thus the
cost for verification becomes D∗Tveri. The essence of this technique is that the 1-
round backward computation with a cost of Tmitm is independent of D choice of
characteristics, thus one computation can be reused for testing D characteristics.

To derive such characteristics, we focus on the differential propagation in the
last H function (during round 0.5 to round 1). There are 4 active bits during
the last H function in (∆s′1, ∆s

′
6, ∆s

′
11, ∆s

′
12) ← G(∆s1, ∆s6, ∆s11, ∆s12). The

characteristic in Table 5 was derived by setting the output difference of those 4
bits to 0, which causes the probability drop by 2−4. However, the differences from
those bits only linearly related to the output of the entire characteristic, thus
any combination of 0 or 1 for the output difference from those 4 bits generates
24 distinct characteristics with exactly the same probability.

The same occurs in the other diagonal G(∆s2, ∆s7, ∆s8, ∆s13). 4 bits in
positions 8, 32, 53 and 58 are active in the last H, while only bit position 8 will be
later used for the meet-in-the-middle match. As a result, 2 distinct characteristics
can be considered in bit position 8. Along with 24 choices for the other diagonal,
we have D = 25 characteristics with the same probability.

The discussion above is about the multiple characteristics. It can easily be
extended to multiple differentials. We experimentally tested the probability of
25 differentials, and confirmed that all of them has almost the same probability.

Strictly speaking, matching multiple differentials during the meet-in-the-
middle match in Step 10 of Algorithm 1 is a so-called 3-list problem, which
requires more cost than the 2-list case. We observe that 25 differentials only
differ in 10 bits, that is, all of them have the same difference in the other 6t+ 70
bits. Thus, we first apply the filter in 6t− 70 bits, then check the details for 10
bits. Matching 6t− 70 bits reduces the number of candidates sufficiently small,
thus using multiple differentials gives negligible impacts to the complexity.

Optimized complexity for NORX64. To satisfy one of the 25 differentials
with probability 2−11.18, 26.18 pairs need to be analyzed. The number of iter-
ations of Step 1 in Algorithm 1 becomes i = 26.18. By exploiting four lanes,
26.18 message-block queries are sufficient to construct 26.18 pairs. Thus the data
complexity is 26.18 message blocks.

The usage of the multiple differentials slightly changes the balance between
Tmitm and Tveri, i.e. higher Tmitm and lower Tveri offers the best balanced com-
plexity. We found that t = 31 instead of t = 30 yields the best complexity, which

is 211.18

25

(
2∗2194+t +25 ∗2372−5t

)
= 2232.8. The memory complexity increases due

to the increase of t, which is 2194+t = 2225.



Table 6. 1.5-round internal differential-linear distinguisher. ‘0’ and ‘1’ represent unaf-
fected bits and bits that maybe affected by the internal difference, respectively. After
1.5 round 8 bits of the rate will never be affected by the internal difference in S13.

Initial difference
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000001 0000000000000000 0000000000000000

Unaffected bits after 0.5 round, i.e. S0.5

0000000000000000 000000e000000000 0000000000000000 0000000000000000
0000000000000000 ce0000c000060001 0000000000000000 0000000000000000
0000000000000000 e700000000030000 0000000000000000 0000000000000000
0000000000000000 e000000000010000 0000000000000000 0000000000000000

Unaffected bits after 1 round, i.e. S1

bfc07bffc03ef807 000003e00000fc00 00e0007c00000000 e0003fe000000000
fe003bc003de00ff fffcffff1ffff9ff c7c003ffc000f80f ff80007e00038e01
ffe000030001c700 df00000001ef007f fffe7fffcfffbcff e3e001ffe0000007
e1e000fc00000003 7c0000010000c000 e000000000e0003f ff803efe07bf9e7b

Unaffected bits after 1.5 round, i.e. S1.5

ffffffffffffffff ffffffffffffffff ffffffffffffffff fffffffff0ffff87
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff fffcffff9fffffff

Application to NORX32. Because NORX32 does not formally support the
parallel mode, we only explain it briefly. The attack on NORX32 is harder than
the one for NORX64 with respect to the following two points.

– The probability of the multiple differential becomes relatively smaller to the
word size (32 instead of 64).

– The rotation number r2 = 16 is exactly a half of the word size, which
generates less number of overlapped bits during the backward computation
(r2 = 40 in NORX64).

Those make the advantage of the attack smaller than the case of NORX64. The
attack strategy is the same as NORX64 and all the optimization techniques can
also be applied. We experimentally verified that the probability of the differential
is 2−12.25 and there are 25 differentials with the same probability. We choose
t = 17 for the number of partially guessed bits. In the end, the best attack
complexity is 27.25, 2124.25 and 2115 in data, time and memory, respectively.

5.3 Distinguisher with Internal Differential-Linear Attack

In this section, we present an internal differential-linear attack on round-reduced
NORX. In more detail, we show an efficient distinguisher for NORX64 with p ≥ 2
for up to 2 rounds. As shown in Table 6, the internal difference in the LSB of
s13, i.e. s13[0], does not affect 8 bits in the rate part of the NORX64 state
after 1.5 rounds, i.e. s1.53 [3, 4, 5, 6, 24, 25, 26, 27]. This property leads to a trivial
distinguisher for the keystream of NORX64 reduced to 1.5 rounds in the parallel
mode.



Unfortunately, by adding 0.5 rounds all bits of the rate are affected by the
internal difference and no significant bias can be observed with practical com-
plexity (240 experiments). However, using Property 4 described in Sect. 3, all the
bits at the output of the first H(a, b) in each G function in the last half-round can
be derived from the rate part of the output. This significantly improves the at-
tack leading to an efficient distinguisher for 2 rounds of NORX64 in the parallel
mode. We can observe significant biases in several of the 256 bits. For instance
bit 175 has a bias of −0.15. If an adversary aims to distinguish the keystream
related to NORX64-4-4-256 based on this bit, it proceeds as follows:

1. Query 1
0.152 2-block messages for NORX64-4-4-256 and receive the corre-

sponding ciphertexts.
2. Partially decrypt each ciphertext up to the output of the first H(a, b) in the

last half-round.
3. Verify the matching for each ciphertext pair and output the total amount of

the matching in bit 175 for all ciphertext pairs, N .
4. Output NORX64 if N ≥ 1

2×0.152 .

The data complexity of this attack is about 90 message blocks, while the success
probability is 97.7% [15].

6 Conclusion

In this paper, we present the first cryptanalysis of NORX in the nonce-respecting
setting. Our attack exploits the slow diffusion of NORX’s round function espe-
cially in backward direction. We investigate several attacks against NORX and
all of them cover two rounds of the permutation. On the other hand, while the
presented guess and determine attack covers two rounds of NORX’s variants yet
it may be possible to be extended to more rounds by employing advanced equa-
tion solving techniques. We do not think it can be extended to the full 4-round
NORX. However, the results of this paper can be considered as a starting point
for future analysis in this direction.

Additionally, we presented a practical distinguisher for 2-round NORX64
encryption in parallel mode that could not be applied to NORX32 or serial-
NORX64. This observation may be considered as a lower diffusion in NORX64
compared to the NORX32, for the same number of rounds. In addition, this
attack along with the given internal differential attack could be considered as
evidences that parallel mode of NORX has lower security bound, compared to
serial mode.
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