
Comb to Pipeline: Fast Software Encryption
Revisited

Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser

DTU Compute, Technical University of Denmark, Denmark
{anbog,mmeh,ewti}@dtu.dk

Abstract. AES-NI, or Advanced Encryption Standard New Instruc-
tions, is an extension of the x86 architecture proposed by Intel in 2008.
With a pipelined implementation utilizing AES-NI, parallelizable modes
such as AES-CTR become extremely efficient. However, out of the four
non-trivial NIST-recommended encryption modes, three are inherently
sequential: CBC, CFB, and OFB. This inhibits the advantage of using
AES-NI significantly. Similar observations apply to CMAC, CCM and a
great deal of other modes. We address this issue by proposing the comb
scheduler – a fast scheduling algorithm based on an efficient look-ahead
strategy, featuring a low overhead – with which sequential modes profit
from the AES-NI pipeline in real-world settings by filling it with multiple,
independent messages.
We apply the comb scheduler to implementations on Haswell, Intel’s lat-
est microarchitecture, for a wide range of modes. We observe a drastic
speed-up of factor 5 for NIST’s CBC, CFB, OFB and CMAC perform-
ing around 0.88 cpb. Surprisingly, contrary to the entire body of previ-
ous performance analysis, the throughput of the authenticated encryption
(AE) mode CCM gets very close to that of GCM and OCB3, with about
1.64 cpb (vs. 1.63 cpb and 1.51 cpb, resp.), despite Haswell’s heavily im-
proved binary field multiplication. This suggests CCM as an AE mode
of choice as it is NIST-recommended, does not have any weak-key issues
like GCM, and is royalty-free as opposed to OCB3. Among the CAESAR
contestants, the comb scheduler significantly speeds up CLOC/SILC,
JAMBU, and POET, with the mostly sequential nonce-misuse resistant
design of POET, performing at 2.14 cpb, becoming faster than the well-
parallelizable COPA.
Finally, this paper provides the first optimized AES-NI implementations
for the novel AE modes OTR, CLOC/SILC, COBRA, POET, McOE-G,
and Julius.

Keywords. AES-NI, pclmulqdq, Haswell, authenticated encryption, CAE-
SAR, CBC, OFB, CFB, CMAC, CCM, GCM, OCB3, OTR, CLOC, CO-
BRA, JAMBU, SILC, McOE-G, COPA, POET, Julius

1 Introduction

With the introduction of AES-NI, Advanced Encryption Standard New Instruc-
tions, on Intel’s microarchitectures starting from Westmere and later as well as

on a variety of AMD CPUs, AES received a sigfinicant speed-up in standard
software, going well below 1 cycle per byte (cpb) and possessing a constant run-
ning time, which also thwarts cache-timing attacks. Important applications for
AES-NI include OpenSSL, Microsoft’s BitLocker, Apple’s FileVault, TrueCrypt,
PGP and many more. In a nutshell, AES-NI provides dedicated instructions for
AES encryption and decryption. On Haswell, Intel’s newest architecture, the la-
tency of these instructions is 7 clock cycles (cc) and the throughput is 1 cc. That
is, AES-NI has a pipeline of length 7 and one can issue one instruction per clock
cycle. This pipeline can be naturally exploited by parallel AES modes such as
CTR in the encryption domain, PMAC in the message authentication domain
as well as GCM and OCB in the authenticated encryption domain.

However, numerous AES modes of operation – both standardized and novel
such as CAESAR1 submissions – are essentially sequential by design. Indeed,
NIST-standardized CBC, CFB, OFB and CMAC [10] as well as CLOC and
POET from FSE 2014 and McOE-G from FSE 2012 are essentially sequential,
which limits their performance on state-of-the-art servers and desktops signif-
icantly, as the pipeline cannot be filled entirely, having a severe performance
penalty as a consequence.

In this paper, we aim to address this gap and propose an efficient look-ahead
comb scheduler for real-world Internet packets. Its application can change the
landscape of AES modes of operation in terms of their practical throughput.
Our contributions are as follows:

Novel Comb Scheduler. Communication devices of high-speed links are likely
to process many messages at the same time. Indeed, on the Internet, the bulk
of data is transmitted in packets of sizes between 1 and 2 KB, following a bi-
modal distribution. While most previous implementations of block cipher modes
consider processing a single message, we propose to process several messages in
parallel, which reflects this reality. This is particularly beneficial when using an
inherently sequential mode. In this work, for the first time, we deal with AES
modes of operation in this setting (see Section 3). More specifically, as our main
contribution, we propose an efficient look-ahead comb scheduler. For real-world
packet lengths on the Internet, this algorithm allows us to fill the pipeline of
AES-NI and attain significant speed-ups for many popular modes. After cover-
ing some background in Section 2, we present our comb scheduler and its analysis
in Section 3.

Speed-up of factor 5 for NIST’s CBC, OFB, CFB and CMAC. When
applied to the NIST-recommended encryption and MAC modes, our comb sched-
uler delivers a performance gain of factor 5 with the real-world packet sizes. The
modes get as fast as 0.88 cpb compared to around 4.5 cpb in the sequential
message processing setting. These results are provided in Section 4.

1 Competition for Authenticated Encryption: Security, Applicability, and Robustness.

Change of landscape for AE When our comb scheduler is applied to AE
modes of operation, a high performance improvement is attained as well with
the real-world message size distribution. CCM, having a sequential CBC-based
MAC inside, gets as fast as GCM and OCB which are inherently parallel. Being
royalty-free, NIST-recommended and weak-key free, CCM becomes an attractive
AE mode of operation in this setting.

In the context of the ongoing CAESAR competition, in the domain of nonce-
misuse resistant modes, the essentially sequential POET gets a significant speed-
up of factor 2.7 down to 2.14 cpb. Its rival CAESAR contestant COPA runs
as 2.68 cpb, while being insecure under release of unverified plaintext. This is
somewhat surprising, considering that POET uses 3 AES calls per block vs. 2
AES calls per block for COPA.

Section 5 also contains first-time comprehensive performance evaluations of
further AES-based modes in the CAESAR competition and beyond, both in the
sequential and comb-scheduled implementations, including OTR, CLOC/SILC,
JAMBU, COBRA, McOE-G and Julius.

Faster GF (2128) multiplications on Haswell Section 6 focuses on the tech-
nical implementation tricks on Haswell that we used to obtain our results and
contains a detailed study of improved GF (2128) multiplications on the architec-
ture.

2 Background

In this paper, we consider AES-based symmetric primitives, that is, algorithms
that make use of the (full) AES block cipher in a black-box fashion. In partic-
ular, this includes block cipher modes of operation, block cipher based message
authentication codes, and authentication encryption (AE) modes.

NIST-recommended Modes. In its special publications SP-800-38A-D [10],
NIST recommends the following modes of operation: ECB, CBC, CFB, OFB
and CTR as basic encryption modes; CMAC as authentication mode; and CCM
and GCM as authenticated encryption modes.

Authenticated Encryption Modes and CAESAR. Besides the widely em-
ployed and standardized modes CCM and GCM, a great number of modes for
authenticated encryption have been proposed, many of them being contestants
in the currently ongoing CAESAR competition. We give a brief overview of the
AE modes we will consider in this study.

We split up our consideration into two categories: (i) nonce-misuse resistant
AE modes, by which we mean modes that maintain authenticity and privacy up
to a common message prefix even when the nonce is repeated (also called OAE
security) and (ii) nonce-based AE modes which either lose authenticity, privacy
or both when nonces are repeated. The modes we consider in the former camp are

McOE-G, COPA, POET and Julius, while the nonce-based modes considered are
CCM, GCM, OCB3, OTR, CLOC, COBRA, JAMBU and SILC. Table 1 gives
a comparison of the modes considered in this work. The price to pay for a mode
to be nonce-misuse resistant includes extra computation, a higher serialization
degree, or both. One of the fundamental questions we answer in this work is how
much one has to pay, in terms of performance, to maintain this level of security
when repeating nonces.

Table 1: Overview of the AE modes considered in this paper. The ‖ column
indicates parallelizability; the “IF” column indicates whether a mode needs the
inverse of the underlying block cipher in decryption/verification; the “E” and
“M” columns give the number of calls, per message block, to the underlying
block cipher and multiplications in GF (2n), respectively.

Ref. Year ‖ IF E M Description

Nonce-based AE modes

CCM [37] 2002 – yes 2 – CTR encryption, CBC-MAC authentication
GCM [31] 2004 yes yes 1 1 CTR mode with chain of multiplications
OCB3 [26] 2010 yes – 1 – Gray code-based xor-encrypt-xor (XEX)
OTR [33] 2013 yes yes 1 – Two-block Feistel structure
CLOC [21] 2014 – yes 1 – CFB mode with low overhead
COBRA [5] 2014 yes yes 1 1 Combining OTR with chain of multiplications
JAMBU [38] 2014 – yes 1 – AES in stream mode, lightweight
SILC [22] 2014 – yes 1 – CLOC with smaller hardware footprint

Nonce-misuse resistant AE modes

McOE-G [11] 2011 – – 1 1 Serial multiplication-encryption chain
COPA [4] 2013 yes – 2 – Two-round XEX
POET [1] 2014 yes – 3 – XEX with two AXU (full AES-128 call) chains
Julius [7] 2014 – – 1 2 SIV with polynomial hashing

For the specifications of the AE modes considered, we refer to the relevant
references listed in Table 1. We clarify that for COBRA we refer to the FSE 2014
version with its reduced security claims (compared to the withdrawn CAESAR
candidate); with POET we refer to the version where the universal hashing is
implemented as full AES-128 (since using four rounds would not comprise a
mode of operation); and with Julius, we mean the CAESAR candidate regular
Julius-ECB.

The AES-NI Instruction Set. Proposed in 2008 and implemented as of their
2010 Westmere microarchitecture, Intel developed special instructions for fast
AES encryption and decryption [15], called the AES New Instruction Set (AES-
NI). It provides instructions for computing one AES round aesenc, aesenclast,

its inverse aesdec, aesdeclast, and auxiliary instructions for key scheduling.
The instructions do not only offer better performance, but security as well, since
they are leaking no timing information. AES-NI is supported in a subset of
Westmere, Sandy Bridge, Ivy Bridge and Haswell microarchitectures. A range of
AMD processors also support the instructions under the name AES Instructions,
including processors in the Bulldozer, Piledriver and Jaguar series [19].

Pipelining. Instruction pipelines allow CPUs to execute the same instruction
for data-independent instances in an overlapping fashion. This is done by subdi-
viding the instruction into steps called pipeline stages, with each stage processing
its part of one instruction at a time. The performance of a pipelined instruction
is characterized by its latency L (number of cycles to complete one instruction)
and throughput T (the number of cycles to wait between issuing instructions).
For instance, on the original Westmere architecture, the AES-NI aesenc instruc-
tion has a latency of 6 cycles and a throughput of 2, meaning that one instruction
can be issued every two cycles.

Previous Work. Matsui and Fukuda at FSE 2005 [29] and Matsui [28] at
FSE 2006 pioneered comprehensive studys on how to optimize symmetric prim-
itives on the then-contemporary generation of Intel microprocessors. One year
later, Matsui and Nakajima [30] demonstrated that the vector instruction units
of the Core 2 architecture lends itself to very fast bitsliced implementations of
block ciphers. For the AES, on a variety of platforms, Bernstein and Schwabe [8]
developed various micro-optimizations yielding vastly improved performance.
Intel’s AES instructions were introduced to the symmetric community by Shay
Gueron’s tutorial [14] at FSE 2009. In the same year, Käsper and Schwabe an-
nounced new records for bitsliced AES-CTR and AES-GCM performance [25].
At FSE 2010, Osvik et al. [35] explored fast AES implementations on AVR and
GPU platforms. Finally, a study of the performance of CCM, GCM, OCB3 and
CTR modes was presented by Krovetz and Rogaway [26] at FSE 2011.

3 Comb Scheduler: An Efficient Look-Ahead Strategy

3.1 Motivation

A substantial number of block cipher modes of operation for (authenticated)
encryption are inherently sequential in nature. Among the NIST-recommended
modes, this includes the classic CBC, OFB, CFB and CCM modes as well as
CBC derivatives such as CMAC. Also, more recent designs essentially owe their
sequential nature to design goals, e.g allowing lightweight implementations or
achieving stricter notions of security, for instance not requiring a nonce for secu-
rity (or allowing its reuse). Examples include ALE [9], APE [3], CLOC [21] the
McOE family of algorithms [11,12], and some variants of POET [1].

While being able to perform well in other environments, such algorithms can-
not benefit from the available pipelining opportunities on contemporary general-
purpose CPUs. For instance, as detailed in Section 6, the AES-NI encryption
instructions on Intel’s recent Haswell architecture feature a high throughput of
1, but a relatively high latency of 7 cycles. Modes of operation that need to
process data sequentially will invariably be penalized in such environments.

Furthermore, even if designed with parallelizability in mind, (authenticated)
modes of operation for block ciphers typically achieve their best performance
when operating on somewhat longer messages, often due to the simple fact that
these diminish the impact of potentially costly initialization phases and tag
generation. Equally importantly, only longer messages allow high-performance
software implementations to make full use of the available pipelining opportuni-
ties [2, 16,26,32].

In practice, however, one rarely encounters messages which allow to achieve
the maximum performance of an algorithm. Recent studies on packet sizes on
the Internet demonstrate that they basically follow a bimodal distribution [24,
34, 36]: 44% of packets are between 40 and 100 bytes long; 37% are between
1400 and 1500 bytes in size; the remaining 19% are somewhere in between.
Throughout the paper, we refer to this as the realistic distribution of message
lengths. This emphasizes the importance of good performance for messages up
to around 2 KB, as opposed to longer messages. Second, when looking at the
weighted distribution, this implies that the vast majority of data is actually
transmitted in packets of medium size between 1 and 2 KB. Considering the
first mode of the distribution, we observe that many of the very small packets
of Internet traffic comprise TCP ACKs (which are typically not encrypted),
and that the use of authentication and encryption layers such as TLS or IPsec
incurs overhead significant enough to blow up a payload of 1 byte to a 124 byte
packet [20]. It is therefore this range of message sizes (128 to 2048 bytes) that
authenticated modes of encryption should excel at processing, when employed
for encryption of Internet traffic.

3.2 Filling the Pipeline: Multiple Messages

It follows from the above discussion that the standard approach of considering
one message at a time, while arguably optimizing message processing latency,
can not always generate optimal throughput in high-performance software im-
plementations in most practically relevant scenarios. This is not surprising for
the inherently sequential modes, but even when employing a parallelizable de-
sign, the prevailing distribution of message lengths makes it hard to achieve the
best performance.

In order to remedy this, we propose to consider the scheduling of multiple
messages in parallel already in the implementation of the algorithm itself, as
opposed to considering it as a (single-message) black box to the message sched-
uler. This opens up possibilities of increasing the performance in the cases of
both sequential modes and the availability of multiple shorter or medium-sized
messages. In the first case, the performance penalty of sequential execution can

potentially be hidden by filling the pipeline with a sufficient number of opera-
tions on independent data. In the second case, there is a potential of increasing
performance by keeping the pipeline filled also for the overhead operations such
as block cipher or multiplication calls during initialization or tag generation.

Note that while in this paper we consider the processing of multiple messages
on a single core, the multiple message approach naturally extends to multi-core
settings.

Conceptually, the transition of a sequential to a multiple message implemen-
tation can be viewed as similar to the transition from a straightforward to a
bit-sliced implementation approach.

We note that an idealistic view of multiple-message processing was given
in [9] for dedicated authenticated encryption algorithm ALE. This consideration
was rather rudimentary, did not involve real-world packet size distributions, and
did not treat any modes of operation.

It is also important to note that while multiple message processing has the
potential to increase the throughput of an implementation, it can also increase
its latency (see also Section 3.4). The degree of parallelism therefore has to be
chosen carefully and with the required application profile in mind.

3.3 Message Scheduling with a Comb

Consider the scenario where a number of messages of varying lengths need to
be processed by a sequential encryption algorithm. As outlined before, blocks
from multiple messages have to be processed in an interleaved fashion in order to
make use of the available inter-message parallelism. Having messages of different
lengths implies that generally the pipeline cannot always be filled completely.
At the same time, the goal to schedule the message blocks such that pipeline
usage is maximized has to be weighed against the computational cost of making
such scheduling decisions: in particular, every conditional statement during the
processing of the bulk data results in a pipeline stall.

In order to reconcile the goal of exploiting multi-message parallelism for
sequential algorithms with the need for low-overhead scheduling, we propose
comb scheduling.

Comb scheduling is based on the observation that ideally, messages processed
in parallel have the same length, so given a desired (maximum) parallelism degree
P and a list of message lengths `1, . . . , `k, we can subdivide the computation in
a number of windows, in each of which we process as many consecutive message
blocks as we can for as many independent messages as possible according to the
restrictions based on the given message lengths.

Since our scheduling problem exhibits optimal substructure, this greedy ap-
proach yields an optimal solution. Furthermore, the scheduling decisions of how
many blocks are to be processed at which parallelism level can be precomputed
once the `i are known. This implies that instead of making each processing step
conditional, we only have conditional statements whenever we proceed from one
window to the next.

The comb scheduling method is outlined in Algorithms 1 and 2. In order to

Algorithm 1: CombScheduler

Input : k messages M1, . . . ,Mk of lengths `1, . . . , `k blocks
Input : Parallelism degree P

1 L← list of tuples (Mj , `j) sorted by decreasing `j
2 Denote by L[i] = (Mi, `i) the i-th tuple in L
3 while |L| > 0 do
4 r ← min{P, |L|}
5 Perform initialization for messages M1, . . . ,Mr

6 P,B ← PrecomputeWindows(`1, . . . , `r)
7 completedBlocks← 0
8 for w = 1, . . . , |P| do // Loop over windows
9 for i = 1, . . . ,B[w] do // Loop over blocks in window

10 for j = 1, . . . ,P[w] do // Loop over messages in window
11 Process block (completedBlocks + i) of message Mj

12 end

13 end
14 completedBlocks← completedBlocks + B[w]

15 end
16 Perform finalization for messages M1, . . . ,Mr

17 Remove the r first elements from L

18 end

Algorithm 2: PrecomputeWindows(`1, . . . , `r)

Input : r message lengths `1, . . . , `r in blocks, s.t. ∀i = 1, . . . , r − 1 : `i ≥ `i+1

Output: List P with P[w] the number of messages to process in parallel in
window w

Output: List B with B[w] the number of blocks to process in window w

1 P ← [], B ← [] // Initialize to empty lists
2 w ← 1, qlast ← 0, i← r
3 while i > 1 do // Scan windows right to left
4 q ← `i, j ← i− 1
5 while j ≥ 1 and `j = `i do j ← j − 1 ; // Left-extend while lengths equal
6 P[w]← i
7 B[w]← q − qlast
8 qlast ← q, i← j, w ← w + 1

9 end
10 if i = 1 then // Leftover message
11 P[w]← 1
12 B[w]← `1 − qlast
13 end
14 return P,B

simplify the combing, the messages are pre-sorted by decreasing length2. This
sorting step can be implemented via an optimal sorting network for the con-
stant value of P chosen by the implementation. Alternatively, a low-overhead
algorithm like Insertion Sort can be used.

The sorted messages are then processed in groups of P . Inside each group,
the processing is window by window according to the precomputed parallelism
levels P and window lengths B: In window w, the same P[w] messages of the
current message group are processed B[w] blocks further. In the next window,
at least one message will be exhausted, and the parallelism level decreases by at
least one.

As comb scheduling is processing the blocks by common (sub-)length from
left to right, our method can be considered a symmetric-key variant of the well-
known comb method for (multi-)exponentiation [27].

Choice of the Parallelism Degree. In order to make optimal use of the
pipeline, the parallelism degree P should be chosen according to

P = L · T,

with L denoting the latency (in cycles) and T the throughput (in instruction-
s/cycles) of the pipelined instruction. For AES-NI, the latency and throughput
of the aesenc instruction vary from platform to platform. A summary for the
Haswell microarchitecture is given in Table 7 in Section 6.2, suggesting P = 7
for this platform.

Message m1 m2 m3 m4 m5 m6 m7 Windows
Length 94 5 5 5 85 94 94 (P[w], B[w])

Block 1 | | | | | | |
}

(7, 5)| | | | | | |
| | | |

 (4, 80)

}
(3,9)

Block 94 | | |

Fig. 1: Comb scheduling example for 7 messages of lengths (94, 5, 5, 5, 85, 94, 94)
blocks

An Example. We illustrate comb scheduling in Figure 1 with an example
where P = k = 7: The precomputation determines that all 7 messages can be

2 Note that this can be implemented by pointer swapping only, without copying of
data blocks.

processed in a pipelined fashion for the first 5 blocks; four of the 7 messages can
be processed further for the next 80 blocks; and finally three remaining messages
are processed for another 9 blocks.

3.4 Latency vs. Throughput

A point worth discussing is the latency increase one has to pay when using
multiple message processing. Since the speed-up is limited by the parallelization
level, one can at most hope for the same latency as in the sequential processing
case.

We illustrate this by the example of CBC mode when implemented in the
multiple message setting with comb scheduling. We consider two distributions for
message lenghts: One where all messages are 2048 bytes long, and one realistic
distribution of Internet traffic. The performance data is given in Table 2.

Table 2: Performance of CBC encryption (cpb) and relative speed-up for comb
scheduling with different parallelization levels for fixed lengths of 2048 bytes
(top) and realistic message lengths (bottom).

Parallelization level P

Sequential 2 3 4 5 6 7 8

2K messages 4.38 2.19 1.47 1.11 0.91 0.76 0.66 0.65
Relative speed-up ×1.00 ×2.00 ×2.98 ×3.95 ×4.81 ×5.76 ×6.64 ×6.74

Realistic distribution 4.38 2.42 1.73 1.37 1.08 0.98 0.87 0.85
Relative speed-up ×1.00 ×1.81 ×2.53 ×3.20 ×4.06 ×4.47 ×5.03 ×5.15

Table 2 shows that for identical message lengths, the ideal linear speed-up
is actually achieved for 2 to 4 parallel messages: Setting |M | = 2048, instead
of waiting 4.38 · |M | cycles in the sequential case, one has a latency of either
2.19 ·2 = 4.38 · |M |, 1.47 ·3 = 4.41 · |M | or 1.11 ·4 = 4.44 · |M | cycles, respectively.
Starting from 5 messages, the latency slightly increases with the throughput,
however remaining at a manageable level even for 7 messages, where it is only
around 5% higher than in the sequential case, while achieving a 6.64 times speed-
up in throughput. For realistic message lengths, using 7 multiple messages, we
see an average increase in latency of 39% which has to be contrasted (and,
depending on the application, weighed against) the significant 5.03 times speed-
up in throughput.

4 Pipelined NIST Encryption Modes

In this section, we present the results of our performance study of the NIST-
recommended encryption modes when instantiated with AES as the block cipher

and implemented with AES-NI and AVX vector instructions. We remark that
we only measure encryption. Some modes covered, such as CBC and CFB, are
sequential in encryption but parallel in decryption.

Experimental Setting. All measurements were taken on a single core of an
Intel Core i5-4300U CPU (Haswell) at 1900 MHz. For each combination of pa-
rameters, the performance was determined as the median of 91 averaged timings
of 200 measurements each. This method has also been used by Krovetz and
Rogaway in their benchmarking of authenticated encryption modes in [26]. The
measurements are taken over samples from the realistic distribution on message
lengths.

Out of the basic NIST modes, ECB and CTR are inherently parallelizable and
already achieve good performance with trivial sequential message scheduling.
Three other modes, CBC, OFB and CFB, however, are inherently sequential
and therefore need to make use of inter-message parallelism to benefit from the
available pipelining. The same holds for the NIST-recommended CMAC message
authentication code. We therefore measure the performance of all modes with
sequential processing, and additionally the performance of the sequential modes
with comb message scheduling.

Table 3: Performance comparison (in cpb) of NIST encryption modes with trivial
sequential processing and comb scheduling. Message lengths are sampled from
the realistic Internet traffic distribution.

Mode Sequential processing Comb scheduling Speed-up

AES-ECB 0.65 — —
AES-CTR 0.78 — —
AES-CBC 4.47 0.87 ×5.14
AES-OFB 4.48 0.88 ×5.09
AES-CFB 4.45 0.89 ×5.00

CMAC-AES 4.29 0.84 ×5.10

Discussion. Our performance results for pipelined implementations of NIST
encryption modes are presented in Table 3. It is apparent that the parallel pro-
cessing of multiple messages using comb scheduling speeds up encryption perfor-
mance by a factor of around 5, bringing the sequential modes within about 10%
of CTR mode performance. The results also indicate that the overhead induced
by the comb scheduling algorithm itself can be considered negligible compared
to the AES calls.

Due to their simple structure with almost no overhead, it comes as no surprise
that CBC, OFB and CFB performance are virtually identical. That CMAC per-

forms slightly better despite additional initialization overhead can be explained
by the fact that there are no ciphertext blocks to be stored to memory.

5 Pipelined Authenticated Encryption

We now turn our attention to the AES-NI software performance of authenti-
cated encryption modes. We consider the well-established modes CCM, GCM
and OCB3 as well as a number of more recent proposals, many of them being
contestants in the ongoing CAESAR competition.

Experimental Setting. The same experimental setup as for the encryption
modes applies. For our performance measurements, we are interested in the
performance of the various AE modes of operation during their bulk processing
of message blocks, i.e. during the encryption phase. To that end, we do not
measure the time spent on processing associated data. As some schemes can
have a significant overhead when computing authentication tags (finalization)
for short messages, we do include this phase in the measurements as well.

5.1 Performance in the Real World

Out of the AE modes in consideration, GCM, OCB3, OTR, COBRA, COPA and
Julius are parallelizable designs. We therefore only measure their performance
with sequential message processing. On the other hand, CCM, CLOC, SILC,
JAMBU, McOE-G and POET are sequential designs and as such will also be
measured in combination with comb scheduling. In all cases, we again measure
the performance using the message lengths sampled from the realistic bimodal
distribution of typical Internet traffic.

Table 4 lists the results of the performance measurements. For the sequential
modes where comb scheduling was implemented, the relative speed-up compared
to normal sequential processing is indicated in the last column. In this table, the
nonce-based AE modes are listed separately from those offering nonce-misuse
resistance in order to provide a better estimation of the performance penalty
one has to pay for achieving a stricter notion of security.

Discussion. The performance data demonstrates that comb scheduling of mul-
tiple messages consistently provides a speed-up of factors between 3 and 4 com-
pared to normal sequential processing. For typical Internet packet sizes, comb
scheduling enables sequential AE modes to run with performance comparable to
the parallelizable designs, in some cases even outperforming them. This can be
attributed to the fact that AE modes typically have heavier initialization and
finalization than normal encryption modes, both implying a penalty for short
message performance. By using comb scheduling, however, also the initial and
final AES calls can be (at least partially) parallelized between different messages.
The relative speed-up for this will typically reduce with the message length. The

Table 4: Performance comparison (in cpb) of AES-based AE modes with trivial
sequential processing and comb scheduling. Message lengths are sampled from
the realistic Internet traffic distribution. CAESAR candidates are marked using
a ? after their name.

(a) Nonce-based AE modes

Mode Sequential Comb Speed-up

CCM 5.22 1.64 ×3.18
GCM 1.63 — —
OCB3? 1.51 — —
OTR? 1.91 — —
COBRA 3.56 — —
CLOC? 4.47 1.45 ×3.08
JAMBU? 9.12 2.05 ×4.45
SILC? 4.53 1.49 ×3.04

(b) Nonce-misuse resistant AE modes

Mode Sequential Comb Speed-up

McOE-G 7.41 1.79 ×4.14
COPA? 2.68 — —
POET? 5.85 2.14 ×2.73
Julius? 3.73 — —

surprisingly good performance of McOE-G is due to the fact that it basically
benefits doubly from multiple message processing, since not only the AES calls,
but also its sequential finite field multiplications can now be pipelined. For the
comb scheduling implementation of CCM, which is two-pass, it is worth noting
that all scheduling precomputations only need to be done once, since exactly the
same processing windows can be used for both passes.

Best Performance Characteristics. From Table 4, it is apparent that for
encryption of typical Internet packets, the difference, with respect to perfor-
mance, between sequential and parallelizable modes somewhat blurs when comb
scheduling is employed. This is especially true for the nonce-based setting, where
CLOC, SILC, CCM, GCM and OCB3 all perform on a very comparable level.
For the nonce-misuse resistant modes, our results surprisingly even show better
performance of the two sequential modes for this application scenario. This can
be attributed to the fact that the additional processing needed for achieving
nonce-misuse resistance hampers performance on short messages, which can be
mitigated to some extent by comb scheduling.

5.2 Traditional Approach: Sequential Messages of Fixed Lengths

While the previous section analyzed the performance of the various AE modes
using a model for a realistic message lengths, we provide some more detail on
the exact performance exhibited by these modes for a range of (fixed) message
lengths in this section. To this end, we provide performance measurements for
specific message lengths between 128 and 2048 bytes. The results are summarized
in Table 5.

Table 5: Performance comparison (in cpb) of AE modes for processing a single
message of various, fixed message lengths.

(a) Nonce-based AE modes

Message length (bytes)

Mode 128 256 512 1024 2048

CCM 5.35 5.19 5.14 5.11 5.10
GCM 2.09 1.61 1.34 1.20 1.14
OCB3 2.19 1.43 1.06 0.87 0.81
OTR 2.97 1.34 1.13 1.02 0.96
CLOC 4.50 4.46 4.44 4.46 4.44
COBRA 4.41 3.21 2.96 2.83 2.77
JAMBU 9.33 9.09 8.97 8.94 8.88
SILC 4.57 4.54 4.52 4.51 4.50

(b) Nonce-misuse resistant AE modes

Message length (bytes)

Mode 128 256 512 1024 2048

McOE-G 7.77 7.36 7.17 7.07 7.02
COPA 3.37 2.64 2.27 2.08 1.88
POET 6.89 5.74 5.17 4.88 4.74
Julius 4.18 4.69 3.24 3.08 3.03

Discussion. The performance data clearly shows the expected difference be-
tween sequential and parallelizable modes when no use of multiple parallel mes-
sages can be made. Only initialization-heavy sequential modes like McOE-G and
POET show significant performance differences between shorter and longer mes-
sages, while this effect is usually very pronounced for the parallelizable modes
such as OCB3 and COPA. It can be seen from Table 5, that in the nonce-based
setting, the best performance is generally offered by OCB3, although OTR and
GCM (on Haswell) provide quite similar performance. Among the nonce-misuse
resistant modes, COPA performs best for all message sizes.

5.3 Exploring the Limits: Upper Bounding the Comb Scheduler
Advantage

Having seen the performance data with comb scheduling for realistic message
lengths, it is natural to consider the question what the performance of the various
modes would be for the ideal scenario where the scheduler is given only messages
of a fixed length. In this case, the comb precomputation would result in only
one processing window, so essentially no scheduler-induced branches are needed
during the processing of the messages. In a sense, this constitutes an upper
bound for the multi-message performance with comb scheduling for the various
encryption algorithms.

Table 6 summarizes the performance of the previously considered sequential
AE modes when comb scheduling is combined with fixed message lengths (i.e.
message lengths sampled from a deterministic distribution).

Discussion. It can be seen that for all modes considered, the performance for
longer messages at least slightly improves compared to the realistic message
length mix of Table 4, though the differences are quite small and do not exceed

Table 6: Performance comparison (in cpb) of sequential AE modes when comb
scheduling is used for various fixed message lengths.

(a) Nonce-based AE modes

Message length (bytes)

Mode 128 256 512 1024 2048

CCM 1.51 1.44 1.40 1.38 1.37
CLOC 1.40 1.31 1.26 1.24 1.23
JAMBU 2.14 1.98 1.89 1.85 1.82
SILC 1.43 1.33 1.28 1.25 1.24

(b) Nonce-misuse resistant AE modes

Message length (bytes)

Mode 128 256 512 1024 2048

McOE-G 1.91 1.76 1.68 1.64 1.62
POET 2.56 2.23 2.06 1.97 1.93

around 0.2 cpb. For smaller lengths, the difference can be more pronounced
for a mode with heavy initialization such as POET. Overall, this shows that
comb scheduling for a realistic distribution provides a performance which is very
comparable to that of comb scheduling of messages with an idealized distribution.

Exploring the Parameter Space. Besides the distribution of the message
lengths, the parallelization degree influences the performance of the comb sched-
uler. Even though P = 7 is optimal for Haswell, applications might choose a
lower value if typically only few messages are available simultaneously, in order
to avoid a latency blowup. The dependency of the performance on both individ-
ual parameters is further detailed in Figures 2 and 3, where the comb scheduling
performance is shown for a range of fixed message lengths (32, . . . , 2048) and
parallelization degrees (2, . . . , 16). The horizontal lines in the color key of both
figures indicate the integer values in the interval.

32
256

512

1,024

2,048

2
4

6
8

10
12

14
16

0
1
2
3
4
5
6
7

bytes

par. degree

c
p
b

1.37

3.42

cpb

(a) CCM

32
256

512

1,024

2,048

2
4

6
8

10
12

14
16

0
1
2
3
4
5
6
7

bytes

par. degree

c
p
b

1.23

3.47

cpb

(b) CLOC

32
256

512

1,024

2,048

2
4

6
8

10
12

14
16

0
1
2
3
4
5
6
7

bytes

par. degree

c
p
b

1.24

3.56

cpb

(c) SILC

32
256

512

1,024

2,048

2
4

6
8

10
12

14
16

0
1
2
3
4
5
6
7

bytes

par. degree

c
p
b

1.82

6.96

cpb

(d) JAMBU

Fig. 2: Performance of serial nonce-based AE modes of operation when comb
scheduling is used with different parallelization levels for various fixed message
lengths

32
256

512

1,024

2,048

2
4

6
8

10
12

14
16

0
1
2
3
4
5
6
7

bytes

par. degree

c
p
b

1.62

5.2

cpb

(a) McOE-G

32
256

512

1,024

2,048

2
4

6
8

10
12

14
16

0
1
2
3
4
5
6
7

bytes

par. degree

c
p
b

1.93

6.49

cpb

(b) POET

Fig. 3: Performance of serial nonce-misuse resistant AE modes of operation when
comb scheduling is used with different parallelization levels for various fixed
message lengths

Impact of Working Set Sizes. It can be seen from the plots that, as expected,
most modes achieve their best speed-up in the multiple messages scenario for a
parallelization level of around 7 messages. It is worth noting, however, that for
each of these messages, a complete working set (internal state of the algorithm)
has to be maintained. Since only 16 128-bit XMM registers are available, even a
working set of three 128-bit words (for instance cipher state, tweak mask, check-
sum) for 7 simultaneously processed messages will already exceed the number of
available registers. As the parallelization degree P increases, this becomes more
and more a factor. This can be especially seen for POET, which has a larger
internal state per instance. By contrast, CCM, JAMBU and McOE-G suffer a
lot less from this effect.

The experimental results also confirm the intuition of Section 6.1 that Haswell’s
improved memory interface can handle fairly large working set sizes efficiently
by hiding the stack access latency between the cryptographic operations. This
allows more multiple messages to be processed faster despite the increased reg-
ister pressure, basically until the number of moves exceeds the latency of the
other operations, or ultimately the limits of the Level-1 cache are reached.

6 Haswell Tricks: Towards Faster Code

In this section, we describe some of the optimization techniques and architecture
features that were used for our implementations on Haswell.

6.1 General Considerations: AVX and AVX2 Instructions

In our Haswell-optimized AE scheme implementations we make heavy use of
Intel Advanced Vector Extensions (AVX) which has been present in Intel pro-
cessors since Sandy Bridge. AVX can be considered as an extension of the SSE+3

streaming SIMD instructions operating on 128-bit xmm0 through xmm15 registers.
While AVX and AVX2, the latter which appears first on Intel’s Haswell

processor, brings mainly support for 256-bit wide registers to the table, this
is not immediately useful in implementing an AES-based AE scheme, as the
AES-NI instructions as well as the pclmulqdq instruction support only the use
of 128-bit xmm registers. However, a feature of AVX that we use extensively is
the three-operand enhancement, due to the VEX coding scheme, of legacy two-
operand SSE2 instructions. This means that, in a single instruction, one can
non-destructively perform vector bit operations on two operands and store the
result in a third operand, rather than overwriting one of the inputs, e.g. one can
do c = a ⊕ b rather than a = a ⊕ b. This eliminates overhead associated with
mov operations required when overwriting an operand is not acceptable. With
AVX, three-operand versions of the AES-NI and pclmulqdq instructions are also
available.

A further Haswell feature worth taking into account is the increased through-
put for logical instructions such as vpxor/vpand/vpor on AVX registers: While

3 i.e. SSE, SSE2, etc.

the latency remains at one cycle, now up to 3 such instructions can be sched-
uled simultaneously. Notable exceptions are algorithms heavily relying on mixed
64/128 bit logical operations such as JAMBU, for which the inclusion of a fourth
64-bit ALU implies that such algorithms will actually benefit from frequent con-
version to 64-bit arithmetic via vpextrq/vpinsrq rather than artificial extension
of 64-bit operands to 128 bits for operation on the AVX registers.

On Haswell, the improved memory controller allows two simultaneous 16-byte
aligned moves vmovdqa from registers to memory, with a latency of one cycle.
This implies that on Haswell, the comparatively large latency of cryptographic
instructions such as vaesenc or pclmulqdq allows the implementer to “hide”
more memory accesses to the stack when larger internal state of the algorithm
leads to register shortage. This also benefits the generally larger working sets
induced by the multiple message strategy described in Section 3.

6.2 Improved AES Instructions

In Haswell, the AES-NI encryption and decryption instructions had their latency
improved from 8 cycles on Sandy and Ivy Bridge4, down to 7 cycles [18]. This
is especially beneficial for sequential implementations such as AES-CBC, CCM,
McOE-G, CLOC, SILC and JAMBU. Furthermore, the throughput has been
slightly optimized, allowing for better performance in parallel. Table 7 gives an
overview of the latencies and inverse throughputs measured on our test machine
(Core i5-4300U). The data was obtained using the test suite of Fog [13].

Table 7: Experimental latency (L) and inverse throughput (T−1) of AES-NI and
pclmulqdq instructions on Intel’s Haswell microarchitecture

Instruction L T−1 Instruction L T−1

aesenc 7 1 aesimc 14 2
aesdec 7 1 aeskeygenassist 10 8
aesenclast 7 1 pclmulqdq 7 2
aesdeclast 7 1

6.3 Improvements for Multiplication in GF (2128)

The pclmulqdq instruction was introduced by Intel along with the AES-NI in-
structions [17], but is not part of AES-NI itself. The instruction takes two 128-bit
inputs and a byte input imm8, and performs carry-less multiplication of a com-
bination of one 64-bit half of each operand. The choice of halves of the two
operands to be multiplied is determined by the value of bits 4 and 0 of imm8.

4 We remark that Fog reports a latency of 4 cycles for aesenc on Ivy Bridge [13]

Most practically used AE modes using multiplication in a finite field use block
lengths of 128 bits. As a consequence, multiplications are in the field GF (2128).
As the particular choice of finite field does not influence the security proofs,
modes use the tried-and-true GCM finite field. For our performance study, we
have used two different implementation approaches for finite field multiplication
(gfmul). The first implementation, which we refer to as the classical method,
was introduced in Intel’s white paper [17]. It applies pclmulqdq three times in
a carry-less Karatsuba multiplication followed by modular reduction. The sec-
ond implementation variant, which we refer to as the Haswell-optimized method,
was proposed by Gueron [16] with the goal of leveraging the much improved
pclmulqdq performance on Haswell to trade many shifts and XORs for one
more multiplication. This is motivated by the improvements in both latency (7
vs. 14 cycles) and inverse throughput (2 vs. 8 cycles) on Haswell [18].

In modes where the output of a multiplication over GF (2128) is not directly
used, other than as a part of a chain combined using addition, the aggregated
reduction method by Jankowski and Laurent [23] can be used to gain speed-ups.
This method uses the inductive definitions of chaining values combined with the
distributivity law for the finite field to postpone modular reduction at the cost
of storing powers of an operand. Among the modes we benchmark in this work,
the aggregated reduction method is applicable only to GCM and Julius. We
therefore use this approach for those two modes, but apply the general gfmul
implementations to the other modes.

6.4 Classical vs. Haswell GF (2128) Multiplication

Here we compare the classical and Haswell-optimized methods of multiplication
in GF (2128). We compare the performance of those AE modes that use full
GF (2128) multiplications (as opposed to aggregated reduction): McOE-G and
COBRA, when instantiated using the two different multiplication algorithms.
Figure 4 shows that when processing a single message, the classical implemen-
tation of gfmul performs better than the Haswell-optimized method, while the
situation is reversed when processing multiple messages in parallel.

Given the speed-up of pclmulqdq on Haswell, this may seem somewhat
counter-intuitive at first. We observe, however, that McOE-G and COBRA
basically make sequential use of multiplications, which precludes utilizing the
pipeline for sequential implementations. In this case, the still substantial latency
of pclmulqdq is enough to offset the gains by replacing several other instructions
for the reduction. This is different in the multiple message case, where the avail-
ability of independent data allows our implementations to make more efficient
use of the pipeline, leading to superior results over the classical multiplication
method.

6.5 Haswell-optimized Doubling in GF (2128)

The doubling operation in GF (2128) is commonly used in AE schemes [6], and
indeed among the schemes we benchmark, it is used by OCB3, OTR, COBRA,

0 2,000 4,000 6,000 8,000

4

6

8

Message length (bytes)

P
er
fo
rm

a
n
ce

(c
y
cl
es
/
b
y
te
)

(a) Processing single messages

0 0.5 1 1.5

·104

2

2.5

3

3.5

Message length (bytes)

P
er
fo
rm

a
n
ce

(c
y
cl
es
/
b
y
te
)

(b) Processing multiple messages

Fig. 4: Performance of McOE-G (diamond mark) and COBRA (circle mark)
with single messages (left) and 8 multiple messages of equal length (right). Data
points with hollow marks are for classical multiplication while filled marks are
for Haswell-optimization multiplication.

COPA and POET. Doubling in this field consists of left shifting the input by one
bit and doing a conditional XOR of a reduction polynomial if the MSB of the
input equals one. Neither SSE+ nor AVX provide an instruction to shift a whole
xmm register bitwise nor to directly test just its MSB. Thus, these functions have
to be emulated with other operations, opening up a number of implementation
choices.

We emulate a left shift by one bit by the following procedure, which is optimal
with regard to the number of instructions and cycles: Given an input v, the value
2v ∈ GF (2128) is computed as in Listing 1.1. Consider v = (vL‖vR) where vL
and vR are 64-bit values. In line 3 we set v1 = (vL � 1‖vR � 1) and lines
4 and 5 set first v2 = (vR‖0) and then v2 = ((vR � 63)‖0). As such, we have
v � 1 = v1 | v2. This leaves us with a number of possibilities when implementing
the branching of line 6, which can be categorized as (i) extracting parts from v
and testing, (ii) AVX variants of the test instruction, (iii) extracting a mask with
the MSB of each part of v and (iv) comparing against 10 · · · 02 (called MSB MASK

in Listing 1.1 and RP is the reduction constant) and then extracting from the
comparison result. Some of these approaches again leave several possibilities
regarding the number of bits extracted, etc.

Interestingly, the approach taken to check the MSB of v has a great impact
on the doubling performance. This is illustrated by Table 5a where we give
performance of the doubling operation using various combinations of approaches.
The numbers are obtained by averaging over 108 experiments. Surprisingly, we
see that there is a significant speed-up, about a factor×3, when using comparison
with MSB MASK combined with extraction, over the other methods. Thus, we
suggest to use this approach, where line 6 can be implemented as

if (mm extract epi8(mm cmpgt epi8(MSB MASK, v), 15) == 0).

Listing (1.1) Doubling in GF (2128)

1 m128i xtime (m128i v) {
2 m128i v1 , v2 ;
3 v1 = mm s l l i e p i 6 4 (v , 1) ;
4 v2 = mm s l l i s i 1 2 8 (v , 8) ;
5 v2 = mm sr l i ep i 64 (v2 , 6 3) ;
6 i f (msb o f v == 1)
7 return mm xor si128 (mm or si128 (

v1 , v2) ,RP) ;
8 else
9 return mm or si128 (v1 , v2) ;

10 }

(a) Performance of doubling
with different approaches to
MSB testing

Approach Cycles

(i) Extraction 15.4
(ii) Test 15.4
(iii) MSB mask 16.7
(iv) Compare + extract 5.6

7 Conclusions

In this paper, we have discussed the performance of various block cipher-based
symmetric primitives when instantiated with the AES on Intel’s recent Haswell
architecture.

As a general technique to speed up both inherently sequential modes and to
deal with the typical scenario of having many shorter messages, we proposed our
comb scheduler, an efficient algorithm for the scheduling of multiple simultaneous
messages which is based on a look-ahead strategy within a certain window size.
This leads to significant speed-ups for essentially all sequential modes, even when
taking realistic Internet traffic distributions into account. Applied to the NIST-
recommended modes CBC, CFB, OFB and CMAC, comb scheduling attains a
significant speed-up of factor at least 5, resulting in a performance of around
0.88 cpb, which is within about 10% of the performance of the parallelizable
CTR mode on the same message distribution.

Applying comb scheduling to authenticated encryption modes (which typi-
cally feature higher initialization and finalization overhead, thus penalizing per-
formance on the frequently occurring short messages), our technique speeds up
the inherently sequential AE modes CCM, CLOC, SILC, JAMBU, McOE-G and
POET by factors between 3 and 4.5. This particularly results in a CCM per-
formance comparable to GCM or OCB3, without being afflicted by issues with
weak-key classes or encumbered by patents.

Our study also establishes that for practitioners wishing to use a nonce-
misuse resistant AE mode, the POET design with comb scheduling attains bet-
ter performance than the completely parallelizable mode COPA. Since POET
furthermore offers ciphertext-misuse resistance, this suggests that users do not
have to choose between good performance or stricter notions of security.

References

1. Farzaneh Abed, Scott Fluhrer, Christian Forler, Eik List, Stefan Lucks, David
McGrew, and Jakob Wenzel. Pipelineable On-Line Encryption. In FSE, 2014.

2. Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal,
Jim Guilford, Erdinc Ozturk, Gil Wolrich, and Ronen Zohar. Breakthrough AES
Performance with Intel AES New Instructions. Intel Corporation, 2010.

3. Elena Andreeva, Begl Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. APE: Authenticated Permutation-Based Encryption for
Lightweight Cryptography. In FSE, 2014.

4. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. Parallelizable and authenticated online ciphers. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT
2013 - 19th International Conference on the Theory and Application of Cryptology
and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part
I, volume 8269 of Lecture Notes in Computer Science, pages 424–443. Springer,
2013.

5. Elena Andreeva, Atul Luykx, Bart Mennink, and Kan Yasuda. COBRA: A Par-
allelizable Authenticated Online Cipher Without Block Cipher Inverse. In FSE,
2014.

6. Kazumaro Aoki, Tetsu Iwata, and Kan Yasuda. How Fast Can a Two-Pass Mode
Go? A Parallel Deterministic Authenticated Encryption Mode for AES-NI. In
DIAC 2012: Directions in Authenticated Ciphers, 2012.

7. Lear Bahack. Julius: Secure Mode of Operation for Authenticated Encryption
Based on ECB and Finite Field Multiplications.

8. Daniel J. Bernstein and Peter Schwabe. New AES software speed records. In
Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress
in Cryptology - INDOCRYPT 2008, 9th International Conference on Cryptology
in India, Kharagpur, India, December 14-17, 2008. Proceedings, volume 5365 of
Lecture Notes in Computer Science, pages 322–336. Springer, 2008.

9. Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and
Elmar Tischhauser. ALE: AES-based Lightweight Authenticated Encryption. In
Shiho Moriai, editor, Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of
Lecture Notes in Computer Science, pages 447–466. Springer, 2013.

10. Morris J. Dworkin. SP 800-38D. Recommendation for Block Cipher Modes of Oper-
ation: Galois/Counter Mode (GCM) and GMAC. Technical report, Gaithersburg,
MD, United States, 2007.

11. Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of almost
foolproof on-line authenticated encryption schemes. In Anne Canteaut, editor, Fast
Software Encryption - 19th International Workshop, FSE 2012, Washington, DC,
USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes
in Computer Science, pages 196–215. Springer, 2012.

12. Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob Wenzel. McOE: A
Family of Almost Foolproof On-Line Authenticated Encryption Schemes. Cryp-
tology ePrint Archive, Report 2011/644, 2011. http://eprint.iacr.org/.

13. Agner Fog. Software Optimization Resources. Accessed on February 17, 2014.
http://www.agner.org/optimize/, February 2014.

14. Shay Gueron. Intel’s new AES instructions for enhanced performance and se-
curity. In Orr Dunkelman, editor, Fast Software Encryption, 16th International
Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected
Papers, volume 5665 of Lecture Notes in Computer Science, pages 51–66. Springer,
2009.

15. Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions Set.
Intel Corporation, 2010.

16. Shay Gueron. AES-GCM software performance on the current high end CPUs as
a performance baseline for CAESAR. In DIAC 2013: Directions in Authenticated
Ciphers, 2013.

17. Shay Gueron and Michael E. Kounavis. Intel Carry-Less Multiplication Instruction
and its Usage for Computing the GCM Mode. Intel Corporation, 2010.

18. Sean Gulley and Vinodh Gopal. Haswell Cryptographic Performance. Intel Cor-
poration, 2013.

19. Brent Hollingsworth. New “Bulldozer” and “Piledriver” Instructions. Advanced
Micro Devices, Inc., 2012.

20. Steven Iveson. IPSec Bandwidth Overhead Using AES. Accessed on February
17, 2014. http://packetpushers.net/ipsec-bandwidth-overhead-using-aes/,
October 2013.

21. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Au-
thenticated Encryption for Short Input. In FSE, 2014.

22. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi.
SILC: SImple Lightweight CFB.

23. Krzysztof Jankowski and Pierre Laurent. Packed AES-GCM Algorithm Suitable
for AES/PCLMULQDQ Instructions. pages 135–138, 2011.

24. Wolfgang John and Sven Tafvelin. Analysis of internet backbone traffic and header
anomalies observed. In Internet Measurement Conference, pages 111–116, 2007.

25. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Sci-
ence, pages 1–17. Springer, 2009.

26. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, Fast Software Encryption - 18th Inter-
national Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised
Selected Papers, volume 6733 of Lecture Notes in Computer Science, pages 306–327.
Springer, 2011.

27. Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precom-
putation. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer Science,
pages 95–107. Springer, 1994.

28. Mitsuru Matsui. How far can we go on the x64 processors? In Matthew J. B.
Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE
2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume 4047 of
Lecture Notes in Computer Science, pages 341–358. Springer, 2006.

29. Mitsuru Matsui and Sayaka Fukuda. How to maximize software performance of
symmetric primitives on pentium III and 4 processors. In Henri Gilbert and Helena
Handschuh, editors, Fast Software Encryption: 12th International Workshop, FSE
2005, Paris, France, February 21-23, 2005, Revised Selected Papers, volume 3557
of Lecture Notes in Computer Science, pages 398–412. Springer, 2005.

30. Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on
intel core2 processor. In Pascal Paillier and Ingrid Verbauwhede, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2007, 9th International Work-
shop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 121–134. Springer, 2007.

31. David A. McGrew and John Viega. The Galois/Counter Mode of Operation
(GCM).

32. David A. McGrew and John Viega. The Security and Performance of the Galois/-
Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee Viswanathan,

editors, Progress in Cryptology - INDOCRYPT 2004, 5th International Conference
on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings, vol-
ume 3348 of Lecture Notes in Computer Science, pages 343–355. Springer, 2004.

33. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseu-
dorandom Functions. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 275–292. Springer, 2014.

34. David Murray and Terry Koziniec. The state of enterprise network traffic in 2012.
In Communications (APCC), 2012 18th Asia-Pacific Conference on, pages 179–
184. IEEE, 2012.

35. Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast software
AES encryption. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryp-
tion, 17th International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010,
Revised Selected Papers, volume 6147 of Lecture Notes in Computer Science, pages
75–93. Springer, 2010.

36. Kostas Pentikousis and Hussein G. Badr. Quantifying the deployment of TCP
options - a comparative study. pages 647–649, 2004.

37. Doug Whiting, Russ Housley, and Niels Ferguson. Counter with CBC-MAC
(CCM), 2003.

38. Hongjun Wu and Tao Huang. JAMBU Lightweight Authenticated Encryption
Mode and AES-JAMBU.

