
Differential Cryptanalysis of

Round-Reduced Simon and Speck

Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{farzaneh.abed, eik.list, stefan.lucks, jakob.wenzel}@uni-weimar.de

Abstract. This paper presents differential attacks on Simon and Speck,
two families of lightweight block ciphers that were presented by the U.S.
National Security Agency in June 2013. We describe attacks on up to
slightly more than half the number of rounds. While our analysis is only
of academic interest, it demonstrates the drawback of the intensive op-
timizations in Simon and Speck.

Keywords: differential cryptanalysis, block cipher, lightweight, Simon,
Speck

1 Introduction

Due to the continuously growing impact of RFID tags, smartcards, and FPGAs,
cryptographic algorithms which are suitable for resource-constrained devices be-
come more and more important. Lightweight ciphers are optimized to operate in
such environments which are limited with respect to their memory, battery sup-
ply, and computing power. For these applications, hard- and software efficiency
are crucial, and designing cryptographic primitives which preserve security under
these constraints is a major challenge.
During the last decade, many lightweight ciphers have been developed including
but not limited to HIGHT [11], KATAN [8], KLEIN [9], L-Block [16], LED [10],
mCrypton [12], PRESENT [6], and PRINCE [7]. In June 2012, Beaulieu et al.
from the U.S. National Security Agency (NSA) contributed to this ongoing re-
search process with the announcement of two novel families of lightweight cipher
families, called Simon and Speck [3]. Both constructions support an uncom-
monly large range of block sizes from 32 to 128 and key sizes from 64 to 256
bits in order to suit a variety of implementations. Simon was thereby optimized
for hardware (like KATAN, LED, or PRESENT), and Speck for software im-
plementations (such as KLEIN); though, due to immense optimizations in their
round functions, both cipher families perform well in hard- and software.

Related Work. Due to their simple structure, Simon and Speck were already
target of various cryptanalytical efforts. Alkhzaimi and Lauridsen [2] presented
– parallel to our work – differential attacks on up to 16, 18, 24, 29, and 40 rounds
for Simon with 32-, 48-, 64-, 96-, and 128-bit state size, respectively. In addition,

the authors showed impossible-differential attacks on up to 14, 15, 16, 19, and 22
rounds and discussed observations regarding rotational cryptanalysis and weak
keys. Alizadeh et al. [1] recently presented the best linear attacks on Simon,
with attacks on 12, 15, 19, 28, and 35 rounds.
Biryukov and Velichkov [5] followed another promising approach, where they
showed differential characteristics and trails on up to 14, 15, and 21 rounds of
Simon and 9, 10, and 13 rounds of Speck with 32-, 48-, and 64-bit state size,
respectively. The authors adapted Matsui’s algorithm (which can find optimal
differential characteristics for S-box-based ciphers) for ARX constructions by
a concept they called highways and country roads. They pointed out that the
computation of a complete differential distribution table (DDT) is infeasible
for ARX-based primitives. To overcome this challenge, the authors constructed
two partial DDTs: a first one with the characteristics of highest probability
(highways), and a second one with trails of slightly lower probabilities (country
roads) in order to connect and/or improve their previous characteristics.

Contribution and Outline. This paper describes our differential attacks on
Simon and Speck, which are summarized in Table 1. In what follows, Section 2
first reviews the necessary details of the encryption functions of Simon and
Speck. Section 3 recaps properties of the differential propagation through their
respective round functions. Section 4 follows up with a description of how we
constructed differential characteristics through parts of both ciphers, and how to
extend these characteristics over further rounds. We later use these characteris-
tics for basic differential key-recovery attacks, which we explain first for Simon in
Section 5. Then, Section 6 describes our differential attacks on Speck. Section 7
shows rectangle attacks on Speck. We conclude this work in Section 8.

Notions. We follow the notions of [3], where n denotes the word size in bits, 2n
the state size in bits, and the tuple (Lr, Rr) (the left and right parts of) a state
after the encryption of Round r. Further, k represents the length of the secret key.
Furthermore, ⊕ denotes the bit-wise XOR, + the addition modulo 2n, ∧ bit-wise
AND, ∨ bit-wise OR, and x the bit-wise inverse of x. We denote by xi the i-th
least significant bit of value x, and enumerate the bits by x = xn−1xn−2 . . . x1x0.
Alternatively, we write values in typewriter font, i.e., x for hex, and x2 for binary
values, e.g., 1F = 31 and 1102 = 6. Concerning differences, we denote by ∆i a
difference with all bits are zero, except for the i-th (least significant) bit, and
by ∆i,[j,k,...] a difference where the i-th bit is active and the values of the bits in
square brackets are unknown. Further, we denote a differential characteristic or
trail from an input difference α to an output difference β by α → β.

2 Brief Description of Simon and Speck

Simon and Speck are two simple Feistel constructions that apply a combina-
tion of rotation, XOR, and either addition (Speck) or the logical AND (Simon)
iteratively over many rounds. The encryption process of Simon is given in Al-
gorithm 1, that for Speck in Algorithm 2. Both cipher families are defined for

2

Cipher Attacked Time Data Memory Success
Rounds (*) (CP) (Bytes) Rate

Differential

Simon32/64 18/32 (0.56) 246.0 231.2 215.0 0.63
Simon48/72 † 19/36 (0.52) 252.0 246.0 220.0 0.98

Simon48/96 † 19/36 (0.52) 276.0 246.0 220.0 0.98
Simon64/96 26/42 (0.61) 263.9 263.0 231.0 0.86
Simon64/128 26/44 (0.59) 294.0 263.0 231.0 0.86
Simon96/96 35/52 (0.67) 293.3 293.2 237.8 0.63
Simon96/144 35/54 (0.64) 2101.1 293.2 237.8 0.63
Simon128/128 46/68 (0.67) 2125.7 2125.6 240.6 0.63
Simon128/192 46/69 (0.66) 2142.0 2125.6 240.6 0.63
Simon128/256 46/72 (0.63) 2206.0 2125.6 240.6 0.63

Differential

Speck32/64 10/22 (0.45) 229.2 229 216 0.99
Speck48/72 12/22 (0.54) 245.3 245 224 0.99
Speck48/96 12/23 (0.52) 245.3 245 224 0.99
Speck64/96 15/26 (0.57) 261.1 261 232 0.99
Speck64/128 15/27 (0.55) 261.1 261 232 0.99
Speck96/96 15/28 (0.51) 289.1 289 248 0.99
Speck96/144 15/29 (0.51) 289.1 289 248 0.99
Speck128/128 16/32 (0.50) 2111.1 2116 264 0.99
Speck128/192 16/33 (0.48) 2111.1 2116 264 0.99
Speck128/256 16/34 (0.47) 2111.1 2116 264 0.99

Rectangle

Speck32/64 11/22 (0.50) 246.7 230.1 237.1 ≈ 1
Speck48/72 12/22 (0.54) 258.8 243.2 245.8 ≈ 1
Speck48/96 12/23 (0.52) 258.8 243.2 245.8 ≈ 1
Speck64/96 14/26 (0.53) 289.4 263.6 265.6 ≈ 1
Speck64/128 14/27 (0.51) 289.4 263.6 265.6 ≈ 1
Speck96/144 16/29 (0.55) 2135.9 290.9 294.5 ≈ 1
Speck128/192 18/33 (0.54) 2182.7 2125.9 2121.9 ≈ 1
Speck128/256 18/34 (0.52) 2182.7 2125.9 2121.9 ≈ 1

Table 1: Summary of our results on Simon and Speck. (*) = the time complex-
ities assume that we have two independent filtering steps (cf. Remark 1). CP =
chosen plaintexts, † = attack uses chosen ciphertexts.

state sizes 2n and key sizes k: 32/64, 48/72, 48/96, 64/96, 64/128, 96/96, 96/144,
128/128, 128/192, and 128/256.
For Simon, f : {0, 1}n → {0, 1}n is defined as f(x) := (x ≪ 1) ∧ (x ≪ 8).
The rotation constants in Speck are α = 8 and β = 3 for the most versions of
Speck; only Speck32/64 uses α = 7 and β = 2.

3

Algorithm 1 Encryption with Simon.

Input: (L0, R0) ∈ {0, 1}2n

Output: (Lr, Rr) ∈ {0, 1}2n

1: for i = 1, . . . , r do
2: Li ← Ri−1 ⊕ f(Li−1)
3: Li ← Li ⊕Ki−1 ⊕ (Li−1

≪ 2)
4: Ri ← Li−1

5: end for
6: return (Lr, Rr)

Algorithm 2 Encryption with Speck.

Input: (L0, R0) ∈ {0, 1}2n

Output: (Lr, Rr) ∈ {0, 1}2n

1: for i = 1, . . . , r do
2: Li ← (Li−1

≫ α) +Ri−1 mod 2n

3: Li ← Li ⊕Ki−1

4: Ri ← (Ri−1
≪ β)⊕ Li

5: end for
6: return (Lr, Rr)

3 Differential Properties of Simon and Speck

Differential Properties for the Round Function of Speck. For Speck,
one requires only the well-known XOR-differential probabilty of the modular
addition (xdp+), which was studied in detail by Lipmaa and Moriai [13,14].

Definition 1 (XOR-Differential Probabilty of Addition [14]). Let α, β, γ
be fixed n-bit XOR differences, and f(x, y) = x+y mod n. Then, xdp+ is defined
as the probability over all x ∈ {0, 1}n, such that

xdp+(α, β → γ) = 2−2n |{(x, y) : f(x, y)⊕ f(x⊕ α, y ⊕ β) = γ}| .

Differential Properties for the Round Function of Simon. For Simon,
one has to consider the differential probability for the round function f(x). At
the end of this section, we provide an algorithm that yields the set and number
of all possible output differences for a fixed input difference. In the following, we
explain first the differential probability (DP) of logical AND; next, we derive the
DP of AND in combination with rotation, and then consider the DP of AND
with rotationally dependent inputs. We follow the notation by [5].

Property 1 (Absorption of Logical AND). Let x, x′, y, y′ ∈ {0, 1} and f(x, y) =
x ∧ y. Let α = x⊕ x′, β = y ⊕ y′, γ = f(x, y)⊕ f(x′, y′). Then, it applies that

Pr[α, β → γ = 0] =

{
1 if α = β = 0,
1/2 otherwise.

Property 1 states that the differential output of the logical AND is biased: if α
and β are 0, then γ must be 0. If α and/or β is 1, there is still a probability of
1/2 that the AND operation will cancel the active bit in the output difference.

Definition 2 (XOR-Differential Probability of AND). Let α, β, γ be fixed
n-bit XOR differences, and let f(x, y) = x ∧ y. The XOR-differential probability
of the logical AND (xdp∧) is the probability over all x, y ∈ {0, 1}n, such that

xdp∧(α, β → γ) = 2−2n |{(x, y) : f(x, y)⊕ f(x⊕ α, y ⊕ β) = γ}| .

4

Property 2 (XOR-Differential Probability of AND). Let α, β, γ be fixed n-bit
XOR differences and hw(·) the hamming-weight function. Then,

xdp∧(α, β → γ) =

{
0 if γ ∧ α ∨ β 6= 0n,
2−hw(α∨β) otherwise.

Property 2 transfers Property 1 from bits to n-bit differences. Only those bits
that are active in α and/or β can be active in γ – each with probability 1/2. This
is reflected by the term (α∨β). If γ contains active bits at other positions, then,
γ ∧ α ∨ β 6= 0n and Pr[α, β → γ] = 0. Otherwise, all other possible differences γ
are equally possible. Thus, the term α ∨ β can be interpreted as the definition
of a set of possible output differences, i.e., one can efficiently iterate over all
possible combinations of values for its active bits and will obtain all possible
output differences γ.

Definition 3 (XOR-Differential Probabilty of AND with Rotations).
Let α, β, γ be fixed n-bit XOR differences, r ∈ [0, n − 1] be a fixed rotation
amount, and f(x, y) = x ∧ (y ≪ r). Then, xdp∧,≪ is defined as the probability
over all x, y ∈ {0, 1}n, such that

xdp∧,≪(α, β → γ) = 2−2n |{(x, y) : f(x, y)⊕ f(x⊕ α, y ⊕ β) = γ}| .

Since rotation and bit-wise logical AND are linear, we can derive

xdp∧,≪(α, β → γ) =

{
0 if γ ∧ α ∨ (β ≪ r) 6= 0n,
2−hw(α∨(β≪r)) otherwise.

We can easily transform f(x) = (x ≪ s) ∧ (x ≪ t), with s, t ∈ [0, n− 1], s 6= t
into f(x) = x ∧ (x ≪ r) with r = s − t mod n. In the following, we also take
rotationally dependent inputs into account.

Definition 4 (XOR-Differential Probabilty of AND with Rotationally
Dependent Inputs). Let α, β be fixed n-bit XOR differences, r ∈ [0, n− 1] be

a fixed integer, and f(x) = x ∧ (x ≪ r). Then, xdpx∧(x≪r) is defined as the
probability over all x ∈ {0, 1}n, such that

xdpx∧(x≪r)(α → β) = 2−n |{x : f(x)⊕ f(x⊕ α) = β}| .

Property 3 (Differential Propagation of xdpx∧(x≪r)). Let α be fixed n-bit XOR
difference and r ∈ [0, n − 1] be a fixed integer. Let f : {0, 1}n → {0, 1}n be
defined by f(x) = x∧ (x ≪ r). Then, the set of possible output differences β for

xdpx∧(x≪r), can be efficiently computed in O(n) as shown in Algorithm 3.

Example: n = 16, r = 7, α = 0500. Let x, x′ be two 16-bit values which serve
as input to f(x), with x⊕ x′ = α and β = f(x)⊕ f(x′). We see that

α = α15 . . . α0 = 00000101 0000000 02 (top)
α ≪ r = α8 . . . α0α15 . . . α9 = 10000000 0000001 02 (bottom)

β = β15 . . . β0 = 1000010∗1000000∗102

5

Algorithm 3 Given a n-bit input difference α, computes the set of possible
output differences β for f(x) = x ∧ (x ≪ r).

Input: α ∈ {0, 1}n {Input difference}
Output: β ∈ {0, 1}n {Set of all possible output differences},

count {# of possible output differences}
β ← 0n, count← 0
for i← 0, . . . , n− 1 do

if (αi ∨ α(i+r mod n)) ∧ βi = 0 then {Bit βi can be active}
βi ← 1
count← count + 1

end if
if αi ∧ α(i−r mod n) ∧ αi+r mod n then {βi = β(i+r mod n)}

βi ← ∗
i

βi+r mod n ← ∗
i

end if
end for
return (β, count)

Algorithm 3 returns β = 1000010∗1000000∗102, and count = 3. The star symbol
∗ denotes dependent bits and the index ∗i, indicates pairs of bits that are related.

– β1 depends on α1 (top) and α10 (bottom), with α1 = 0 and α10 = 1;
– β8 depends on α8 (top) and α1 (bottom), with α1 = 0 and α8 = 1;

From α1 = 0 follows that x2 = x′
2. When x2 = x′

2 = 0 then β1 = β8 = 0;
otherwise, when x2 = x′

2 = 1, it must hold that β1 = β8 = 1. We call β1 and β8

dependent bits. Since β contains four active bits and one pair of them depends on
each other, there are 24−1 = 23 possible output differences defined by β, namely:

{0000, 0102, 0400, 0502, 8000, 8102, 8400, 8502.},

Each difference can be formed by 216−3 = 213 possible pairs (x, x′).

4 Search for Differential Characteristics and Differentials

During our analysis, we applied a two-step approach to find our differentials.
Firstly, we employed Matsui’s algorithm [15] to find some characteristics for the
32-, 48-, and 64-bit versions of Simon:

Simon32/64 Simon48/k Simon64/k

α (∆5, 0) (∆8,16,∆6,14,18) (∆6, 0)
β (∆14, 0) (∆6,14,18,22 ,∆20) (∆6,10,14, ∆12)

Rounds 12 15 20
Pr[α→ β] 2−36 2−52 2−70

Secondly, we applied a branch-and-bound search, similar to the approach of [2].
There, we started from the input difference α and propagated it round-wise in

6

forward and backward direction. For each round, we collected all possible output
characteristics α → β and their probability p as a tuple (β, p) in a set and used
them as a starting point for the next round in a depth-first manner. Therefore,
we used Algorithm 3 for Simon and a variant of the Algorithm by Lipmaa and
Moriai [14] for Speck.
Since following each path is infeasible, we pruned the search tree by considering
only characteristics α → β with a probability above a chosen threshold. There-
fore, we used the characteristic found with Matsui’s algorithm as a reference, i.e.,
say Matsui’s characteristic had probability p = 2−q after some round r, we only
considered those characteristics β as input to round r+1 that had a probability
p ≫ 2−q−thresh. We further pruned the search tree by only storing a (chosen)
maximal number of characteristics.
Every time two differential characteristics lead to the same output difference β
after a round, we merged them to one differential trail and added their proba-
bilities. We emphasize that our characteristics have been found experimentally
and do not necessarily represent the best possible ones. Further, note that we
rely on the assumption that all possible round keys are equally probable and
uniformly distributed for every round.

Extending Differential Characteristics to Attacks. A given differential
can be extended by a few more rounds in a key-recovery attack for any version
of Simon2n/k. Assume, we are given an r-round differential (α, β) → (γ, δ).
Because Simon injects the subkey at the end of the rounds, the adversary itself
can compute the output of f(x) in the first round, choose (β, α⊕ f(β)) as input
difference and obtains an (r + 1)-round differential with equal probability. A
similar strategy can be applied at the output side. Given an output difference
(γ, δ) after (r + 1) rounds, the difference after (r + 2) rounds is (δ ⊕ f(γ), γ).
Since the subkey in the last round of a characteristic does not affect the output
difference δ⊕f(γ), the adversary can compute f(γ) itself and obtains an (r+2)-
round differential with equal probability.
For the versions 48/72-, 64/96-, 96/144-, and 128/192-bit versions, one can ap-
pend a further round by simply guessing its full subkey. The total computational
effort for collecting plaintext-ciphertext pairs and testing all subkey candidates
for the appended round remains significantly smaller than that for exhaustively
searching the full key space. Moreover, for the 32/64-, 48/96-, 64/128-, and
128/256-bit versions, one can append another round by guessing its subkey.

5 Key-Recovery Attacks on Simon

In this section we describe a key-recovery attack on round-reduced Simon32/64.
Since attacks on the further variants follow a similar procedure, we specify only
their complexities at the end of this section. For Simon32/64 we use the 13-
round differential characteristic with p ≈ 2−30.2 (see Table 4 in Appendix A)
over the rounds 2− 14:

∆1 = (0, ∆6) → (∆14, 0) = ∆14.

7

Note that we can choose the left part of the plaintext pairs P, P ′, s.t. we obtain
the desired difference ∆1 after the first round. We can append four additional
rounds to the end of the cipher, where we will guess in total 18 key bits. From
the obtained ciphertexts, we still know many bits from the truncated trail:

(∆L15, ∆R15) = (∆0,[6,15], ∆14),

(∆L16, ∆R16) = (∆2,[0,1,7,8,14], ∆0,[6,15]),

(∆L17, ∆R17) = (∆4,[0−3,6,8−10,15], ∆2,[0,1,7,8,14]),

(∆L18, ∆R18) = (∆6,[14,12−7,5−0], ∆4,[0−3,6,8−10,15]).

Attack Procedure. The full attacking procedure can be split into a collection,
a pair-filtering, a key-guessing, and a brute-force phase:

Collection phase
1. Initialize an empty set C = ∅.
2. Choose 230.2 plaintext pairs (Pi, P

′
i), s.t. their difference after the first round

yields ∆1.
3. Collect their corresponding ciphertext pairs (Ci, C

′
i) from an encryption or-

acle, where Ci = EK(Pi) and C′
i = EK(P ′

i).
Pair-filtering phase
4. For all ciphertext pairs, invert the final round to derive ∆17 and store all

pairs (Ci, C
′
i) with the correct difference at the known bits ∆17 in C. We

know seven bits of ∆L17 and 11 bits of ∆R17. Assuming the differences ∆17

are uniformly distributed, we can expect 230.2−18 = 212.2 pairs in average.
Key-guessing phase
5. Create a list of counters for all 218 possible values of the round-key bits

K17
0,1,5,7−11,14,15, K16

6−9,13,15, and K15
9,7, and perform the following steps for

each candidate:
– For all pairs (Ci, C

′
i) ∈ C:

− Partially decrypt (Ci, C
′
i) to the state after the encryption of Round

14. If their difference matches ∆14, increment the counter for the
current key candidate.

6. Output the key candidate(s) which is/are associated to the highest counter
values.

Brute-force phase
7. For all bits of K17, K16, K15, and K14 that are not guessed in the previous

steps, perform further encryptions to identify their correct values.

Attack Complexity. The attack requires 231.2 chosen plaintexts. Regarding the
memory complexity, we store 2 · 212.2 texts of 32 bits each, or 215.2 bytes for the
attack. The computational effort for the collection phase, Ccollect, is equivalent
to 230.2 full encryptions performed by the oracle. The filtering effort, Cfilter, is
given by 230.2 one-round decryptions to check 18 bits of ∆17. The effort for the
key-guessing phase, Ckey-guessing, consists of decrypting the remaining pairs for
each of the 218 key candidates over three further rounds.

8

Assuming that both filtering steps of the pair-filtering and the key-guessing
phase are independent from each other, we can identify the correct value of the
18 guessed key bits. A trivial brute-force search can find the correct value of the
46 remaining bits of the considered subkeys K14,K15,K16,K17 with about 246

encryptions. The total computational complexity can be estimated by

2 · 230.2
︸ ︷︷ ︸

Ccollect

+2 · 230.2 ·
1

18
︸ ︷︷ ︸

Cfilter

+2 · 218 · 218 ·
3

18
︸ ︷︷ ︸

Ckey-guessing

+ 246
︸︷︷︸

Cbruteforce

≈ 246 encryptions.

Remark 1. Note that in the case that our assumption would not hold, we still
have a differential that is satisfied with probability p = 2−30.2, and a 32-bit filter
at ∆14. Hence, we can expect to be able to reduce the candidates of the 18 key
bits we guess in the final four rounds to 230.2 · 218 · 2−32 = 216.2, increasing the
complexity of the brute-force step to 246 · 216.2 = 262.2 encryptions, which is still
significantly faster than exhaustive search. In general case, the computational
effort for our attacks would then be dominated by the costs for a simple exhaus-
tive search on the remaining key space. Hence, the time complexities would then
become approximately 2k/(p ·22n) (k = 64, n = 16, p ≈ 2−30.2 for Simon32/64).

Success Rate. Since the probability of a pair to follow our differential is about
2−30.2, the probability that at least one correct pair occurs for the correct key
can be approximated by

1− Pr[n = 230.2, p = 2−30.2, x ≤ 0] = 1− 1/e ≈ 0.632.

Similar Attacks on Further Versions. We can apply the same procedure
to further versions of Simon. To cover one additional round, we use chosen
ciphertexts in the attack on Simon48/k. Table 2 summarizes the probabilities,
required number of pairs, known state bits to filter (1st filter), guessed key bits
(key bits), and success rates (where false random shows the probability that
no correct pair occurs during execution of the respective attack, and false real
denotes the probability of a false-positive pair to occur) for each attack. The
differential characteristics for the further version are illustrated in tables 4-6 in
Appendix A.

Cipher Rounds Pairs 1st Key Stored p Succ.

Filter Bits pairs rate

Simon32/k 18 230.2 18 18 212.2 2−30.2 0.632

Simon48/k 19 245.0 28 20 217.0 2−43.0 0.981

Simon64/k 25 262.0 35 36 227.0 2−61.0 0.863

Simon96/k 35 292.2 59 43 233.2 2−92.2 0.632

Simon128/k 46 2124.6 89 50 235.6 2−124.6 0.632

Table 2: Parameters of our differential attacks on Simon. “1st Filter” denotes
the number of bits that can be used to filter out pairs after inverting the final
round; key bits = # guessed key bits; p = Probability of the used differential.

9

6 Differential Attacks on Speck

In this section we describe our differential analysis of Speck. Since the small
version of Speck, (Speck32/64) allows a simple practical verification, in the
following, we only discuss this version in detail. We apply the same strategy to
the remaining family members of Speck and present only their complexities at
the end of this section.

6.1 Key-Recovery Attack on Speck32/64

We use the characteristic for Speck32/64 from Table 7 in Appendix A with
p ≈ 2−24 over rounds 2− 9 to mount a 10-round attack.

∆1 = (∆5,6,9,11, ∆0,2,9,14) → (∆1,3,5,15, ∆3,5,7,10,12,14,15) = ∆9.

Attack Procedure. Again, we split the attacking procedure into a collection,
a key-guessing, and a brute-force phase:

Collection phase
1. Initialize an empty list C = ∅.
2. Choose 228 pairs (Pi, P

′
i) s.t. their difference after the first round is ∆1.

3. Collect the corresponding ciphertext pairs (Ci, C
′
i) from a decryption oracle,

where Ci = EK(Pi) and C′
i = EK(P ′

i). Derive ∆L9
0−3, ∆R9 and store all

pairs (Ci, C
′
i) with ∆L9

0−3 = ∆3 and ∆R9 = ∆3,5,7,10,12,14,15 in the list C.
Key-guessing phase
4. Create a list of 212 counters.
5. For all possible values of the 12 key bits K9

4−15:
– For all pairs (Ci, C

′
i) ∈ C:

− Partially decrypt (Ci, C
′
i) to the state after the encryption of Round

9, and derive ∆L9. If ∆L9 = ∆1,3,5,15, then increment the counter
for the current key candidate.

6. Output those keys as potentially correct for which their counter has a value
of at least four.

7. Mark all pairs which yielded the correct ∆9 for the potentially correct key(s)
as correct pairs.

Brute-force phase
8. Partially decrypt all correct pairs round by round to get the correct subkey

bits K9
0−3, K

8, K7, and K6.

Success Rate. The probability that a pair follows our differential characteristic
is about 2−24. Hence, the probability that no more than three correct pairs occur
when using Speck (i.e., the correct subkey will not be found) is about

Pr[n = 228, p = 2−24, x ≤ 3] ≈ 9.31 · 10−5,

and hence, the success probability of the attack approx. 1− 9.31 · 10−5 > 0.99.

10

Attack Complexity. Our attack on Speck32/64 requires 229 chosen plain-
texts. The computational effort for Ccollect covers 229 full encryptions performed
by an encryption oracle. The filtering effort, Cfilter, is twofold. First, we partially
decrypt all ciphertext pairs over the final round. There, we have a 20-bit filter
from the four least-significant bits of ∆L9 and the full ∆R9. Assuming all differ-
ences occur uniformly at random, we expect to have 228−20 = 28 remaining pairs
afterwards. Thereupon, for 212 values of K9

4−15, we derive the remaining 28 pairs
and derive ∆L9. In the brute-force phase, the adversary partially decrypts the
remaining pairs round by round to identify the correct round keys. Therefore,
the full computational complexity is given by

229
︸︷︷︸

Ccollect

+229 ·
1

10
+ 28 · 212 ·

1

10
︸ ︷︷ ︸

Cfilter

+
(
24 + 216 + 216 + 216

)
· 28 ·

1

10
︸ ︷︷ ︸

Cbruteforce

≈ 229.16

encryptions. Concerning the memory complexity, we store a list of counters for
all key candidates, which requires 212 bytes for the first filtering phase and 216

bytes for the counters of the round keys in the brute-force phase.
We can apply a similar procedure for the remaining versions of Speck and obtain
the results of Table 3. In all cases, the computational effort is dominated by the
brute-force step. The differentials for the individual versions of Speck can be
found in the tables 7-10 in Appendix A.

Cipher Rounds Pairs 1st Key Stored p Succ.

Filter Bits pairs rate

Speck32/k 10 228 20 12 28 2−24.0 0.99

Speck48/k 12 244 25 23 219 2−40.6 0.99

Speck64/k 15 261 35 29 226 2−58.9 0.99

Speck96/k 15 288 54 42 234 2−84.0 0.99

Speck128/k 16 2115 67 61 248 2−111.1 0.99

Table 3: Parameters of our differential attacks on Speck. “1st Filter” denotes
the number of bits that can be used to filter out pairs after inverting the final
round; key bits = # guessed key bits; p = Probability of the used differential.

7 Rectangle Attacks on Speck

Boomerangs and Rectangles. Boomerangs and rectangles allow to use two
short differential characteristics with high probabilities instead of a single long
differential. Therefore, one first splits a given cipher E into parts E = E2 ◦

E1, and searches for two differentials α
p

−−→
E1

β and γ
q

−−→
E2

δ. Next, one collects

quartets of plaintexts (P, P ′, Q,Q′) with P ⊕P ′ = Q⊕Q′ = α. In the following
we denote by (R,R′, S, S′) their encryptions after E1 and by (C,C′, D,D′) their
encryptions after E2.

11

Each quartet has a probability of p2 that (R,R′, S, S′) fulfils R⊕R′ = S⊕S′ = β.
We are interested in the case when R⊕S = γ since then, it automatically applies
that R′ ⊕ S′ = γ. With probability q2, a ciphertext quartet (C,C′, D,D′) fulfils
C ⊕ D = C′ ⊕ D′ = δ. In this case, we call it a right quartet. If an adversary
collects m pairs with difference α, then, the expected number of right quartets
according to [4] is:

m2 · 2−n · (pq)2.

Hence, it must apply that pq < 2−n/2 in order to mount an attack on E.
As an improvement Biham et al. proposed in [4] to use quartets with any possible
difference β′ and γ′ in the middle, as long as both pairs in a quartet share the
same difference β′ and γ′ after E1. Thus, the probabilities of p and q increase to

p̂ =

√
∑

β′

Pr[α → β′] and q̂ =

√
∑

γ′

Pr[γ′ → δ].

In the remainder of this section, we describe in details a rectangle attack on 11
rounds of Speck32/64. Since our attacks on the further versions of Speck work
similar, we only specify the used trails and their complexities in tables 11 and
12 in Appendix B.

7.1 Rectangle Attack on Speck32/64

For the attack on Speck32/64 we use the following trails α → β′ and γ′ → δ:

α = (∆11,13, ∆4)
p̂≥ 2−8.01

−−−−−−→
E1

β′ and γ′ q̂≥ 2−4.56

−−−−−−→
E2

(∆15, ∆1,3,10,15) = δ.

E1 represents the rounds 2-6, and E2 the rounds 7-10. Again, we can split the
attacking procedure into a collection, a key-guessing, and a brute-force phase:

Collection phase
1. Initialize two empty hash tables C, D, and a list Q.

2. Choose 2(n+2)/2

p̂q̂ = 234/2

2−8.012−4.56 = 229.57 plaintext pairs (P, P ′) s.t. their dif-
ference after the first round is α.

3. Ask for the encryption of (P, P ′) and receive the corresponding ciphertext
pair (C,C′). Then, partially decrypt C,C′ over the final round to the state

after Round 10, (R10, R′10) and store the result in C. XOR the right part of

δ to (R10 ⊕∆1,3,10,15, R
′10 ⊕∆1,3,10,15 and store them in D.

4. Prior, lookup if there is already an entry in D under the index

(R10 ⊕∆1,3,10,15, R
′10 ⊕∆1,3,10,15).

If there is, label the existing ciphertext pair in D as (D,D′) and store
the quartet (C,C′, D,D′) in Q. We can build (229.57)2/2 = 258.14 quar-
tets from our pairs. Since this event requires a match in 16 bits of the first,
and 16 bits of the second pair, we can expect to have at average a number

12

of 258.14−32 ≈ 226.14 false positive quartets for which this condition holds.
Since the probability of a right quartet is 22·−8.01+2·−4.56 = 2−25.14, we
can expect 258.14−25.14 = 233 right quartets in addition. We approximate
233 + 226.14 ≈ 233 hereafter.

Filtering phase
5. Initialize a table T of 216 counters.
6. For all possible values of the subkeys K10:

6.1 Decrypt all quartets over the final round and check whether their dif-
ference ∆L10 is equal to ∆15. If yes, then increment the counter for the
current key candidate in T .

7. Output the key candidate(s) with the maximal count(s) in T .
Brute-force phase
9. Partially decrypt the remaining pairs round by round to identify the further

round keys K9, K8, and K7.

Attack Complexity. The attack requires 230.07 chosen plaintexts. We have to
store the corresponding ciphertexts, the remaining 233 quartets, and a list of
216 counters for all round-key candidates. So, we can approximate the required
memory by (230.07+4·233)·32/8+216 ≈ 237.1 bytes. The computational effort for
the collection phase, Ccollect, consists of 230.07 full encryptions performed by the
oracle, and 230.07 half-round decryptions. Additionally, we need 230.07 memory
accesses to look up potential quartets and about 4 · 233 memory accesses in
average to store the remaining quartets.
To use consistent units, we overestimate a memory access by a half-round com-
putation. In the filtering phase, we have to perform 216 · 4 · 233 = 251 half-round
decryptions to obtain the difference in the left word after Round 10. Summing
up, we obtain a computational effort of

230.07 + (230.07 + 230.07 + 4 · 226.14) ·
1

22
︸ ︷︷ ︸

Ccollect

+251.14 ·
1

22
︸ ︷︷ ︸

Cfilter

+216 + 216 + 216
︸ ︷︷ ︸

Cbruteforce

≈ 246.68

encryptions.

8 Discussion and Conclusion

This work presented differential attacks on round-reduced versions of the Simon

and Speck. Furthermore, we briefly considered rectangle attacks on Speck. We
also studied rectangle attacks on Simon and impossible-differential attacks; how-
ever, we omitted those since they did not improve our results with conventional
differentials.
Our analysis can be seen as a starting point for further research on Simon

and Speck. For Simon, it demonstrates that up to half the number of rounds
are vulnerable against differential attacks due to its highly optimizied round
function. Moreover, the cipher shows a strong differential effect, i.e., there are
many possible characteristics for given input and output difference.

13

Speck is much closer to previous ARX designs such as ThreeFish than Simon.
However, while ThreeFish has been published four years ago, still only 1/3 of the
rounds have been attacked so far, whereas the current analysis of Speck already
threatened the security of up to half of the rounds little time after publication.
Moreover, any new analysis method on addition-based ARX would be a threat
to both NSA constructions as well. In conclusion, we can learn from Simon that
ARX designs should incorporate additions to provide reasonably fast diffusion.

9 Acknowledgments

We thank all reviewers of the FSE 2014 for their helpful comments and further-
more, we would like to thank Christian Forler, Ivica Nikolić, Douglas Shors, and
Vesselin Velichkov for fruitful discussions.

References

1. Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar, and
Somitra Kumar Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. Cryp-
tology ePrint Archive, Report 2013/663, 2013. http://eprint.iacr.org/.

2. Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON
Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.
http://eprint.iacr.org/.

3. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of
Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.
http://eprint.iacr.org/.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

5. Alex Biryukov and Vesselin Velichkov. Automatic Search for Differential Trails in
ARX Ciphers (Extended Version). Cryptology ePrint Archive, Report 2013/853,
2013. http://eprint.iacr.org/.

6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

7. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalcin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658
of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

8. Christophe De Cannière and Orr Dunkelman and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.
In CHES, pages 272–288, 2009.

14

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

9. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of
Lightweight Block Ciphers. In Ari Juels and Christof Paar, editors, RFIDSec,
volume 7055 of Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

10. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

11. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of
Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

12. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung
Kwon, and Moti Yung, editors, WISA, volume 3786 of Lecture Notes in Computer

Science, pages 243–258. Springer, 2005.
13. Helger Lipmaa. On Differential Properties of Pseudo-Hadamard Transform and

Related Mappings. In INDOCRYPT, pages 48–61, 2002.
14. Helger Lipmaa and Shiho Moriai. Efficient Algorithms for Computing Differential

Properties of Addition. In FSE, pages 336–350, 2001.
15. Mitsuru Matsui. On Correlation Between the Order of S-boxes and the Strength

of DES. In Alfredo De Santis, editor, EUROCRYPT, volume 950 of Lecture Notes

in Computer Science, pages 366–375. Springer, 1994.
16. Wenling Wu and Lei Zhang. LBlock: A Lightweight Block Cipher. In Javier

Lopez and Gene Tsudik, editors, ACNS, volume 6715 of Lecture Notes in Computer

Science, pages 327–344, 2011.

A Differential Characteristics for Simon and Speck

We use the following notions for the tables in this section. Each table contains
at least a differential characteristic for one version of Simon or Speck. We
denote by

∑
the total probability of the full characteristic, and by

∑

acc the
accumulated probability of all found trails from start to end difference.

15

Rd. Simon32/64 Simon48/k

∆Li ∆Ri
log2(p) ∆Li ∆Ri

log2(p)

0 0 ∆6 ∆8,16 ∆6,14,18

1 ∆6 0 0 ∆6,10,14 ∆8,16 −4

2 ∆8 ∆6 −2 ∆12 ∆6,10,14 −6

3 ∆6,10 ∆8 −2 ∆6,10 ∆12 −2

4 ∆12 ∆6,10 −4 ∆8 ∆6,10 −4

5 ∆6,10,14 ∆12 −2 ∆6 ∆8 −2

6 ∆0,8 ∆6,10,14 −6 0 ∆6 −2

7 ∆2,6,14 ∆0,8 −4 ∆6 0 0

8 ∆4 ∆2,6,14 −6 ∆8 ∆6 −2

9 ∆2,14 ∆4 −2 ∆6,10 ∆8 −2

10 ∆0 ∆2,14 −4 ∆12 ∆6,10 −4

11 ∆14 ∆0 −2 ∆6,10,14 ∆12 −2

12 0 ∆14 −2 ∆8,15,16 ∆6,10,14 −6

13 ∆14 0 0 ∆6,14,18 ∆8,15,16 −6

14 ∆20 ∆6,14,18 −6

15 ∆6,14,18,22 ∆20 −2

Σ −36 −50

Σacc −30.22 −43.01

Table 4: Differential characteristics for Simon32/64 and Simon48/k.

Rd. ∆Li ∆Ri
log2(p) Rd. ∆Li ∆Ri

log2(p)

0 ∆8 ∆6,10 11 ∆6,14,17,18 ∆14,15,20 −6

1 ∆6 ∆8 −2 12 ∆8,16 ∆6,14,17,18 −8

2 0 ∆6 −2 13 ∆6,10,14 ∆8,16 −4

3 ∆6 0 0 14 ∆12 ∆6,10,14 −6

4 ∆7,8,14 ∆6 −2 15 ∆6,10 ∆12 −2

5 ∆6,10,16 ∆7,8,14 −6 16 ∆8 ∆6,10 −4

6 ∆12 ∆6,10,16 −6 17 ∆6 ∆8 −2

7 ∆6,10,14,16 ∆12 −2 18 0 ∆6 −2

8 ∆8,15,16,22 ∆6,10,14,16 −8 19 ∆6 0 0

9 ∆6,14,18 ∆8,15,16,22 −8 20 ∆8 ∆6 −2

10 ∆14,15,20 ∆6,14,18 −6 21 ∆6,10 ∆8 −2

Σ −80

Σacc −61.01

Table 5: Differential characteristics for Simon64/k.

16

Rd. Simon96/k Simon128/k

∆Li ∆Ri
log2(p) ∆Li ∆Ri

log2(p)

0 ∆20 ∆6,14,18,22 ∆12 ∆6,10,14

1 ∆6,14,18 ∆20 −2 ∆6,10 ∆12 −2

2 ∆8,16 ∆6,14,18 −6 ∆8 ∆6,10 −4

3 ∆6,10,14 ∆8,16 −4 ∆6 ∆8 −2

4 ∆12 ∆6,10,14 −6 0 ∆6 −2

5 ∆6,10 ∆12 −2 ∆6 0 0

6 ∆8 ∆6,10 −4 ∆8 ∆6 −2

7 ∆6 ∆8 −2 ∆6,10 ∆8 −2

8 0 ∆6 −2 ∆12 ∆6,10 −4

9 ∆6 0 0 ∆6,10,14 ∆12 −2

10 ∆8 ∆6 −2 ∆8,15,16 ∆6,10,14 −6

11 ∆6,10 ∆8 −2 ∆6,14,18 ∆8,15,16 −6

12 ∆12 ∆6,10 −4 ∆14,15,20 ∆6,14,18 −6

13 ∆6,10,14 ∆12 −2 ∆6,14,17,18 ∆14,15,20 −6

14 ∆8,15,16 ∆6,10,14 −6 ∆8,16 ∆6,14,17,18 −8

15 ∆6,14,18 ∆8,15,16 −6 ∆6,10,14 ∆8,16 −4

16 ∆14,15,20 ∆6,14,18 −6 ∆12 ∆6,10,14 −6

17 ∆6,14,17,18 ∆14,15,20 −6 ∆6,10 ∆12 −2

18 ∆8,16 ∆6,14,17,18 −8 ∆8 ∆6,10 −4

19 ∆6,10,14 ∆8,16 −4 ∆6 ∆8 −2

20 ∆12 ∆6,10,14 −6 0 ∆6 −2

21 ∆6,10 ∆12 −2 ∆6 0 0

22 ∆8 ∆6,10 −4 ∆8 ∆6 −2

23 ∆6 ∆8 −2 ∆6,10 ∆8 −2

24 0 ∆6 −2 ∆12 ∆6,10 −4

25 ∆6 0 0 ∆6,10,14 ∆12 −2

26 ∆8 ∆6 −2 ∆8,15,16 ∆6,10,14 −6

27 ∆6,10 ∆8 −2 ∆6,14,18 ∆8,15,16 −6

28 ∆12 ∆6,10 −4 ∆14,15,20 ∆6,14,18 −6

29 ∆6,10,14 ∆12 −2 ∆6,14,17,18 ∆14,15,20 −6

30 ∆8,16 ∆6,10,14 −6 ∆8,16 ∆6,14,17,18 −8

31 ∆6,10,14 ∆8,16 −4

32 ∆12 ∆6,10,14 −6

33 ∆6,10 ∆12 −2

34 ∆8 ∆6,10 −4

35 ∆6 ∆8 −2

36 0 ∆6 −2

37 ∆6 0 0

38 ∆8 ∆6 −2

39 ∆6,10 ∆8 −2

40 ∆12 ∆6,10 −4

41 ∆6,10,14 ∆12 −2

Σ −106 −144

Σacc −92.2 −124.6

Table 6: Differential characteristics for Simon96/k and Simon128/k.

17

Rd. Speck32/64 Speck48/k

∆Li ∆Ri
log2(p) ∆Li ∆Ri

log2(p)

0 ∆5,6,9,11 ∆0,2,9,14 ∆0,8,9,11,19,22 ∆0,3,14,16,19

1 ∆0,4,9 ∆2,9,11 −5 ∆1,11,12,19 ∆1,3,6,11,17,22 −8

2 ∆11,13 ∆4 −4 ∆1,4,6,22 ∆9,14,20,22 −7

3 ∆6 0 −2 ∆9,17,23 ∆1,9,12 −5

4 ∆15 ∆15 0 ∆12,15 ∆4 −4

5 ∆8,15 ∆1,8,15 −1 ∆7 0 −2

6 ∆15 ∆1,3,10,15 −2 ∆23 ∆23 0

7 ∆1,3,8,10,15 ∆5,8,10,12,15 −4 ∆15,23 ∆2,15,23 −1

8 ∆1,3,5,15 ∆3,5,7,10,12,14,15 −6 ∆2,7,23 ∆5,7,18,23 −3

9 ∆3,5,7,8,15 ∆0,1,3,8,9,12,14,15 −7 ∆5,7,15 ∆2,5,7,8,10,15,21 −4

10 ∆2,5,8,10,15,23 ∆0,2,11,13,15,18,23 −7

Σ −31 −41

Σacc −30.99 −40.55

Table 7: Differential characteristics for Speck32/64 and Speck48/k.

Rd. ∆Li ∆Ri
log2(p)

0 ∆1,5,7,19,29,37,41,43,45 ∆0,11,19,21,22,29,32,33,37,41,44,45

1 ∆0,19,22,32,35,44,47 ∆3,14,19,24,25,36,40 −13

2 ∆3,11,19,25,27,39 ∆3,6,11,17,19,22,25,28,43 −10

3 ∆6,22,25,28,31 ∆9,14,20,46 −10

4 ∆9,17,23 ∆1,9,12 −6

5 ∆12,15 ∆4 −4

6 ∆7 0 −2

7 ∆47 ∆47 0

8 ∆39,47 ∆2,39,47 −1

9 ∆2,31,47 ∆5,31,42,47 −3

10 ∆5,23,31,39,47 ∆2,5,8,23,31,34,39,45,47 −5

11 ∆2,5,8,15,34,47 ∆0,11,15,26,37,42,47 −9

12 ∆7,11,15,37,39,45,47 ∆2,3,7,11,14,15,18,29,37,39,40,47 −9

13 ∆2,11,14,15,18,31,40 ∆5,6,10,11,15,17,21,31,32,42,43 −12

Σ −84

Σacc −83.98

Table 8: Differential characteristic for Speck96/k.

18

Rd. ∆Li ∆Ri
log2(p) Rd. ∆Li ∆Ri

log2(p)

0 ∆5,21,24,27,30 ∆8,13,19,29 7 ∆4,6,7,14,22,30 ∆1,4,6,14,17,22,28,30 −7

1 ∆8,16,22 ∆0,8,11 −6 8 ∆1,4,7,17,31 ∆9,20,25 −9

2 ∆11,14 ∆3 −4 9 ∆20,23,28,31 ∆12,20,31 −5

3 ∆6 0 −2 10 ∆15,23,31 ∆2,31 −4

4 ∆30 ∆30 −1 11 ∆2,7,15,23,31 ∆5,7,15,23,31 −4

5 ∆22,30 ∆1,22,30 −2 12 ∆5,26 ∆2,5,8,10,18 −5

6 ∆1,14,30 ∆4,14,25,30 −4 13 ∆2,5,8,10,29 ∆2,10,11,13,21,29 −6

Σ −59

Σacc −58.9

Table 9: Differential characteristic for Speck64/k.

Rd. ∆Li ∆Ri
log2(p)

0 ∆5,10,16,26,27,35,37,42,48,49,54,58,60 ∆2,5,18,34,37,46,49,50

1 ∆5,8,19,27,29,37,40,41,49,52,61 ∆19,21,27,29,41,53,61 −16

2 ∆0,11,22,27,28,32,33,44 ∆11,24,27,30,33,56 −13

3 ∆3,11,14,19,25,27,30,33,36 ∆3,11,19,25,59 −12

4 ∆6,17,22,28 ∆14,17,62 −9

5 ∆9,17,20 ∆1,9 −5

6 ∆12 ∆4 −3

7 0 ∆7 −1

8 ∆7 ∆7,10 −1

9 ∆7,10,63 ∆7,13,63 −2

10 ∆2,7,13,55 ∆7,10,13,16,55 −4

11 ∆5,7,10,13,16,47,55,58,63 ∆5,7,19,47,55,63 −8

12 ∆2,7,8,19,39,50,61 ∆7,10,19,22,39,58,61 −10

13 ∆0,7,10,19,22,31,39,42,53,61,63 ∆7,13,19,25,31,39,53,63 −13

14 ∆2,7,11,13,14,19,23,25,34,39,45,55,56 ∆7,10,11,13,14,16,19,22,23,25,28,39,42,45,55 −15

Σ −112

Σacc −111.16

Table 10: Differential characteristic for Speck128/k.

19

B Rectangle Attacks on Speck

Cipher Rounds p̂ q̂

Attacked E1 E2

Speck32/64 11/22 5 4 2−8.01 2−4.56

Speck48/72 12/22 5 5 2−9.06 2−9.11

Speck48/96 12/23 5 5 2−9.06 2−9.11

Speck64/96 14/26 6 6 2−15.02 2−14.58

Speck64/128 14/27 6 6 2−15.02 2−14.58

Speck96/144 16/29 7 7 2−22.46 2−19.39

Speck128/192 18/33 8 8 2−28.47 2−28.39

Speck128/256 18/34 8 8 2−28.47 2−28.39

Table 11: Parameters of our rectangle attacks on Speck2n/k. p̂ denotes the
accumulated probability of the characteristics over E1, q̂ the probability of char-
acteristics over E2. Note that we prepend one round before E1 and append one
round after E2 in our attacks.

Cipher α δ

Speck32/64 (∆11,13,∆4) (∆15,∆1,3,10,15)
Speck48/k (∆12,15,∆4) (∆2,7,23,∆5,7,18,23)
Speck64/k (∆9,17,20, ∆1,9) (∆1,14,30, ∆4,14,25,30)
Speck96/k (∆9,17,23, ∆1,9,12) (∆5,23,31,39,47 ,∆2,5,8,23,31,34,39,45,47)
Speck128/k (∆6,22,25,28,31 ,∆9,14,20,62) (∆2,5,8,31,50,63 ,∆0,11,31,42,53,58,63)

Table 12: Differential characteristics for our rectangle attacks on the individual
versions of Speck. α denotes the input differences, δ the output differences.

20

	Differential Cryptanalysis of Round-Reduced Simon and Speck
	Introduction
	Brief Description of Simon and Speck
	Differential Properties of Simon and Speck
	Search for Differential Characteristics and Differentials
	Key-Recovery Attacks on Simon
	Differential Attacks on Speck
	Key-Recovery Attack on Speck32/64

	Rectangle Attacks on Speck
	Rectangle Attack on Speck32/64

	Discussion and Conclusion
	Acknowledgments
	Differential Characteristics for Simon and Speck
	Rectangle Attacks on Speck

