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Abstract. FIDES is a lightweight authenticated cipher, presented at
CHES 2013. The cipher has two version, providing either 80-bit or 96-
bit security. In this paper, we describe internal state-recovery attacks
on both versions of FIDES, and show that once we recover the internal
state, we can use it to immediately forge any message. Our attacks are
based on a guess-and-determine algorithm, exploiting the slow diffusion
of the internal linear transformation of FIDES. The attacks have time
complexities of 275 and 290 for FIDES-80 and FIDES-96, respectively, use
a very small amount of memory, and their most distinctive feature is
their very low data complexity: the attacks require at most 24 bytes of
an arbitrary plaintext and its corresponding ciphertext, in order to break
the cipher with probability 1.

Keywords: Authenticated Encryption, FIDES, Cryptanalysis, Guess-
And-Determine.

1 Introduction

The design and analysis of authenticated encryption primitives have re-
cently become major research areas in cryptography, mostly driven by the
NIST-funded CAESAR competition for authenticated encryption [6]. At
CHES 2013, the new lightweight authenticated cipher FIDES was proposed
by Bilgin et al. [2], providing an online single-pass nonce-based authenti-
cated encryption algorithm. The cipher claims to simultaneously maintain
a highly competitive footprint and a time-efficient implementation.

The cipher has two versions, FIDES-80 and FIDES-96, which have
similar designs, but differ according to their key sizes, and thus according
to the security level they provide. For each version, the same security level
(80 bits for FIDES-80 and 96 bits FIDES-96) is claimed against all key
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recovery, internal state recovery, and forgery attacks, under the assumption
that the attacker cannot obtain the encryptions of two different messages
with the same key/nonce pair.

The structure of FIDES is similar to the duplex sponge construction [1],
having a secret internal state, where the encryption/authentication process
alternates between input of message blocks and applications of unkeyed
permutations to the state. The computation of the ciphertext is based
on the notion of leak-extraction, formalized in the design document of
the stream cipher LEX [3]. Namely, between the applications of the per-
mutations, parts of the secret internal state are extracted (leaked), and
used as a key-stream which is XORed with the plaintext to produce the
ciphertext. The notion of leak-extraction was also borrowed by ALE, which
(similarly to FIDES) is another recently proposed authenticated encryption
primitive, presented at FSE 2013 [4]. However, despite the novelty of
the leak-extraction idea, it is quite risky. Indeed, both the LEX stream
cipher and ALE were broken using differential cryptanalysis techniques
that exploit the leakage data available to the attacker [5,9,10,11].

The main idea in differential attacks on standard iterated block ciphers
is to find a differential characteristic which covers most rounds of the
cipher, and gives the ability to distinguish them from a random function.
Once the data has been collected, the key of the cipher can be recovered
using a guess-and-determine algorithm: we guess a partial round subkey
and exploit the limited diffusion of its last few rounds in order to partially
decrypt the ciphertexts and verify the guess using the distinguisher.

In order to avoid differential distinguishers on FIDES, its internal non-
linear components (i.e., its S-Boxes) were carefully chosen to offer optimal
resistance against differential attacks. Indeed, as the authors of FIDES
dedicate a large portion of the design document to analyze its resistance
against differential cryptanalysis, it is clear that this consideration played
a crucial role in the design of FIDES. On the other hand, no analysis is
given as to the strength of FIDES against “pure” non-statistical guess-
and-determine attacks. Seemingly, this is not required, as modern block
ciphers are typically designed using many iterative rounds, providing
sufficient diffusion. This ensures that guess-and-determine attacks can
only penetrate a small fraction of the rounds, and thus such attacks on
block ciphers are quite rare.

Although most block ciphers do not require special countermeasures
against guess-and-determine attacks, FIDES is an authenticated cipher
based on leak-extraction and is therefore far from a typical block cipher.
Indeed, since the attacker obtains partial information on the internal state



during the encryption process, such schemes need to be designed very
carefully in order to avoid state-recovery attacks. In the case of FIDES,
the designers chose a linear transformation with non-optimal diffusion
due to efficiency considerations, exposing its internal state even further to
guess-and-determine attacks.

In this paper, we show how to exploit the weakness in the linear
transformation of FIDES in order to mount guess-and-determine state-
recovery attacks on both of its versions: we start by guessing a relatively
small number of internal state variables, and the slow diffusion of the
linear transformation enables us to propagate this limited knowledge in
order to calculate other variables, eventually recovering the full state.

Our state-recovery attacks clearly contradict the security claims of
the designers regarding the resistance of the cipher against such attacks.
However, a state-recovery attack on an authenticated cipher does not
directly compromise the security of its users. Nevertheless, as we show
in this paper, once we obtain its internal state, two additional design
properties of FIDES immediately allow us to mount a forgery attack and
forge any message. Thus, in the case of FIDES, the resistance against
state-recovery attacks is crucial to the security of its users.

The most simple state-recovery attacks we present in this paper are
“pure” guess-and-determine attacks which do not involve any statistical
analysis that requires a large amount of data in order to distinguish the
correct guess from the incorrect ones. As a result, the attacks are very close
to the unicity bound, i.e., they require no more than 24 bytes of an arbitrary
plaintext and its corresponding ciphertext in order to fully recover the
state (and thus forge any message) faster than exhaustive search, using a
very small amount of memory. More specifically, for FIDES-80, our basic
attack has a time complexity of 275 computations (compared to 280 for
exhaustive search) and a memory complexity of 215, and for FIDES-96,
our basic attack has a time complexity of 290 computations (compared to
296 for exhaustive search) and a memory complexity of 218.

In addition to the basic attacks described in this paper, we also provide
optimized attacks in the extended version [8] of this paper, which allow to
mount faster state-recovery attacks, by exploiting t-way collisions on the
output that exist when we can collect more data. In particular, we show
how to recover the internal state and thus forge messages in reduced time
complexities of 273 and 288 computations for FIDES-80 and FIDES-96,
respectively. A summary of these attacks is given in Table 1.

While the idea of the basic guess-and-determine attack is very simple,
finding such attacks is a highly non-trivial task. Indeed, our attack includes



several phases in which we guess the value of a subset of variables and
propagate the information to another set of variables. In some of these
phases, the information cannot be propagated using simple relations
(directly derived from the FIDES internal round function), but is rather
propagated in a complex way using meet-in-the-middle algorithms that
exploit pre-computed look-up tables. It is therefore clear that the search
space for such multi-phase attacks is huge. Luckily, we could use the
publicly-available automated tool of [5], which was especially designed in
order to aid searching for efficient attacks of this type. However, as it is
mostly the case with such generic tools, we had to fine-tune it using many
trials in which we artificially added external constraints in order reduce
the search space and eventually find an efficient attack.

The rest of the paper is organized as follows. In Section 2, we give a brief
description of FIDES, and in Section 3, we describe its design properties
that we exploit in our attacks. In particular, we show in this section how
to utilize any state-recovery attack in order to forge arbitrary messages.
In Section 4, we give an overview of our basic state-recovery attack, and
describe its details in Section 5. Finally, we conclude in Section 6.

Table 1: Summary of our state-recovery/forgery attacks
Cipher Time Data Memory Reference

FIDES-80 275 1 KP 215 Section 4
FIDES-96 290 1 KP 218 Section 4
FIDES-80 273 264 KP 264 Extended version [8]
FIDES-96 288 277 KP 277 Extended version [8]

KP: Known plaintext.

2 Description of FIDES

The lightweight authenticated cipher FIDES [2] was published at CHES 2013
by Bilgin et al. It uses a secret key K and a public nonce N in order
to encrypt and authenticate a message M into the ciphertext C, and
optionally authenticate at the same time some padded associated data A.
At the end of the encryption process, an authentication tag T is generated
and transmitted in the clear, along with C and N , for decryption by the
other party.

FIDES comes in two versions: FIDES-80 and FIDES-96, having similar
designs, but providing different levels of security. These versions are
characterized by an internal nibble (word) size of c bits, where c = 5 in
FIDES-80 and c = 6 in FIDES-96. The key K of FIDES is of size 16c bits



(80 bits for FIDES-80 and 96 bits for FIDES-96), and similarly, the nonce
N and the tag T are also 16c-bit strings.

Internal State. The design of FIDES is influenced by the AES [7]. Its
internal state X is represented as a matrix of 4 × 8 nibbles of c bits,
where X[i, j] denotes the nibble located at row i ∈ {0, 1, 2, 3} and column
j ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

The encryption process of FIDES has three phases, as described below.

Initialization. The state is first initialized with the 16c-bit secret key
K, concatenated with a 16c-bit nonce N . Then, the FIDES round function
is applied 16 times to the state. Finally, K is XORed again into the left
half of the state (columns 0, 1, 2 and 3).

Encryption/Authentication Process. After the initialization phase,
the associated data is processed3 and the message is encrypted in blocks
of 2c bits. In order to encrypt a plaintext block, the two nibbles X[3, 0]
and X[3, 2] (see Figure 1) are extracted and XORed with the current
plaintext block to produce the corresponding ciphertext block. Then, the
c-bit halves of the (original) plaintext block are XORed into X[3, 0] and
X[3, 2], respectively. Finally, the round function is applied.

Finalization. After all the message blocks have been processed, the
round function is applied 16 more times to the internal state, and finally
its left half (columns 0, 1, 2 and 3) is outputted as the tag T .

The full encryption/authentication process in visualized in Figure 2.
We note that in order to decrypt, a similar process is performed, where
the ciphertext is XORed with the leaked nibbles in order to decrypt and

3Since our attacks do not use any associated data, we do not elaborate on its
processing.

c bits

Figure 1: The 32c-bit internal state of FIDES, where X[3, 0] and X[3, 2] act as in-
put/output during the encryption process.



obtain the message block, which is then XORed into the state. Finally,
the tag is calculated and validated against the one received.
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Figure 2: The encryption/authentication process of FIDES.

Description of the Round Function. The round function of FIDES
uses AES-like transformations (see Figure 3).

At the beginning of round i, the two nibbles of the message block Mi

are processed and injected to produce the state Xi. The SubBytes (SB)
transformation applies a non-linear S-Box S to each nibble of the state
Xi independently, and the ShiftRows (SR) transformation rotates the r’th
row by τ [r] positions to the left, where τ = [0, 1, 2, 7]. This produces a
state that we denote by Yi. The state is then updated to the state Wi by
applying the linear transformation MixColumns (MC), which left-multiplies
each column of Yi independently by the binary matrix M:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Finally, the AddConstant (AC) transformation XORs a 32-nibble round-
dependent constant RCi (where RCi[`, j] denotes the nibble at position
(`, j)) into the state Wi to produce the initial state of the next round,
Xi+1. Since we assume that both the round constants and the message
blocks are known to us, we can obtain an equivalent scheme by removing
the message injections and “embedding” them to the round constants,
XORed into the state at the end of the previous round. Thus, for the sake
of simplicity, we ignore the message injections in the rest of this paper.



We note that since our attack is structural, it is independent of the
particular choices of S-boxes and round-constants of FIDES. Thus, we omit
their description, which can be found in [2].4
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Figure 3: The round function of FIDES.

3 Design Properties of FIDES Exploited in our Attacks

In this section, we emphasize the properties of FIDES that we exploit in
our attacks. First, we describe two basic linear properties of the round
function that are extensively used in our state-recovery attack. Then,
we describe two design properties of FIDES, and use them to show that
any state-recovery attack immediately enables the attacker to forge any
message.

3.1 Properties of the MixColumns Transformation

The binary matrix M (that defines the MixColumns transformation) has
a branch number of 4. This implies that there are linear dependencies
between 4 nibbles of x and y = Mx (where x = [x0, x1, x2, x3] and
y = [y0, y1, y2, y3]):

Property 1. For all i, j ∈ {0, 1, 2, 3} such that i 6= j: xi ⊕ xj = yi ⊕ yj .

Property 2. For all i ∈ {0, 1, 2, 3}: xi+3 = yi⊕xi+1⊕xi+2 (where addition
is performed modulo 4), and (analogously): yi+3 = xi ⊕ yi+1 ⊕ yi+2.

Such equalities are extremely useful in guess-and-determine attacks
on AES-based schemes, where the attacker guesses a few internal nibbles
of various states and tries to determine the values of as many nibbles as
possible in order to verify his guesses. Indeed, as the branch number of
M is 4, it is possible to determine the value of an unknown nibble of x or
y, given the values of only 3 out of the 4 nibbles in an equation above.

4In fact, the round-constants are also not defined in the specifications.



We note that the maximal possible branch number for a 4× 4 matrix
is 5 (the AES MixColumns transformation was especially designed to have
this property). Interestingly, the matrix M of FIDES was not be designed
to have the maximal branch number due to implementation efficiency
considerations. As we demonstrate in our attack, this is a significant
design-flaw. Indeed, we use the two properties above more than 150 times
in order to mount a state-recovery attack which is faster than exhaustive
search.

3.2 Properties Exploited in Forgery Attacks

In this section, we show that a state-recovery attack enables the attacker
to forge any message. This is a result of two design properties (refer to
Section 2 for details):

Property 3. The initial internal state of FIDES is computed using a secret
key K and a public nonce N , and does not depend on the encrypted
message.

Property 4. Once the internal state has been recovered, the rest of the
computation (including the tag generation process) does not depend on
K, and can be fully simulated for any message.

As a result of Property 3, once we recover the internal state generated
by one (K,N) pair in the encryption process of an arbitrary plaintext M ,
we can immediately deduce it for the encryption of any other plaintext
M ′, encrypted using the same (K,N) pair. Combined with Property 4, a
state-recovery attack therefore enables to immediately forge any message
by simulating the encryption process and computing the produced tag.

We note that the design of FIDES places a restriction on the encryption
device, such that it cannot send two different messages with the same
(K,N) pair. However, the ciphertexts decrypted by the decryption device
are not restricted in such a way, namely, the device is allowed to decrypt
two ciphertexts with the same (K,N) pair (assuming that their tag is
valid). Thus, our attacks are applicable in the weak known plaintext model,
and do not require advanced capabilities (such as intercepting messages,
required in man-in-the-middle attacks).

4 Overview of the State-Recovery Attack

In this section, we give an overview of our state-recovery attack on both
versions of FIDES, distinguished by the nibble size of c bits. As any



meaningful attack must be more efficient than exhaustive search, we first
formalize the state-recovery problem for FIDES and analyze the simple
exhaustive search algorithm.

The State-Recovery Problem and Exhaustive Search. The input
to the state-recovery problem is a messageM , its corresponding ciphertext
C, encrypted using a key/nonce pair (K,N), and the actual value of the
nonce N .5 The goal of this problem is to recover X0, which denotes the
32 nibbles of the initial state obtained after the initialization of FIDES
with the (K,N) pair. In order to recover the initial state, it is possible to
exhaustively enumerate the 232c possibilities for X0 and check if each one
of them encrypts6 M to C. However, a much more efficient exhaustive
search procedure is to enumerate all the 216c possibilities for the key. Since
the nonce is known, one executes the initialization procedure of FIDES
for each value of the key, obtains a suggestion for X0, and then uses it to
verify that M is indeed encrypted to C.

Complexity Evaluation of our Attack. As shown above, the time
complexity of (efficient) exhaustive search for X0 is about 216c iterations
(or time-units), where in each iteration, FIDES is initialized using 16
round function evaluations (and additional few rounds in order to verify
that M is indeed encrypted to C). As described in the detailed attack
(Section 5), compared to exhaustive search, the time complexity of our
state-recovery attack is only 215c time-units. Moreover, in each such time-
unit, we perform computations on c-bit nibbles that are equivalent to only
about nine FIDES round function evaluations (in addition to a few memory
look-ups). However, as this smaller time-unit does not give our attack an
additional significant advantage over exhaustive search, we ignore it in
the remainder of this paper, and assume for the sake of simplicity that
our attack uses the exhaustive search time-unit.

In terms of memory, the basic unit that we use contains 32 nibbles,
which is the size of the FIDES internal state.

4.1 The Main Procedure of our Attack

The attack uses the knowledge of a single 9-block known-plaintext mes-
sage M0|| · · · ||M8, and we denote by C0|| · · · ||C8 the associated ciphertext.

5One may also include the tag of the message in the inputs to the state-recovery
problem, however, we do not require it.

6Recall that after the initialization, the encryption process does not depend on K,
and thus X0 fully determines the result of the encryption.



Algorithm 1 – Main Procedure of the State-Recovery Attack.
1: function StateRecovery
2: Guess nibbles of N1 # Step 1 – |N1| =12 nibbles
3: Determine values for nibbles of N ′1 # Step 1
4: Construct table T1 # Step 2a – 23c operations
5: Construct table T2 # Step 2b – 23c operations
6: Guess nibbles of N2 # Step 3a – |N2| =3 nibbles
7: Determine values for nibbles of N ′2 # Step 3a
8: Use table T1 to determine additional nibbles # Step 3b
9: Use table T2 to determine internal state # Step 3c
10: if all output nibbles are consistent then # p = 2−c

11: return State # 212c+3c−c = 214c states

Thus, according to the design of FIDES (see Section 2), we have the knowl-
edge of two nibbles of c bits in 9 consecutive internal states X0, . . . , X8,
linked by 8 rounds. The attack enumerates in 215c computations the ex-
pected number of 2(32−2×9)×c = 214c valid states (i.e., solutions) which
can possibly produce C0|| · · · ||C8. By using additional output (given by
additional ciphertext blocks, or by the tag corresponding to the message),
we can post-filter these states and recover the correct internal state X0
(which allows us to determine all Xi for i ≥ 0) with a time complexity
of 215c computations. This is less than the time complexity of exhaustive
search by a factor of 2c.

The main procedure of the attack is given in Algorithm 1, where the
nibble sets N1, N ′1, N2 and N ′2 are defined in Section 5.

The first step (Step 1 – lines 2,3) consists of an initial guess-and-
determine phase. The following two steps (Step 2a – line 4 and Step 2b
– line 5) construct the look-up tables T1 and T2, respectively. These two
steps are independent of each other, however, both of them depend on
Step 1. In the final steps of the attack, we perform an additional guess-
and-determine phase (Step 3a – lines 6,7), use the look-up table T1 in
order to determine the values of additional nibbles (Step 3b – line 8), and
use the look-up table T2 in order to determine the full state (Step 3c –
line 9). Finally, we post-filter the remaining states (line 10) to return the
214c valid states. We note that these states are returned and post-filtered
“on-the-fly”, and thus the memory complexity of the attack is only 23c

(which is the size of the look-up tables T1 and T2).



4.2 The Structure of the Steps in our Attack

In general, all the steps of the attack are comprised of guessing/enumerating
the values of several nibbles of the internal states X0, . . . , X8, and then
propagating the knowledge forwards and backwards through the states.
The knowledge propagation uses a small number of simple equalities E
(formally defined in Section 4) that are derived from the internal mappings
of FIDES.

As X0, . . . , X8 contain hundreds of nibbles, our attack uses hundreds of
computations on the nibbles in order to propagate the knowledge through
the states. As a result, manual verification of the attack is rather tedious.
On the other hand, it is important to stress that automatic verification of
the attack is rather simple, as one needs to program the main procedure
of Algorithm 1 with the nibbles that are guessed/enumerated in each step.
The program greedily propagates the knowledge through the states using
E, until X0 is recovered.

Despite the simplicity of the automatic verification, we still aim to give
the reader a good intuition of how the knowledge is propagated throughout
the attack without listing all of its calculations in the text (which would
make the paper very difficult to read). Thus, we provide in the next section
figures that visualize the determined nibbles of the state after each step.
In the extended version [8], we additionally provide in tables that describe
some of the low-level calculations.

The Look-up Tables T1 and T2. We conclude this section with a
remark regarding the look-up tables T1 and T2: as each one of these look-
up tables is constructed using simple equalities, it may raise the concern
that they do not contribute to the attack. Namely, it may seem possible to
simply guess the 15 nibbles of N1 and N2 in the outer loop of the attack
and recover the internal state by propagating the knowledge using simple
equations. However, the data that the look-up tables store is inverted and
indexed in a way which cannot be described using simple equations. In fact,
the look-up tables are used in meet-in-the-middle algorithms (Steps 3b
and 3c) in order to propagate the information in a more complex way.

5 Details of the State-Recovery Attack

In this section, we describe in detail all the steps of the attack. For each
step, we use a figure that visualizes the nibbles of the state that we guess
or enumerate, and the nibbles that we determine using E. For the sake of



completeness, we additionally provide in the extended version [8] of this
paper, tables that describe how we use the equalities of E in each step.

We partition E into two groups, E1 and E2, where E = E1
⋃
E2.

The first group E1 contains equalities that are directly derived from
the FIDES internal mappings AddConstant,SubBytes,ShiftRows (applied
independently to each nibble) and MixColumns (applied independently to
each column), in addition to their inverses. The equalities of E1 can only
be directly applied to a single nibble or a column of the state. The second
group E2 contains the linear equalities of Section 3.1. These equalities are
somewhat less “trivial” as they can be used in several ways in order to
factor out an unknown variable (or a linear combination of variables), and
express it as a linear combination of variables from one column of a state
or two columns of two states, linked by MixColumns.

5.1 Step 1: Initial Guess-and-Determine

We start by guessing the values of the following 12 nibbles that define the
set N1 (see hatched nibbles in Figure 4):

N1
def=


X3[0, 0], X3[0, 1], X3[0, 2], X3[3, 1],
X4[1, 0], X4[1, 1], X4[1, 2],
X5[0, 0], X5[0, 1], X5[0, 2],
X6[0, 0], X6[3, 1]

 .

Then, we propagate their values throughout the state. All the nibbles
determined at the end of this step define the nibble-set N ′1, and are given
in Figure 4.

We note that Step 1 depends on the known leaked nibbles Xi[3, 0] and
Xi[3, 2] for 1 ≤ i ≤ 7. However, this step is independent of the values of
X0[3, 0], X0[3, 2], X8[3, 0] and X8[3, 2].

In total, given the 18 leaked nibbles, we expect about 2(32−18)c = 214c

conforming internal states, and thus after we guess the values of 12
nibbles, we expect to reduce the number of solutions to 2(14−12)c = 22c.
In the sequel, we describe how to enumerate these 22c solutions in 23c

computations and 23c memory.

5.2 Step 2a: Construction of T1

In this step, we use the values of the nibbles of N1 ∪ N ′1 to construct
the look-up table T1, which contains 23c entries. During its construction,
we enumerate all the possible values of the 3 nibbles X1[2, 1], X2[2, 0]
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Figure 4: Step 1: Initial guess-and-determine.

and X2[1, 7], and for each such value, we calculate and store the values
described in Figure 5. As an index to the table, we choose the following
triplet of independent linear relations of the computed nibbles(

W1[1, 7]⊕ Y1[2, 7], Y1[1, 0]⊕W1[2, 0], Y2[1, 6]⊕ Y2[2, 6]
)
.

We note that unlike Step 1, this step depends on the value of the
known nibble X0[3, 0].

5.3 Step 2b: Construction of T2

In this step, we use the values of the nibbles of N1 ∪ N ′1 to construct
the second look-up table T2, which (similarly to T1) contains 23c entries.
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Figure 5: Step 2a: construction of T1.

During its construction, we enumerate all the possible values of the 3
nibbles X4[1, 6], X5[1, 4] and X6[2, 4], and for each such value, we calculate
and store the values described in Figure 6. As an index to the table, we
choose the following triplet of nibbles/linear relations of the computed
nibbles (

W3[1, 6]⊕W3[2, 6], Y4[2, 5], Y7[1, 0]⊕ Y7[2, 0]
)
.

We note that this step depends on the value of X8[3, 0] (unlike Step 1
and Step 2a).

5.4 Step 3a: Final Guess-and-Determine
In this step, we guess 3 additional nibbles to the 12 initial ones (see
hatched nibbles on Figure 7):

N2
def=
{
X1[0, 3], X1[1, 3], X3[2, 7]

}
.

Their values allow to determine all the values marked in gray on
Figure 7, which define the set N ′2. We note that unlike the previous steps,
this step depends on the value of the leaked nibble X0[3, 2].

5.5 Step 3b: Table T1 Look-Up
In this step, we perform a look-up in table T1 in order to determine the
values of additional nibbles, and then propagate the knowledge further
through the internal state. We access T1 using the determined values of
W1[0, 7]⊕W1[3, 7], W1[1, 0]⊕ Y1[2, 0] and W2[1, 6]⊕W2[2, 6] (see nibbles
N, H and • in Figure 8). Indeed, using the properties of the matrix M:

W1[0, 7]⊕W1[3, 7] = Y1[2, 7]⊕W1[1, 7]
W1[1, 0]⊕ Y1[2, 0] = Y1[1, 0]⊕W1[2, 0]
W2[1, 6]⊕W2[2, 6] = Y2[1, 6]⊕ Y2[2, 6],
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Figure 6: Step 2b: construction of T2.

where the right-hand sides define the elements of the index triplet to the
table T1. As T1 contains 23c entries, we expect one match on average
for each table look-up, which immediately determines all the additional
hatched values in Figure 8.

After the table T1 look-up, we propagate the additional knowledge
through the internal states.

5.6 Step 3c: Table T2 Look-Up and State Recovery

In this step, we perform a look-up in table T2 in order to determine the
values of additional nibbles, and then propagate the knowledge further
through the internal states in order to fully recover them. We access T2
using the three determined values Y3[1, 6]⊕ Y3[2, 6], Y4[2, 5] and Y7[0, 0]⊕
W7[3, 0]. The nibble Y4[2, 5] is an element of the index triplet to the table
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Figure 7: Step 3a: three more nibbles are guessed to determine more values.

T2, and for the two other elements (using the properties of the matrix M),
we have:

Y3[1, 6]⊕ Y3[2, 6] = W3[1, 6]⊕W3[2, 6]
Y7[0, 0]⊕W7[3, 0] = Y7[1, 0]⊕ Y7[2, 0],

where the right-hand sides for the two equations define the two remaining
elements of the index triplet to the look-up table T2. As T2 contains 23c

entries, we expect one match on average for each table look-up, which
immediately determines all the additional values marked on Figure 9.

After the table T2 look-up, we propagate the additional knowledge
through the internal states, which allows us to recover them fully (for the
nibbles determine using the properties of the matrix M. Namely, we fully
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Figure 8: Step 3b: table T1 look-up.

recover X4 by the following operations:

W3[0, 6] = Y3[1, 6]⊕W3[2, 6]⊕W3[3, 6]
X4[0, 6] = W3[0, 6]⊕RC3[0, 6]
Y4[0, 5] = W4[1, 5]⊕ Y4[2, 5]⊕ Y4[3, 5]
X4[0, 5] = S−1(Y4[0, 5])
W3[3, 5] = W3[0, 5]⊕W3[1, 5]⊕ Y3[2, 5]
X4[3, 5] = W3[3, 5]⊕RC3[3, 5].

Given X4, we can compute all the states forwards and backwards.

Post-Filtering. Once the internal state is fully determined, we verify
that the additional output X8[3, 2] matches its leaked value. Indeed, the
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Figure 9: Step 3c: Table T2 look-up and state recovery

18 leaked nibbles have all been used in the attack, with the exception of
the very last one, X8[3, 2]. As this match occurs with probability 2−c, the
algorithm indeed enumerates the 214c internal states that produce the 18
leaked nibbles in about 2(12+3)c = 215c computations, using a memory of
about 23c elements. Finally, we can post-filter the solutions further using
additional output (given by additional ciphertext blocks, or by the tag
corresponding to the message).

6 Conclusions and Open Problems

In this paper, we presented state-recovery attacks on both versions of
FIDES, and showed how to use them in order to forge messages. Our
attacks use a guess-and-determine algorithm in order to break the security
of the primitive given very little data and a small amount of memory.



A simple way to repair FIDES such that it would resist our attacks, is
to use a linear transformation with a branch number of 5. However, this
would have a negative impact on the efficiency of the implementation, and
moreover, it is unclear whether such a change would guarantee resistance
against different (perhaps more complex) guess-and-determine attacks. In
general, although the leak-extraction notion allows building cryptosystems
with very efficient implementations, designing such systems which also
offer a large security margin remains a challenging task for the future. In
particular, it would be very interesting to design such cryptosystems which
provably resist guess-and-determine attacks, such as the ones presented in
this paper.
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