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Abstract. This paper focuses on key-recovery attacks on 9-round AES-

192 and AES-256 under single-key model with the framework of the

meet-in-the-middle attack. A new technique named key-dependent sieve

is introduced to further reduce the size of lookup table of the attack, and

the 9-round AES-192 is broken with 2121 chosen plaintexts, 2187.5 9-round

encryptions and 2185 128-bit words of memory. If the attack starts from

the third round, the complexities would be further reduced by a factor

of 16. Moreover, the whole attack is split up into a series of weak-key

attacks. Then the memory complexity of the attack is saved significantly

when we execute these weak attacks in streaming mode. This method is

also applied to reduce the memory complexity of the attack on 9-round

AES-256.

Keywords: AES, Block Cipher, Meet-in-the-Middle Attack, Differential

Characteristic.

1 Introduction

The block cipher Rijndael was designed by Daemen and Rijmen in 1997, and

was selected as the Advanced Encryption Standard (AES) in 2001 by NIST. It

is a Substitution-Permutation Network (SPN) with variable key length of 128,

192, 256, which are denoted as AES-128, AES-192 and AES-256, respectively.

For the reason of its importance and popularity, the security of AES has

attracted a great amount of attention from worldwide cryptology researchers.

Many methods of cryptanalysis were applied to attack AES in previous years,

such as impossible differential attack [15,19,16], SQUARE attack [5], collision

attack [13], meet-in-the-middle attack [6,11,7,18,8,9], biclique attack [4], related-

key attack and chosen-key distinguishing [1,2,3,12]. Although the attacks under
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related-key model, could be used to break the full versions of AES-192 and AES-

256 based on exploiting the key schedule [1,2,3], but such attacks require a very

powerful assumption that the adversary can ask to modify the unknown key used

in the encryption. So related-key attacks are widely used as an important method

to estimate the security of a block cipher, but are not regarded as a real threat to

the application of a cipher in practice. For the attacks under single-key model, up

to now, the best attacks except the biclique method could reach to 7-round for

AES-128, 8-round for AES-192 and 9-round for AES-256. The biclique method

was used to attack the full AES with a marginal complexity over exhaustive

search by Bogdanov, Khovratovich and Rechberger at ASIACRYPT 2012 [4].

In this paper, we focus on the meet-in-the-the middle attack (MITM) in

the single-key model, which was deeply researched in recent years, and now

may be the most efficient attack on all versions of AES [9]. The meet-in-the-

middle attack was first proposed by Diffie and Hellman to attack DES [10]. For

AES cipher, this method was introduced by Demirci and Selçuk at FSE 2008

[6] to improve the collision attack proposed by Gilbert and Minier [13]. They

constructed a 4-round distinguisher to attack the 7-round and 8-round AES.

The attack needs a small data complexity of 234, but requires a large memory of

225×8 to set up precomputation table determined by 25 intermediated variable

bytes. The number of parameters could be reduced to 24 bytes, if one considers

to store the differentials instead of values in precomputation table. Combined

with data/time/memory tradeoff, this attack was applied to analyse 7-round

AES-192 and 8-round AES-256.

At ASIACRYPT 2010, Dunkelman, Keller and Shamir [11] exploited the

differential enumeration and multiset ideas for MITM attacks to reduce the high

memory complexity in the precomputation phase. Indeed, they showed that if a

pair conforms to a truncated differential characteristic, the number of the desired

24 intermediated variable bytes will be reduced to 16. Since this attack reduces

the memory complexity with the expense of increasing the data complexity to

make a pair conform to the differential characteristic, it may be seen as a new

data/time/memory tradeoff. Furthermore, Derbez, Fouque and Jean presented a

significant improvement of Dunkelman et al.’s attack at EUROCRYPT 2013 [9].

Using the rebound-like idea, they showed that many values in precomputation

table are not reached at all under the constraint of the truncated differential.

Actually, the size of precomputation table is determined by 10-byte parameters.

Based on the 4-round distinguisher, they gave the most efficient attacks on 7-

round AES-128 and 8-round AES-192/256. Besides, they introduced a 5-round

distinguisher to analyse 9-round AES-256.

Our contribution. Although the MITM attack has been improved and per-

fected a lot by Dunkelman et al. and Derbez et al. [11,9], we notice that some

key relations could be further exploited to improve the results of previous at-
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tacks. In this paper, based on the properties of the key schedule, we construct a

stronger 5-round distinguisher, which supports us to give more efficient attacks

on 9-round AES-192/256.

In [9], Derbez et al. proposed a 5-round distinguisher of AES with the mem-

ory complexity of 2208, so it seems infeasible for the attack on AES-192. However,

by studying the key relationship of the distinguisher, we find that many values

in the previous precomputation table could be filtered, and the size of the table

is only 2192. Especially, if the attack starts from the third round, the size of

precomputation table would be further reduced by a factor of 28. Subsequently,

combing with the classic data/time/memory trade-off, we present an attack on

9-round AES-192 with about 2121 chosen plaintexts, 2187.5 encryptions and 2185

128-bit storages. For the attack on AES-192 starting from the third round, the

data, time and memory complexities are reduced to 2117, 2183.5 and 2181, re-

spectively. Since the new technique takes advantage of the subkeys involved in

distinguisher as the filter conditions to reduce the size of precomputation table,

we call it key-dependent sieve.

In the second part of the paper, we show that the whole attack is able to be

sorted into a series of weak-key attacks by using of the shared key information in

the online and offline phases, where every weak-key attack takes an independent

sub-table included in the precomputation table. That supports us to reduce

the memory complexity of the attack without any cost of the data and time

complexities, since we can perform the attack in streaming mode by working

on each weak attack independently and releasing the memories afterwards. For

9-round attacks on AES-192 and AES-256, the memory complexities are reduced

by 28 and 232 times, respectively. Although the data and time complexities are

not reduced in such case, it is meaningful for us to save the memory requirement

of the attack, specially, for the attack that the memory complexity takes over

the dominant term.

Table 1 summaries our results along with some major previous results of AES-

192 and AES-256 under single-key model. The rest of this paper is organized as

follows. Section 2 gives a brief description of AES and some related works. In

section 3, we propose the single-key attacks on 9-round AES-192. Section 4

presents an interesting method to reduce the memory complexity of the attack.

Finally, we conclude the paper in section 5.

2 Preliminaries

This section first gives a brief description of AES and denotes some notations

and definitions used throughout the paper. Finally, we introduce some related

works of AES with meet-in-the-middle attack.

3



Table 1. Summary of the Attacks on AES-192/256 in the Single-key Model

Cipher Rounds Attack Type Data Time Memory Source

AES-192

8 MITM 2113 2172 2129 [11]

8 MITM 2113 2172 282 [9]

8 MITM 2113 2140 2130 [8]

9 Bicliques 280 2188.8 28 [4]

9 MITM 2121 2187.5 2185 Section 3.2

9 MITM 2121 2186.5 2177.5 Section 4.1

9 (3-11) MITM 2117 2183.5 2181 Section 3.3

9 (3-11) MITM 2117 2182.5 2165.5 Section 4.1

Full Bicliques 280 2189.4 28 [4]

AES-256

8 MITM 2113 2196 2129 [11]

8 MITM 2113 2196 282 [9]

8 MITM 2102.83 2156 2140.17 [8]

9 Bicliques 2120 2251.9 28 [4]

9 MITM 2120 2203 2203 [9]

9 MITM 2121 2203.5 2169.9 Section 4.2

Full Bicliques 240 2254.4 28 [4]

2.1 A Brief Description of AES

The advanced encryption standard (AES) [17] is a 128-bit block cipher, which

uses variable key sizes and the number of rounds (Nr) depend on the key sizes,

i.e., 10 rounds for 128-bit key size, 12 rounds for 192-bit key size and 14 rounds

for 256-bit key size. The 128-bit internal state is treated as a byte matrix of

size 4 × 4, and each byte represents a value in GF (28). The round function is

composed of four basic operations:

– SubBytes (SB) is a nonlinear byte-wise substitution that applies an 8 by 8

S-box to every byte.

– ShiftRows (SR) is a linear operation that rotates on the left of the i−th row

by i bytes.

– MixColumns (MC) is a matrix multiplication over a finite field applied to

each column.

– AddRoundKey (ARK) is an exclusive-or operation with the round subkey.

Before the first round an additional whitening ARK operation is performed, and

in the last round the MC operation is omitted.

The key schedule of AES expands the master key to Nr + 1 128-bit subkeys.

The subkey array is denoted by w[0, · · · , 4×Nr+3], where each word w[·] consists

32 bits. Let the number of words for master key is denoted by Nk, e.g., Nk = 6

for AES-192. Then the first Nk words of w[·] are filled with the master key. The

remaining words are defined as follows:
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– For i = Nk to 4×Nr + 3 do the following:
• If i ≡ 0 mod Nk, then w[i] = w[i−Nk]⊕SB(w[i−1] ≪ 8)⊕Rcon[i/Nk],

• else if Nk = 8 and i ≡ 4 mod 8, then w[i] = w[i−Nk]⊕ SB(w[i− 1]),

• Otherwise w[i] = w[i−Nk]⊕ w[i− 1].

where ≪ represents left rotation, ⊕ denotes the bit-wise exclusive OR (XOR)

and Rcon[·] is an array of fixed constants. For more details about AES, we refer

to [17].

2.2 Notations and Definitions

In this paper, the plaintext and ciphertext are denoted by P and C. The symbols

Xi, Yi, Zi and Wi denote the internal states before SB, SR, MC and ARK

operations in the round-i (0 ≤ i ≤ Nr − 1), respectively. The subkey of round i

is denoted by ki, the first key (whitening) is denoted by k−1. We use the symbol

ui to represent the equivalent key with ui = MC−1(ki).

A 128-bit internal state A is represented as a 4× 4 byte matrix. The symbol

A[i] is used to express a byte of A, where i is the ordering of bytes (i = 0, · · · , 15).

The symbol A[i, · · · , j] represents the i−th byte to the j−th byte of A.

As in previous works, the δ−set utilized in this paper is defined as follows.

Definition 1. ( δ−set, [5]) The δ−set is a set of 28 AES states that one byte

traverses all values (the active byte) and the other bytes are constants (the in-

active bytes).

We denote the δ−set as (X0, · · · , X255). Usually, we consider to encrypt a δ−set

by a function EK and select the i−th byte of the ciphertexts as the output value

(0 ≤ i ≤ 15), then the corresponding 28 output bytes form a 2048-bit vector

EK(X0)[i]‖ · · · ‖EK(X255)[i] with ordered arrangement, where ‖ represents the

bit string concatenation. Another important concept is the multiset, which was

introduced by Dunkelman et al. in [11].

Definition 2. ( Multiset of bytes [11]) A multiset generalizes the set concept

by allowing elements to appear more than once. Here, a multiset of 256 bytes

can take as many as (511255) ≈ 2506.7 different values.

Property 1. (Differential property of S−box [11]) Given the input and output

differences of the SubBytes operation, there exists a pair of actual values on

average to satisfy these differences. This property is also applied to the inversion

of SubBytes operation.

The time complexity of the attack in this paper is measured with the unit of

an equivalent encryption operation of the 9-round AES. The memory complexity

is measured with the unit of a block size (128-bit). It is emphasized that we count

all operations performed during the attack, in particular, the time and memory

requirements in precomputation phase.
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2.3 Related Works

In this section, we recall the previously MITM attacks on AES. Firstly, we intro-

duce the Demirci and Selçuk attack. Then two improvements given by Dunkel-

man et al. and Derbez et al. are shown briefly.

Demirci and Selçuk attack. Combining the MITM method, Demirci and

Selçuk improved the collision attack [13] on AES. They treated the cipher E as

EK = E2
K2
◦ Em ◦ E1

K1
, and built a distinguisher in Em based on the following

4-round AES property.

Property 2. Consider the encryption of a δ−set through four full AES rounds.

For each of the 16 bytes of the state, the ordered sequence of 256 values of

that byte in the corresponding ciphertexts is fully determined by just 25 byte

parameters. Consequently, for any fixed byte position, there are at most 2200

possible sequences when we consider all the possible choices of keys and δ-sets

(out of 22048 theoretically value).

These parameters are composed of some intermediate states of a message of

the δ−set, which are determined by the positions of the active byte and the

corresponding output byte. If the active byte is located in X1[0] and the output

byte is selected in X5[0], then, as described in Fig. 1, the 25-byte parameter is

X2[0, 1, 2, 3]‖X3[0, · · · , 15]‖X4[0, 5, 10, 15]‖X5[0]. When the values in the output

sequence were substituted by the corresponding differences, the value X5[0] could

be omitted and the number of parameter reduces to 24.

Z1

SBMC

ARK

,

,

SB SR

MC ARK ,

SR

MC ARK

SB

SR

X2 X3 Y3 X4 Z4X1

SB

SR

MC

ARK

X5

Fig. 1. The 4-round AES distinguisher used in [13], the gray cells represent

25-byte parameter

On the basic of Property 2, they gave the MITM attacks on 7-round and

8-round AES-256, respectively. For the attack on 7-round AES, one round and

2 rounds are extended in the top and bottom of the 4-round Em, respectively.

The attack is divided into two phases, precomputation phase and online phase.

1. Precomputation phase: compute all 2200 values of the sequence given in

Property 2, and store them in a hash table.

2. Online phase:
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(a) Encrypt a structure of 232 chosen plaintexts such that the main diagonal

can take all the 232 possible values and the remaining bytes are constant.

(b) Guess values of the related subkeys in E1, and construct a δ-set. Then

partially decrypt to get the corresponding 256 plaintexts.

(c) Obtain the corresponding plaintext-ciphertext pairs from the collection

data. Then guess the related subkeys in E2, and partially decrypt the ci-

phertexts to get the corresponding 256-byte value of the output sequence

of Em.

(d) If a sequence value lies in the precomputation table, the guessed related

subkeys in E1 and E2 may be right key.

(e) Exhaustive search the remaining subkeys to obtain the right key.

The data complexity of the attack in the online phase is only about 232, but

the memory and time complexities for precomputation phase are too large. So

the data/time/memory tradeoff was used in their work to reduce the complexities

in the precomputation phase, which makes the attack to apply to 7-round AES-

192. However, the time complexity in the online phase is very large, then it is

impossible to rebalance for 8-round AES-192 in their work.

Dunkelman et al.’s Attack. At ASIACRYPT 2010, Dunkelman, Keller and

Shamir [11] proposed some interesting techniques to improve the Demirci and

Selçuk attack. Firstly, they proposed to use the multiset to replace the ordered se-

quence for the output byte, since it is enough to distinguish a proper value from

the random sequences. Secondly, a novel idea named differential enumeration

technique was introduced to reduce the memory complexity in the precompu-

tation phase, at the expense of increasing the data complexity. The main idea

of this technique is to fix some values of intermediate parameters by using of

the truncated differential. They showed that if one considers to encrypt a δ−set

after four full-rounds of AES, in the case of that a message of the δ−set belongs

to a pair conforming the particular 4-round truncated differential characteristic

described as in Fig. 2, then the corresponding output value of multiset only takes

about 2128 possible values. Note that the gray cells in Fig. 2 are active bytes,

while the white cells are inactive. Indeed, it is obvious that when a pair conforms

the truncated differential as in Fig. 2, the state X3 only takes about 264 different

values.

Z1

SBMC

ARK

,

,

SB SR

MC ARK ,

SR

MC ARK

SB

SR

X2 X3 Y3 X4 Z4X1

SB

SR

MC

ARK

X5

Fig. 2. The truncated differential characteristic of 4-round AES used in [11]
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Hence, there are about 2128 possible values stored in the precomputation

phase. In the online phase, more plaintexts should be chosen to make sure there

exists a pair in content with the truncated differential. Thus, the data complexity

is 2113 chosen plaintexts. This attack procedure is similar to Demirci and Selçuk

attack, but a step to look for a pair satisfying the truncated differential is added,

and the δ−set is constructed only for such pair. Finally, they gave attacks on

the 7-round AES-128 and 8-round AES-192/256. Actually, the attack can be

regarded as a special data/time/memory tradeoff.

Derbez et al.’s Attack. More recently, Derbez, Fouque and Jean presented

a significant improvement to Dunkelman et al.’s attack at EUROCRYPT 2013

[9]. Combining with the rebound-like view of the cipher, they showed that the

number of possible values of precomputation table in Dunkelman et al.’s attack

could be further reduced. In their work, if a message of δ−set belongs to a pair

conforming the 4-round truncated differential characteristic outlined in Fig. 2,

the value of multiset is only determined by 10-byte variables of intermediate

state ∆Z1[0]‖X2[0, 1, 2, 3]‖∆X5[0]‖Z4[0, 1, 2, 3]. In other words, there are only

about 280 possible sequences of multiset to be stored in precomputation table.

Then they improved the attacks on 7-round AES-128 and 8-round AES-192/256.

Further, they proposed to use the truncated differential characteristic which

contains two active byte in X1, to balance the time and memory complexities of

the attack.

Z1

MC

ARK

SB

SR

SB

SR

X2 X3 X4 X5 Z5X1

SB

SR

MC

ARK

X6

,SB SR

MC

MC ,SB SR

MC

u2 k3 k4

Fig. 3. The truncated differential characteristic of 5-round AES used in [9]

Moreover, they proposed to use a 5-round distinguisher to attack 9-round

AES-256. The corresponding truncated differential characteristic is outlined in

Fig 3, where the value of multiset is determined by 26-byte parameters

∆Z1[0]‖X2[0, 1, 2, 3]‖X3[0, · · · , 15]‖∆X6[0]‖Z5[0, 1, 2, 3].

It is interesting that a value of the 192-bit subkey is known for each value of

multiset in precomputation table. For the above differential characteristic, the

192-bit deduced subkey is u2[0, 7, 10, 13]‖k3[0, · · · , 15]‖k4[0, 5, 10, 15].
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3 The Improved Attacks on 9-Round AES-192

In this section, we apply the improved 5-round distinguisher to attack 9-round

AES-192. It turns out that, the size of hash table in precomputation phase is able

to be reduced to 2192 from 2208. More importantly, if the 5-round distinguisher

starts from the fourth round, the size of hash table would be reduced to 2184.

3.1 Key-Dependent Sieve and 5-Round Distinguisher of AES-192

It is obvious that the memory complexity and time complexity in the precom-

putation phase are the bottlenecks of the MITM attack on AES. Nevertheless,

we find that some key relations are valuable to reduce the complexity in the

precomputation phase, where the same key information is deduced by two ap-

proaches, the parameters and the key schedule. Then both of them may be not

equal since two approaches are absolutely independent. This makes us to filter

the redundant values of precomputation table and makes it possible to attack

on 9-round AES-192.

We review the 5-round distinguisher proposed by Derbez et al. in [9]. Since

the size of lookup table is determined by 26 parameters, it seems infeasible

to attack 9-round AES-192. However, by the key schedule of AES-192, it is

obviously that the knowledge of k3 allows to deduce the column 0 and 1 of

k2. That means the value of the equivalent subkey u2[0, 7] is computed by k3.

However, u2[0, 7] is already deduced by the 26-byte parameter for each value of

the multiset seen Fig. 3. Thus there exists a contradiction between u2[0, 7] and

k3. In other words, if a possible value of the multiset is correct, the value of

u2[0, 7] must be equal to the equivalent value deduced from k3, which happens

with a probability of 2−16. Therefore, the size of look up table is about 2208

216 for 5-

round distinguisher of AES-192. Because our technique filtering the wrong states

is based on the key relationship, so we call it key-dependent sieve. Combined

with data/time/memory tradeoff, we apply the 5-round distinguisher to attack

9-round AES-192. However, the time complexity of precomputation phase is too

large for all possible values of lookup table, that is about 2192×28 computations.

So we introduce an improved 5-round distinguisher of AES-192 in the sequel.

The 5-round differential characteristic utilized in our attack is described in

Fig. 4, where the position of the active byte is defined in W0[12], and the output

value of sequence is located in Y6[6].

Proposition 1. Consider the encryption of the first 25 values (W 0
0 , · · · ,W 31

0 ) of

the δ−set through 5-round AES-192, in the case of that a message pair (W0,W
′
0)

of the δ−set conforms to the truncated differential characteristic outlined in Fig.

4, then the corresponding 256-bit ordered sequence Y 0
6 [6]‖ · · · ‖Y 31

6 [6] only takes

about 2192 values (out of 2256 theoretically value).
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Y1X1

SB SRMC

0k

MC

0u Z1 W1

W0

ARK

Y2X2

SB SRMC

1k

MC

1u Z2 W2

ARK

Y3X3

SB SRMC

2k

MC

2u Z3 W3

ARK

Y4X4

SB SRMC

3k

MC

3u Z4 W4

ARK

Y5X5

SB SRMC

4k

MC

4u Z5 W5

ARK

Y6X6

SBMC

5k5u

ARK

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Fig. 4. The truncated differential characteristic of the 5-round AES-192

Proof. We give a brief proof of this proposition. For the encryptions of the first 25

values of the δ−set, it is easier to conclude that the output sequence Y 0
6 ‖ · · · ‖Y 31

6

is determined by the 43-byte variable

W0[12]‖X1[12]‖X2[12, · · · , 15]‖X3[0, · · · , 15]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]‖k5[6].

However, if a pair conforms the truncated differential characteristic outlined in

Fig 4, the 40-byte value

X2[12, · · · , 15]‖X3[0, · · · , 15]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]

is determined by the 26-byte variable

∆Z1[12]‖X2[12, 13, 14, 15]‖X3[0, · · · , 15]‖Z5[4, 5, 6, 7]‖∆X6[6].

Here, the knowledge of∆Z1[12]‖X2[12, 13, 14, 15]‖X3[0, · · · , 15] supports to com-

pute the intermediate difference ∆X4. For the backward direction, the knowledge

of Z5[4, 5, 6, 7]‖∆X6[6] supports to compute ∆Y4. Then according to Property 1,

we get one value of intermediate state X4‖Y4 on average for the fixed difference

∆X4‖∆Y4. Apparently, the 192-bit value of subkey u2[3, 6, 9, 12]‖k3[0, · · · , 15]‖
k4[3, 4, 9, 14] is also deduced for every 26-byte variable. According to key sched-

ule of AES-192, we can compute the other value u2[3, 6] form k3. By the key-

dependent sieve, there are 2192 possible values for 26-byte parameters.
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By the key schedule, the value of subkey denoted by triangles in Fig. 4 are

deduced by the value of the 192-bit subkey denoted by blackspot in Fig. 4.

Here, we only focus on the subkey k0[12]‖k1[12, 13, 14, 15]‖k5[6]. For any 26-

byte parameter, k1[12, 13, 14, 15] is used to compute X1[12], and k0[12] is used

to compute W0[12]. Besides, the values of X6[6] and Y6[6] are computed by

the value of k5[6]. Therefore, the whole 43-byte variable is deduced by 26-byte

parameter. So there are 2192 possible values of 43-byte variables, which means

the number of possible sequences Y 0
6 [6]‖ · · · ‖Y 31

6 [6] is approximately 2192. ut

Note that in Derbez et al.’s attack, the multiset technique was used to omit

the influence of 16-bit subkey belongs to k0 and k5. If the truncated differential

characteristic is selected as in Fig. 4, the 16-bit subkey would be k0[12]‖k5[6].

Here, we prove that such 16-bit information could be deduced by 192-bit subkey

u2[3, 6, 9, 12]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]. Then we extend the distinguisher to the

W0 in the forward, and Y6 in the backward. Thus, we use an ordered sequence

instead of the multiset. For the output value of encrypting the δ−set, the ordered

sequence includes 2048-bit information, while a multiset only contains about 507-

bit information. Indeed, only the first 32-byte value of the δ−set is enough to

distinguish a proper sequence with the probability of 2192

2256 = 2−64, and the data

and time complexities are reduced by 23 times in the attack.

3.2 The Key Recovery Attack on 9-Round AES-192

We propose an attack on 9-round AES-192 by adding one round on the top and

three rounds on the bottom of the 5-round distinguisher (Fig. 5). The attack is

composed of two phases: precomputation phase and online phase. In the precom-

putation phase, we get all possible 256-bit sequences described as Proposition 1

by using the rebound-like technique, which is described as follows.

Precomputation phase. For each 128-bit k3, do the following steps.

1. Compute the subkey u2[3, 6]‖k1[12, 13, 14, 15]‖k0[12] by the key schedule.

2. Traverse ∆X6[2]‖Z5[4, 5, 6, 7] to compute ∆X5[3, 4, 9, 14]‖X5[3, 4, 9, 14], and

store X5[3, 4, 9, 14] in a table T0 indexed by ∆X5[3, 4, 9, 14]. There are about

28 values of X5[3, 4, 9, 14] for each index.

3. For all 64-bit value of difference ∆Y2[12, · · · , 15]‖∆X5[3, 4, 9, 14], we apply

the super-sbox technique [14] to connect the differences ∆Y2[12, · · · , 15] and

∆X5[3, 4, 9, 14], and deduce the intermediate value X3‖W4. Then Y2[14, 15]

is obtained by X3 and u2[3, 6]. Store these values with the index of 48-bit

value ∆Y2[12, · · · , 15]‖Y2[14, 15] in a table T1. There are about 216 values of

∆X5[3, 4, 9, 14]‖X3‖W4[3, 4, 9, 14] corresponding to the index∆Y2[12, · · · , 15]

‖Y2[14, 15].

4. For each ∆Z1[12]‖X2[12, 13, 14, 15], execute the following substeps.

(a) Compute the state X1[12]‖W0[12]‖∆Y2[12, 13, 14, 15]‖Y2[12, 13, 14, 15].

11
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Fig. 5. The attack on 9-round AES-192

(b) Then look up the table T1 to get about 216 values ∆X5[3, 4, 9, 14]‖X3‖
W4[3, 4, 9, 14] by the values of ∆Y2[12, 13, 14, 15]‖Y2[14, 15]. And get the

equivalent subkey u2[9, 12].

(c) For each value of ∆X5[3, 4, 9, 14]‖X3‖W4[3, 4, 9, 14], we get 28 values

of X5[3, 4, 9, 14] by accessing the table T0. Then compute k4[3, 4, 9, 14]

and k5[6]. Here we get 43-byte variable W0[12]‖X1[12]‖X2[12, · · · , 15]‖
X3[0, · · · , 15]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]‖k5[6].

(d) Construct the δ−set, and compute the corresponding sequence Y 0
6 [6]‖ · · ·

‖Y 31
6 [6], and store them in a hash table H.

Online phase. In the online phase, we need to find at least a pair satisfying

the truncated differential characteristic, then construct the δ−set, and obtain

the first 32 bytes output value of it. Finally, detect whether it belongs to the

precomputation table. The attack procedure is described as follows.

1. Encrypt 281 structures of 232 plaintexts, such that P [1, 6, 11, 12] takes all

32-bit values and other bytes are constants. There are 2144 pairs totally.

2. For each pair, do the following substeps.

(a) Guess the difference value ∆Y7[12, 13, 14, 15], and compute the subkey

u8 (or k8, if the last MC operation is omitted). Then deduce u7[3, 6].

(b) Compute the difference ∆X7[14, 15], delete the wrong guesses which

don’t lead to ∆Z6[12, 13, 15] = 0, there are about 224 guesses remaining

after this step.

(c) For each remaining guess, deduce subkey u7[9, 12].

(d) Guess the difference ∆W0[12], and compute the subkey k−1[1, 6, 11, 12].

3. For each deduced subkey, select one message of the pair and get the value

W0[12]. Then change the value of W0[12] to be (0, · · · , 31) and compute

plaintexts (P 0, · · · , P 31). Query their corresponding ciphertexts, and get the

12



corresponding sequence Y 0
6 [6]‖ · · · ‖Y 31

6 [6] by partial decryption. Note that

the equivalent subkey u6[14] is deduced by u8 in such case.

4. Find the right subkeys by verifying whether the sequence lies in table H.

There are about 2176×2−64 subkeys remaining in the end. Then exhaustively

search for u7[8, 10, 11, 13, 14, 15] to find the real key, which needs about 2160

encryptions.

Complexity analysis. In the precomputation phase, each value of the δ−set

needs about 2-round AES computations. Then the time complexity of the pre-

computation phase is about 2192 × 25 × 2−2.2 = 2194.8 9-round AES encryp-

tions, which also needs about 2193 128-bit words of memory to store all possi-

ble sequences. The time complexity of the online phase is dominated by step

3, where the computation of each value in the δ−set needs about 1.5-round

AES encryptions. So the time complexity of the online phase is equivalent to

2144 × 232 × 25 × 2−2.6 = 2178.4 9-round encryptions. The attack needs about

2113 chosen plaintexts.

Data/time/memory tradeoff. With data/time/memory tradeoff, the adver-

sary only needs to precompute a fraction 2−8 of possible sequences, then the

time complexity is about 2184 × 25 × 2−2.2 = 2186.8 9-round computations. The

memory complexity reduces to 2193×2
−8

= 2185. But in the online phase, the

adversary will repeat the attack 28 times to offset the probability of the failure,

that means the attack becomes probabilistic. So the data complexity increases

to 2121 chosen plaintexts, and the time complexity increase to 2178.4×28 = 2186.4

9-round encryptions. In total, including the precomputation phase, time com-

plexity is approximately 2187.5.

3.3 The Attack on 9-round AES-192 from the Third Round

We observe that the memory complexity will be reduced again when the 5-

round distinguisher is mounted to rounds 4-9 in order to attack the reduced-

round AES-192 from rounds 3 to 11. The same truncated differential character-

istic outlined in Fig. 4 is used in the attack, except to move all intermediate

states after two rounds. Then the 5-round distinguisher is from the state W2

to the state Y8. Similar to the Proposition 1, we consider to encrypt a δ−set

(W 0
2 , · · · ,W 255

2 ) after 5-round AES-192. If a message pair of the δ-set satis-

fies the expected truncated differential characteristic, then there are about 2192

possible values of sequence Y 0
8 ‖ · · · ‖Y 255

8 . Corresponding, the 176-bit subkey

u4[9, 12]‖k5[0, · · · , 15]‖k6[3, 4, 9, 14] is deduced for each sequence. Here, u4[3, 6]

are omitted, which can be deduced from k5.

However, as described in Fig. 6, we find that k6[4] are deduced by the values

of k5[1] and k6[9], which may be contradicted with the known value k6[4] for each

sequence, where the right half in Fig. 6 is the original key schedule of AES-192,
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and the left half is its equivalent value vi = MC−1(wi). Note that there exist

the following relations for the equivalent key vi if i ≥ 6.

– If i ≡ 0 mod 6, then v[i] = v[i − 6] ⊕MC−1(SB(MC(w[i − 1]) ≪ 8)) ⊕
MC−1(Rcon[i/6]),

– Else v[i] = v[i− 6]⊕ v[i− 1].

So there are only about 2184 possible sequences remaining after eliminating the

incorrect states in such case.
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24 29w w

30 35w w

18 23v v

24 29v v

30 35v v
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S
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Fig. 6. The key relationship of the attack on AES-192 starting from the third

round

The attack procedure is similar to the attack of subsection 3.2. The precom-

putation table is constructed as follows. For each 128-bit difference ∆X6, do the

following steps.

1. Traverse the 40-bit difference∆Y3[12]‖∆Y4[12, 13, 14, 15] to deduce the states

X4[12, 13, 14, 15]‖X5‖W5‖u4[3, 6, 9, 12]. Store these states in a hash table T1
with the 24-bit index

(Z5[7]⊕ Z5[11]⊕ u4[3])‖(Z5[10]⊕ Z5[14]⊕ u4[6])‖W5[1].

2. Traverse the 40-bit difference ∆X8[6]‖∆X7[3, 4, 9, 14] to deduce the interme-

diate states X7[3, 4, 9, 14]‖X6‖W6‖k6[3, 4, 9, 14]. Compute the 24-bit value

(MC(X6)[7]⊕MC(X6)[11])‖(MC(X6)[10]⊕MC(X6)[14])‖(X6[1]⊕ k6[9]⊕
S(k6[4]) ⊕ Rcon[4][1]). Then access the hash table T1 with 24-bit value to

get the states X4[12, 13, 14, 15]‖X5‖W5‖u4[3, 6, 9, 12]. There are about 216

states in table T1 for each index. In total, we collect 256 correct states which

14



satisfy 
u4[3] = u5[7]⊕ u5[11],

u4[6] = u5[10]⊕ u5[14],

k5[1] = k6[9]⊕ S(k6[4])⊕Rcon[4][1].

3. Construct the δ−set, compute the corresponding sequence Y 0
8 [6]‖ · · · ‖Y 31

8 [6],

and store them in a hash table.

Complexity analysis.The time complexity of this phase is equivalent to 2184×
25× 2−2.2 = 2186.8 9-round encryptions, the memory complexity is about 2184×
2 = 2185 128-bit storages. The online phase is exactly the same procedure of

the attack in Section 3.2, which needs about 2113 chosen plaintexts and 2178.4

9-round encryptions.

Data/time/memory tradeoff. We precompute a fraction 2−4 possible se-

quences, then the time complexity of the attack in the online phase is about

2178.4 × 24 = 2182.4 9-round encryptions. The memory complexity decreases to

2185 × 2−4 = 2181 128-bit, and the data complexity increases to 2117 chosen

plaintexts. In additional, we need 2182.8 9-round encryptions to compute all pos-

sible sequences in precomputation phase, then the time complexity including the

precomputation is about 2183.5 9-round encryptions.

4 Reducing the Memory Complexity with Weak-Key

Attacks

It is known that there exists a subkey k′ for every sequence in precomputation

table. In other view, such a value k′ could be regarded as an extensional charac-

teristic of the sequence. In Section 3, we use the property of self-contradictory

phenomenon of the k′ to reduce the number of possible sequences. In this sec-

tion, by investigating more properties of this information, we show that the

memory complexity could be further reduced without increasing the data and

time complexities.

We denote the subkey guessed in the online phase as k̂ . It is obvious there

exist some linear relations in k′ and k̂. Assuming m bits value k̃ ⊂ (k′ ∩ k̂),

we first split the precomputation table with the index of k̃ into 2m sub-tables.

Thus, in the online phase, for each guessed subkey k̂ and its sequence, instead

of checking all precomputation table, we only need to detect a sub-table in the

line with the index value k̃. Furthermore, we also split the sequences computed

in the online phase to 2m subsets with the same index k̃. Then for all sequences

belong to a subset, we only need to detect a sub-table, and it is meaningless to

check whether they belong to other sub-tables.

Thus, the whole attack could be sorted into 2m sub-attacks. Each sub-attack

contains a sub-table of precomputation, and all of these attacks are independent
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each other. Since each sub-attack is worked under a fixed value of m-bit key

information, which is also seen as a weak-key attack. Assuming C is the time

(or memory) complexity of the whole attack, then it is evident to see that the

time (or memory) complexity for every weak-key attack is C/2m, but the data

and time complexities of the whole attack don’t change at all. Nevertheless, if

all weak-key attacks are worked in the streaming model, the memory complexity

could be reduced by 2m times since the storages could be reused for each weak-

key attack. However, the whole precomputation table could not be reused in

such case.

4.1 Reducing the Memory Complexity for Attacks on 9-round

AES-192

We take into account the application of this method to the attack on 9-round

AES-192, where k′ is 176-bit subkey u2[9, 12]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14], and k̂

is the 176-bit subkey u8[0, · · · , 15]‖u7[9, 12]‖k−1[1, 6, 11, 12]. It is not difficult to

see that the set k′ ∪ k̂ contains the whole information of 192-bit master key, and

the set k′ ∩ k̂ contains 160-bit information. We use 8-bit information k−1[6] as

the index to split the attack to 28 weak-key attacks, where

k−1[6] = SB(k3[1]⊕ k3[5])⊕ k3[10]⊕ k3[14]⊕Rcon[2][2].

The attack procedure is very simple. We first split 2128 possible value of k3 to 28

subsets with the index value k−1[6]. Then for each weak-key attack with a fixed

value k−1[6], do as follows.

1. For the corresponding subset of k3, do as described in section 3.2 to construct

the sub-table H′.
2. For 2113 plaintexts, guess 24-bit subkey k−1[1, 11, 12], and collect all pairs

satisfying ∆W0[13, 14, 15] = 0.

3. For every pair guess the difference ∆Y6[6].

4. Guess ∆Y7[14, 15] to deduce the subkey u7[3, 6]‖u8[0, 1, 4, 7, 10, 11, 13, 14],

and only keep the value which satisfies u7[3] = u8[7] ⊕ u8[11] and u7[6] =

u8[10]⊕u8[14]. There is one value of ∆Y7[14, 15] along with its subkey remain

on average for every ∆Y6[6].

5. Guess ∆Y7[12, 13] to deduce the subkey u7[9, 12]‖u8[2, 3, 5, 6, 8, 9, 12, 15].

6. Construct the δ−set, compute the corresponding sequence, and check whether

they belongs to H′.

Complexity analysis. For each weak-key attack, the time complexity of step 1

is about 2184×25×2−2.2 = 2186.8, the memory complexity is about 2185 128-bit.

For step 2 to step 6, the time complexity is about 2168 × 25 × 2−2.6 = 2170.4. By

data/time/memory tradeoff, we precompute a fraction 2−8 possible sequences,
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the time complexity is about 2179.5 9-round encryptions, the memory complexity

could be reduced to 2177 128-bit spaces. In total, the complexity is still 2179.5×28

9-round encryptions, approximately.

Reducing the time complexity by a half. By investigating the information of

k′∩k̂, we learn that the 64-bit information is identified out of 160-bit information,

that is k−1[6]‖k−1[11]‖u1[12]‖u3[1]‖k4[4, 5, 6]‖k5[11]. Then each sequence of the

distinguisher is represented by the first 16 bytes of the δ−set along with above 64-

bit information and 176-bit k′. Hence, for each sequence computed in the online

phase, we get k′ by the 192-bit index Y 0
6 [6]‖ · · · ‖Y 15

6 [6]‖k−1[6, 11]‖u1[12]‖u3[1]‖
k4[4, 5, 6]‖k5[11], and sieve the right key by verifying the consistency of k′ and

k̂. The probability of this filter is about 264

2160 = 2−96. Thus, the time com-

plexity of the attack is reduced by a half, but the memory complexity is in-

creased to 2192 × 21.5 = 2193.5, which is used to store 368-bit information

Y 0
6 [6]‖ · · · ‖Y 15

6 [6]‖k−1[6, 11]‖u1[12]‖u3[1]‖k4[4, 5, 6]‖k5[11]‖k′ in such case. Com-

bined with data/time/memory tradeoff and weak-key method, the time complex-

ity of the attack is about 2186.5, the memory complexity is about 2177.5.

The attack starting from the third round. For the attack starting from the

third round, the 16-bit shared information k1[6, 11] could be used as the index to

convert the attack to 216 weak-key attacks, where k1[6] = k5[2]⊕ k5[6]⊕ k5[14]

and k1[11] = k5[7] ⊕ k5[11] ⊕ k6[3]. The attack procedure is similar to above

attack, in use of the data/time/memory tradeoff, the memory complexity of the

attack is reduced to 2165 128-bit spaces. If we use the information k′ ∩ k̂ instead

of partial value of the sequence, the time complexity would be reduced to 2182.5,

and the memory complexity is about 2165.5.

4.2 Reducing the Memory Complexity for the Attack on AES-256

This attack is based on the 5-round distinguisher, where the active byte of the

δ−set is defined in W0[3], and the output value is located in Y6[7].

Proposition 2. If one encrypts the first 32 values (W 0
0 , · · · ,W 31

0 ) of the δ−set

through 5-round AES-256, assuming a pair of the δ−set satisfying the expected

truncated differential characteristic, then the sequence Y 0
6 [6]‖ · · · ‖Y 31

6 [6] along

with a 192-bit subkey u2[1, 4, 11, 14]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14] takes about 2208

values.

According to the generic attack, we need to precompute all possible values of se-

quence Y 0
6 [6]‖ · · · ‖Y 31

6 [6]. Then in the online phase, we collect 2144 pairs, and find

a pair satisfying the differential path for each 192-bit subkey k−1[0, 5, 10, 15]‖k8‖
u7[2, 5, 8, 15]. After that, construct the δ−set, compute the sequence Y 0

6 [6]‖ · · · ‖
Y 31
6 [6], and check whether it belongs to precomputation table. Finally, detect the

consistency of u2[1, 4, 11, 14]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14] and k−1[0, 5, 10, 15]‖k8‖
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u7[2, 5, 8, 15] to retrieve the correct key. Then the time complexity in precompu-

tation phase is about 2208×25×2−2.2 = 2210.8. The memory complexity is about

2209.9 128-bit words of memory, where we need to store 448-bit information. In

online phase, the time complexity is about 2192 × 25 × 2−2.6 = 2194.4. The data

complexity is about 2113 chosen plaintexts. By data/time/memory tradeoff, we

precompute a fraction 2−8 possible sequences, then the data, time and memory

complexities are 2121, 2203.5 and 2201.9, respectively. Here, we consider to use the

32-bit information k−1[10, 15]‖k4[9, 14] to convert the attack to 232 weak-key

attacks, then the memory complexity reduces to 2169.9. Note that the subkey

k−1[10, 15] and k4[9, 14] are linear dependent on k3 and k8, respectively.

5 Conclusion

In this paper, we take advantage of some subkey relations in the truncated dif-

ferential to reduce the memory complexity of meet-in-the-middle attack, which

is the bottleneck of this kind of attack. For 9-round AES-192, the 16-bit subkey

conditions are obtained in the construction of the δ-set sequence. Based on this,

we propose the 9-round attack on AES-192. In particular, when the 9-round

attack starts from the third round of AES, the time complexity is 2182.4 9-round

encryption, the data complexity is 2117 chosen plaintexts, and the memory com-

plexity is 2181 blocks. Moreover, combining the key relations between the inline

phase and online phase, we introduce an interesting method to decompose the

whole attack into a series of weak-key attacks, which helps to reduce the mem-

ory complexity of the attack without increasing the data and time complexities.

To the best of our knowledge, these attacks are the most efficient results in

single-key model for 9-round AES-192 and AES-256.
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