ALE: AES-Based Lightweight Authenticated
Encryption

Andrey Bogdanov!, Florian Mendel?, Francesco Regazzoni®*,

Vincent Rijmen®, and Elmar Tischhauser®

1 Technical University of Denmark
2 TAIK, Graz University of Technology, Austria
3 ALaRI - USI, Switzerland
4 Delft University of Technology, Netherlands
5 Dept. ESAT/COSIC, KU Leuven and iMinds, Belgium

Abstract. In this paper, we propose a new Authenticated Lightweight
Encryption algorithm coined ALE. The basic operation of ALE is the
AES round transformation and the AES-128 key schedule. ALE is an
online single-pass authenticated encryption algorithm that supports op-
tional associated data. Its security relies on using nonces.

We provide an optimized low-area implementation of ALE in ASIC hard-
ware and demonstrate that its area is about 2.5 kGE which is almost two
times smaller than that of the lightweight implementations for AES-OCB
and ASC-1 using the same lightweight AES engine. At the same time,
it is at least 2.5 times more performant than the alternatives in their
smallest implementations by requiring only about 4 AES rounds to both
encrypt and authenticate a 128-bit data block for longer messages. When
using the AES-NI instructions, ALE outperforms AES-GCM, AES-CCM
and ASC-1 by a considerable margin, providing a throughput of 1.19 cpb
close that of AES-OCB, which is a patented scheme. Its area- and time-
efficiency in hardware as well as high performance in high-speed parallel
software make ALE a promising all-around AEAD primitive.
Keywords: authenticated encryption, lightweight cryptography, AES

1 Introduction

Motivation. As essential security applications go ubiquitous, the demand for
cryptographic protection in low-cost embedded systems (such as RFID and sen-
sor networks) is drastically growing. This necessitates secure yet efficiently im-
plementable cryptographic schemes. In such use cases, the area and power con-
sumptions of a primitive in hardware are usually of paramount importance and
standard solutions are often prohibitively costly to deploy.

Once this problem was recognized, the cryptographic community was fast to
address it by proposing a great deal of specialized lightweight cryptographic algo-
rithms, which include stream ciphers like Trivium [I7], Grain [25], and Mickey [5],
block ciphers like SEA [38], DESL, DESXL [30], HIGHT [26], mCrypton [31],
KATAN/KTANTAN [16], and PRESENT [10], and hash functions like Quark [4],

Photon [24], and Spongent [9] — to mention only some fraction of them. We
note that the latter hash functions are following the overall design strategy of a
permutation-based sponge construction [6], similarly to Keccak [7], which also
provides competitive lightweight properties [29].

However, when it comes to authenticated encryption — the fundamental se-
curity functionality in most real-world security systems — one has to establish
that, rather surprisingly, only a few lightweight schemes have been proposed so
far, examples are Grain-128a [2] and Hummingbird-2 [2I]. At the same time,
message secrecy — as provided by plain encryption — is often of limited value in
practice if not accompanied by message authentication. This stipulates the acute
need for authenticated encryption in the field which is reflected in NIST [20] and
ISO/IEC [I] documents on modes of operation for block ciphers.

In the context of lightweight cryptography though, these standard modes of
operation have significant practical limitations. First, the lightweight block ci-
phers are usually designed to save on state bits, so that the block size and key size
are usually kept at the edge of the reasonable minimum (it is rather typical in
lightweight cryptography to propose a block cipher with a 64-bit block and a 80-
bit key). This significantly confines the security level of modes of operation the-
oretically attainable due to generic attacks. Second, the standard authenticated-
encryption modes of operation traditionally aim at high-speed implementations
by minimizing the number of block cipher calls and other operations one has to
perform per data block processed. For example, OCB [36], which clearly out-
performs such wide-spread schemes as AES-GCM and AES-CCM in standard
software, requires essentially a single AES call per data block at bulk encryption
only. However, such modes usually do not pay too much attention to the amount
of memory and the circuit size one needs in a lightweight hardware implemen-
tation. For instance, AES-OCB requires at least four 128-bit registers and both
AES-encryption and -decryption engines for both encryption/authentication and
decryption/verification. Besides, OCB is a patented scheme which hampers its
wide deployment in the field.

A straightforward solution would be to address the first limitation (small
state) by raising the total internal state size of the lightweight primitives, for
instance, to 256 bits to avoid generic attacks up to a bound of 2!?® operations.
However, this would in turn take away their major source of advantage and make
their area occupation comparable to that of AES-128. That is why we feel that
a dedicated authenticated-encryption design can also be based on AES when
128-bit level of security is desired.

In an attempt to mitigate the second limitation (additional memory require-
ments imposed by modes) one might choose to go for encrypt-then-mac or mac-
then-encrypt. However, not only would it jeopardize the highly relevant imple-
mentation goal for the scheme to be online but also require double message
input (being essentially two-pass) and twice more operations per data block
than e.g. OCB. In general, there appear to be no single-pass authentication en-
cryption modes of operation for block ciphers preserving the minimal state size

required. This emphasizes the demand for a dedicated lightweight authenticated-
encryption design.

Moreover, we also want to make this new design fast in software, as op-
posed to some bit-oriented lightweight ciphers (such as Grain, Trivium, KATAN;,
PRESENT, etc.) which succeed in attaining a low area in hardware but whose per-
formance in software is not even comparable to that of AES, especially in the
presence of the Intel AES-NT instructions. We feel that not much efficiency can
be gained by designing a slightly more efficient generic authenticated-encryption
mode of operation for block ciphers since the bottleneck will remain the one block
cipher call per data block. This is not only true for authenticated encryption
modes but also for MAC-only and encryption-only modes.

The situation is, however, essentially different if the designer is allowed to
look inside the specific underlying block cipher such as AES and to construct a
dedicated mode of operation which only uses exactly as many operations of the
underlying block cipher as needed. This is the approach taken in the designs of
the stream cipher LEX [§] and the message authentication algorithm Pelican [14].
Lately, similar reasoning was applied to the setting of authenticated encryption
resulting in the design of ASC-1 [28].

ALE. This paper proposes a lightweight authenticated encryption algorithm
based on AES called ALE (Authenticated Lightweight Emncryption) which is
efficient both in hardware and software. It is a single-pass nonce-based online
scheme that preserves the memory alignment of data. The design of ALE com-
bines some ideas of Pelican, LEX and ASC-1 in a lightweight manner. In a nut-
shell, the algorithm uses Pelican keyed in all rounds (similarly to PC-MAC [34])
for computing the authentication tag and leaks bytes of the state in every round
in a LEX-type way for encryption/decryption. It has a 256-bit secret internal
state dependent on both key and nonce.

By requiring only 2.5 kGE of area in lightweight ASIC hardware, which is
less than 100 GE overhead compared to plain AES-ECB in the smallest imple-
mentation available [35], ALE is about half the size of AES-OCB and ASC-1. In
terms of speed in the lightweight implementation for medium-size messages and
longer, ALE is about 2.5 times faster than AES-OCB and about 4.5 times faster
than ASC-1 in its smallest implementation. When using the parallel AES-NI
instructions, ALE outperforms AES-GCM, AES-CCM and ASC-1 by a consid-
erable margin, providing a throughput close to that of AES-OCB, which is a
patented scheme.

At a first glance, the overall design philosophy of ALE might seem similar
to that of ASC-1. However, as the numbers of relative area and speed above
already strikingly suggest, ASC-1 has several crucial shortcomings in the way
of practical implementation. First, ASC-1 needs an internal state which is twice
larger than that of ALE, which accounts to the significant difference in area
requirements. Second, the non-sequential order in which the AES-256 subkeys are
used in ASC-1 (e.g. subkey 11 is needed already in the first round) combined with
its serial nature, has a considerable impact on its performance. In lightweight

hardware, the engine in adjacent operations has to have subkeys which are many
rounds apart which can be done either by computing a key state back and forth
(which costs time) or by storing some values high-speed software (which costs
area). In high-performance parallel software implementations, the subkeys have
to be computed on the fly (since the key state is evolving) beforehand and stored
in registersto aviod additional memory accesses, which contrains the advantage
of using AES-NI instructions a lot. Finally, ASC-1 does not accept associated
data that can be vital in some networking settings while ALE explicitly deals
with it.

The remainder of the paper is organized as follows. Section [2| gives a specifi-
cation of the algorithm. Section 3 introduces some elements of its cryptanalysis.
Section [provides lightweight implementation numbers of the algorithm in ASIC
hardware. Section [5| implements ALE in software using AES-NI instructions on
a SandyBridge Intel processor. We conclude in Section [6}

2 The Authenticated Lightweight Encryption (ALE)
algorithm

In this section, we describe ALE — our new authenticated lightweight encryption
algorithm. The basic operation of ALE is the AES round transformation and the
AES-128 key schedule. In all the following, we assume that the reader is familiar
with AES.

2.1 Specification

ALE is an online single-pass nonce-based authenticated encryption algorithm
with associated data. Its encryption/authentication procedure accepts a 128-bit
master key k, a message p, associated data a and a 128-bit nonce v # 0. An
equivalent of at most 248 bits are allowed to be authenticated or both authenti-
cated and encrypted with the same master key. The encryption/authentication
procedure outputs the ciphertext v of exactly the same bit length as the message
1 and the authentication tag 7 of 128 bits for both the message 1 and associ-
ated data «. Its decryption/verification procedure accepts key &, ciphertext ~,
associated data «, nonce v and tag 7. It returns the decrypted message p if tag
is correct or L otherwise.
The encryption/authentication operation can be described in five steps:

Padding: The padding of ALE is similar to the one of the MD4 hash function.
First a “1” is appended to the message u, followed by £ “0” bits (with
=128 — (Ju| + 1+ 64 (mod 128)), and finally the message length |u| coded
on 64 bits is appended. The resulting padded message M is split into ¢ blocks
of 128 bits each, M = m4]| ... |m;. Note that for associated data the same
padding method is used and the padded associated data is split into r blocks
of 128 bit each, A = a1]]...]|ar.

" 10R key
K schedule
Full AES
10R key
v data schedule 1K
transform
Full AES 10R AES
0 —» data | data 1D
transform transform
A\ v \ v
- 10R key
r schedule

Fig. 1. Initialization of ALE.

Initialization: The internal state consists of two 128-bit states: the key state
(upper line in Figure [1)) and the data state (lower line in Figure [I)). The
key state is initialized with nonce v encrypted with AESﬂ under the master
key x. The data state is initialized in two steps, First, it is initialized with
0 encrypted with AES under the user-supplied key k. Second, the result
AES,(0) is AES-encrypted using the initialized key state as key. After that,
the final subkey of the last AES encryption is updated one more time using
the AES round key schedule with byte round constant z'© in Fos. This value
is stored in the key state. Now both states are initialized.

Processing associated data: If there is only one padded associated data block,
then a; is xored to the data state and one proceeds with processing message
immediately. Otherwise, if there are at least two padded associated data
blocks, A is processed block by block: The data state is encrypted with 4
rounds of AES using the key state as key. The final round subkey is updated
one more time using the AES round key schedule with byte round constant
x* in Fys. This value is stored in the key state. The next block of A is xored
to the data state.

4R key 4R key
schedule schedule

v v

4R AES 4R AES

ID data e data AD
transform transform
— —
az Qr—1

ay Qy

Fig. 2. Processing associated data in ALE.

% Here and further in the paper, we imply AES-128 whenever we write AES.

4R key 4R key 10R key

AK ™ chedule h schedule scheduie [* 7
Full AES
4R AES oD e 4R AES T\ o
AD > | Exieak [0 T LEXleak > data | tagT
A A transform
N~ Sp—
\ i \
N m N my
Y
msb
v
c1 Ct

Fig. 3. Processing message and finalization in ALE.

Processing message: M is processed block by block: The data state is en-
crypted with 4 rounds of AES using the key state as key. 16 bytes are leaked
from the data state in the 4 rounds of AES in accordance with the LEX
specification.

This leak is xored to the current block of M. The final round subkey is
updated one more time using the AES round key schedule with byte round
constant % in Fys. This value is stored in the key state. The current block
of M is xored to the data state.

For the last block of M the exact required number of most significant bits
are taken from the leak and xored to the last block (without padding) to
produce the last bits of ciphertext, and m; is xored to the data state.

Finalization: The data state is encrypted with the full AES using the master
key k. The output of this encryption is returned as the authentication tag 7
for the message and associated data.

The decryption/verification procedure is defined correspondingly. The only two
differences are that one works with the ciphertext v = ¢1]] ... ||c; instead of the
message p while xoring with the stream and that the supplied tag value 7 is
compared to the one computed by the algorithm. We want to stress that only if
the tag is correct the decrypted message is returned.

2.2 Security assumptions and claims

The security analysis of the algorithm starts from the following two assumptions.

Assumption 1 (Nonce-respecting adversary) A nonce value is only used
once with the same master key for encryption.

This assumption is quite common among nonce-based designs. Note that on most
platforms, this assumption can be easily satisfied by implementing the nonce as
a counter.

Assumption 2 (Abort on verification failure) If the verification step of the
algorithm reveals that the ciphertext has been tampered with, then the algorithm
returns no information beyond the verification failure. In particular, no plaintext
blocks are returned.

This assumption significantly reduces the impact of chosen-ciphertext attacks,
since the adversary obtains very little information from a chosen-ciphertext
query. We feel that this assumption is quite natural for authenticated encryp-
tion modes. After all, when the verification fails, we know that the integrity of
the plaintext has been jeopardised, and there is no reason to output it. The
assumption does, however, exclude implementations where decryption is done
in a streaming mode, since all plaintext blocks need to be kept inside until the
verification has completed successfully.

Under these assumptions, the security claims for the algorithm are as follows.

Claim 1 (Resistance against state recovery) Any internal state recovery
with complexity equivalent to processing N data blocks has a success probabil-
ity at most N27128,

Claim 2 (Resistance against key recovery) Any key recovery with complex-
ity equivalent to processing N data blocks has a success probability at most
N27128 even if the internal state has been recovered.

Claim 3 (Resistance against forgery w/o state recovery) Any forgery at-
tack not involving key recovery/internal state recovery has a success probability
at most 27128,

2.3 Properties

Here we list some of ALE’s merits in terms of implementation. Since ALE is
based on similar design principles as Pelican MAC and LEX, it also shares many
strong properties of these two designs.

— Security analysis benefits from existing analysis on AES as well as Pelican
MAC and LEX.

— AES hardware/software implementations might be reused with only a few
simple modifications, including the usage of Intel AES instructions.

— Side-channel attack countermeasures developed for the AES will be useful
for ALE as well, including threshold implementations in hardware to thwart
first-order power- and EM-based differential attacks and bitsliced implemen-
tations to mitigate cache-timing leakage.

— For long messages, ALE needs only about 4 AES rounds to both encrypt and
authenticate a block of message, which is similar to ASC-1. However, about
10 AES rounds are needed by AES-OCB and 20 AES rounds are required
by AES-CCM to process a data block.

— The overhead of ALE per message amounts to 3 AES calls. This is less than
the overhead of ASC-1 which is 4 AES calls but more than the overhead of
AES-OCB of 2 AES calls. AES-CCM has virtually no overhead but has an
excessive cost per block.

However, in terms of the number of AES rounds, AES-OCB becomes less ef-
ficient already for messages longer than 128 bits and ASC-1 is always inferior
to ALE. Note that AES-OCB contains a nonce stretching mechanism that
effectively saves one AES call overhead if multiple messages are encrypted
with the same key and with adjacent counter values as nonces. However, im-
plementing this mechanism in lightweight hardware requires an additional
128-bit state which increases the area requirement by another 700-800 GE.

— Only two 128-bit states are needed by ALE to implement encryption, which
makes it lightweight-friendly. At the same time, 4 states needed for AES-OCB
and ASC-1. AES-CCM requires 3 states. In fact, 2 states needed by ALE
are even less than the encryption-only AES-CTR occupies, where some space
needs to be allocated for the counter.

— Only the AES encryption engine is needed by ALE for both the encryp-
tion/authentication and decryption/verification procedures. AES-OCB re-
quires both encryption and decryption engines for supporting those opera-
tions.

— ALE is an online scheme meaning it is single-pass and does not have to know
message length before the last message block is input. AES-CCM is off-line.
Additionally AES-CCM is two-pass. AES-OCB and ASC-1 are also online
schema.

— ALE accepts associated data while ASC-1 does not. AES-CCM and AES-OCB
can both work with associated data. AES-OCB is additionally capable of ac-
cepting static associated data (which does not require any recomputation for
a new nomnce).

3 Security analysis

Since ALE combines some ideas of Pelican MAC [14] and LEX [] it benefits
from existing security analysis. In the following, we briefly recall existing security
analysis on these two primitives and discuss their relevance to ALE with respect
to its Claims 1,2 and 3.

3.1 Forgery without State Recovery

Like any MAC derived from the ALRED construction [I5] also Pelican MAC
enjoys some level of provable security. It is shown that, in the absence of internal
collisions, the security of the construction can be reduced to the security of the n-
bit underlying block cipher [15, Theorem 1, Theorem 2]. In other words, Pelican
cannot be broken with less than 2"/2 queries unless the adversary also breaks
the block cipher itself. However, the security proofs of Pelican MAC rely on
the fact that the iteration function is unkeyed. Therefore, they don’t carry over

to ALE. PC-MAC is another MAC function derived from the original design
[34]. PC-MAC uses a keyed iteration function and has a proof of security in the
indistinguishibility framework.

For the Pelican MAC two approaches to exploit knowledge of the (unkeyed)
iteration function are described by the designers to generate internal collisions
and hence forgeries.

Fixed points. Since the iteration function is known in Pelican MAC, one may
compute the number of state values that are resulting in fixed points for a given
message block m;. Assume the number of fixed points is x, then the probability
that inserting the message block m; in a message will not impact its tag and
hence result in a forgery is - 27".

However, if the iteration function can be modeled as a random permutation,
then the number of fixed points has a Poisson distribution and is expected to
be small [I5]. Moreover, in ALE the iteration function is keyed with a nonce
dependent session key. Since this key changes for every iteration function, one
needs a fixed point in both the key state and data state rendering the attack
inefficient.

Extinguishing differentials. Extinguishing differentials are very similar to
differential cryptanalysis for block ciphers. The main idea is to find pairs of
messages (or in our case also ciphertexts) with a certain difference that may
result in a zero difference in the state with a high probability after the difference
has been injected.

However, in the case of Pelican MAC the iteration function consists of 4
rounds of Rijndael implementing the wide trail design strategy [13], which allows
to prove good bounds against differential attacks. In more detail, any differential
characteristic spanning over 4 rounds has at least 25 active S-boxes resulting in
an upper bound for the differential probability of 2719, Moreover, the differential
probability of any differential can be upper bounded by 2714 [27]. Note that
this is not far away from the theoretically optimal bound of 2 - 27128, In other
words, Pelican MAC and hence also ALE provides good upper bounds for the
probability of extinguishing differentials.

Moreover, we want to note that in ALE the iteration function is keyed with a
nonce dependent session key, which is changed for every encryption/authentication
procedure, complicating the application of differential cryptanalysis to ALE,
since an attacker also needs to predict the differences in the session key. Howev-
er, since this session key is generated by encrypting the nonce with the master
key using 10 rounds of AES, this seems to be a very difficult task.

3.2 State Recovery

All published attacks [ITJT9/40] on Pelican MAC so far are forgery attacks mak-
ing use of (generic) internal collisions on the internal state. Note that due to
the small state size of Pelican MAC of 128 bits, internal collisions can be found

with complexity of 264 due to the birthday paradox. However, in ALE a nonce
dependent session key is used making it difficult to detect internal collisions on
the state unless the session key collides as well, basically doubling the internal
state size and giving some reinsurance in the design.

Most attacks on LEX published so far use the fact that LEX uses the same
round keys repeatedly. For instance the main idea of the key-recovery attack in
[11UT8] is to find a pair of internal states after different numbers of encryptions
that partially collides after 4 rounds. Since the round keys are reused in LEX,
the adversary can easily locate two states that collide in the part of the state
which contains the round key. Hence, the complexity of a brute-force search for
(partial) internal collisions is determined by the size of the part of the state that
contains the ciphertext, i.e. 128 bits.

In ALE however, the round keys are not reused. Hence, the complexity of
a brute-force search for (partial) internal collisions is determined by the size
of the full internal state, i.e. 256 bits. It follows that finding (partial) internal
collisions becomes more difficult rendering the attack infeasible. Note that even
if the attack would be applicable, it might only be used to recover the internal
state, but not the master key.

If Assumption [1]is not satisfied, i.e. if nonce values are used repeatedly, then
the round keys are repeated. In that case, the attacks on Pelican and LEX can be
extended and applied to ALE. Because ALE combines injection and extraction,
the attacks become more powerful, and security is lost.

3.3 Key-Recovery

To recover the master key x in ALE an attacker needs to break the initialization
of ALE. However, even though assuming that the full internal sate after the
initialization is known to the attacker, he still needs to break full (10 rounds) of
AES to recover the master key.

3.4 Additional Security Analysis

Distinguishing attacks. The encryption component of ALFE is inspired by the
stream cipher LEX. The keystream bits in LEX are generated by extracting 32
bits from each round of AES in the OFB mode. In [22], Englund et al. describe
a distinguishing attack that is applicable to block ciphers in the OFB mode in
general. To be more precise, whenever the part of the state that depends on both
the key and the IV is smaller than twice the key size (as it is the case for instance
in LEX) the attack theoretically succeeds. However, in LEX the attack is thwart
by limiting the number of keystream bits that can generated from one master
key. In ALE we have a similar restriction but more important the internal state
is larger due to the session key (depending on the nonce and the master key)
used to key the iteration function.

Slide attack. A slide attack for an earlier version of LEX has been found
by Wu and Preneel in [39] and fixed later by Biryukov in a new version of
LEX. To avoid slide attacks two different functions for the initialization and the
encryption/authentication should be used. Even a very small difference between
the two is sufficient. For instance, the new version of LEX uses the full AES with
the XOR of the last subkey for the initialization and AES without the XOR, of
this subkey for the encryption.

However, ALE uses the full AES (10 rounds without the application of Mix-
Columns in the last round) in the initialization, but only 4 rounds of AES for
the encryption/authentication. We think that this is sufficient to break the sim-
ilarities used by slide attacks.

4 Lightweight ASIC hardware implementation

This section presents a lightweight ASIC hardware implementation of ALE, and
compares it to the existing authentication encryption schemes such as AES-OCB,
AES-CCM and ASC-1. In this section, we did not include the results obtained
with AES-GCM as this schema is not particularly suitable for low cost hardware.
In fact, it requires an extra module for implementing the Galois field multipli-
cation which, additionally, has to be invoked several times.

—

State | Key
Array | Array

Control
Unit

c

Input 5
p Datapath

output /o \
Ar——— N

4 bytes from 1 Byte ', Key

/ State Array | From Arrays

Mix Canright
Column S-Box

Selector

| Datapath

| Data
' data sianal ! To Arrays

Fig. 4. The lightweight implementation of ALE

4.1 Hardware architecture

ALE was implemented targeting the lowest ASIC area occupation possible. For
this reason, our hardware architecture is based on the most compact AES imple-
mentation published so far [35]. The original AES implementation has a mixed
data-path: it instantiate a single S-box following the proposal of Canright [12]
but performs the MixColumn on all the 32 bit in parallel.

The overall design is depicted in Figure[dl The base AES design was extended
to support our authenticated encryption proposal. A more complex control unit
was developed to handle the padding, the initialization and finalization, the
LEX-type leak, and the xor of the state with the input message. Also, a number
of multiplexers where added to the architecture to correctly select the inputs of
the AES accelerator. Our implementation requires to load two times the key and
one time the nonce and the null vector. The nonce is loaded in the first execution
of AES, while the null vector is loaded in the second. The key is loaded once
during the first execution of the AES and once during the last execution of AES.
Also, the input and output values should be maintained in the respective wires
and synchronized with the operations of the accelerator on order to correctly
perform the additions with the message and the additional data.

4.2 Comparison

We implemented all the designs having the same design goals and using the same
lightweight AES engine in their core. All the considered schemes were described
in VHDL and then synthesized using the tool Synopsys design compiler 2009.06.
We performed a number of synthesis targeting different technologies (90nm,
65nm, and 45nm), frequencies, and optimization parameters of the synthesis
tool.

Table [I| summarizes the implementation numbers (including area and tim-
ing) of ALE as compared to the reference designs. These results were obtained
setting the clock frequency to 20 MHz and using the STMicroelectronics 65nm
CMOS technology and the corresponding standard cell library characterized for
LP-HVT (low power high Vt) process. This technology was the one which ex-
hibits the best trade off between area and power consumption, thus the one
which resulted more suitable for lightweight applications. The clock frequency
was set to 20 MHz as usually, in low-cost hardware applications, the speed con-
strain is very relazed (contrary to the area and power consumption). However,
during the whole set of experiments, we successfully synthesized our designs with
a clock frequency of up to 200 MHz.

As we were targetting low-cost hardware, we also report clocks per byte and
provide a graph for different message lengths in Table 2] and Figure[5} The cycle
count does not consider the overhead for loading and offloading of the data. As
indication, Table |1 reports also the power consumption of each algorithm. The
estimation was carried out with Synopsys power compiler 2009.06, using the
standard tool parameters for the switching activity.

Table 1. Lightweight ASIC implementation numbers for ALE compared to
AES-OCB2, AES-CCM and ASC-1. Overhead indicates the number of cycles
needed for the initial setup and the finalization of the authenticated encryption.
The net per block provides the number of clock cycles required to process each
block of data, on top of the overhead per message. The designs marked with ’e/d’
incorporate both encryption/authentication and decryption/verification func-
tionalities.

Design Area ||Net per 128-bit block|Overhead per message|Power
(GE) (clock cycles) (clock cycles) (uW)
[AES-ECB [2,435]] 226 \ - [87.84]
AES-OCB2 4,612 226 452 171.23
AES-OCB2 e/d|| 5,916 226 452 211.01
ASC-1 A 4,793 370 904 169.11
ASC-1 A e/d 4,964 370 904 193.71
ASC-1 B 5,517 235 904 199.02
ASC-1 B e/d 5,632 235 904 207.13
AES-CCM 3,472 452 - 128.31
AES-CCM e/d || 3,765 452 - 162.15
ALE 2,579 105 678 94.87
ALE e/d 2,700 105 678 102.32

ALE occupies 2,581 GE, and requires 783 clock cycles to authenticate and
encrypt one block of 128 bits. This cycle count includes the overhead of 678
cycles, which is caused by the three invocation of the AES algorithm needed for
initialization and finalization. Thus, only 105 clock cycles are needed to process
each further 128-bit block of data.

As comparison, we report in Table [l| also the performances of the AES
core used as starting point (AES-ECB) of our implementation and the ones
of AES-OCB, ASC-1, and AES-CCM authentication encryption schema. All the
algorithms were implemented using the same lightweight AES engine [35] and
the same experimental setup as ALE.

In its most compact implementation, ASC-1 is especially slow due to its
complex non-serial key schedule which has a high overhead (for instance, one
has to know the 11th key of the AES-256 expanded key to compute the first
round and the first key again to compute the 5th round) which makes backward
and forward computations necessary. This implementation is given in Table 1| as
ASC-1 A. However, The key schedule overhead can be reduced if an additional
128-bit register is introduced. This implementation is given referred to as ASC-1
B in the table.

It can be observed that the overhead for the support of both the encryp-
tion/authentication and decryption/verification functionalities (those implemen-
tations are marked as ’e/d’ in Table [1)) is fairly small for ALE and ASC-1. At
the same time, since AES-OCB additionally requires an AES decryption engine
for decryption, the overhead is much more significant there.

ALE occupies an area which is approximately two times lower than those
of AES-OCB and ASC-1, while providing an overall speed at least two times
higher, being particularly suitable for lightweight applications. ALE also nicely
compares with the results reported in literature for Hummingbird-2 [21], which
in its smallest version has an area of approximately 2,159 (estimated using a
different technological library), and Grain-128a with authentication [2] which
occupies approximately 2,770 gates (estimated by the designers).

Table 2. Lightweight ASIC implementation numbers for ALE compared to AES-
OCB2, AES-CCM and ASC-1 (in clocks per byte)

message length (bytes)
Algorithm 16 32 64 128 256 512 1024 2048 4096 8192

ECB 14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12
OCB2 42.38 28.25 21.19 17.66 15.89 15.01 14.57 14.35 14.24 14.18
ASC-1 A 79.62 51.38 37.25 30.19 26.66 24.89 24.01 23.57 23.35 23.24
ASC-1B 71.19 4294 28.81 21.75 18.22 16.45 15.57 15.13 14.91 14.80
CCM 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25
ALE 48.93 27.75 17.15 11.85 9.21 7.88 6.20 689 6.72 6.64

80

70 | ASC-1B —8— 4

60 [1

40 —

speed (cycles per byte)

30 1

20 [1

0 L L
10 100 1000 10000

message length (bytes)

Fig. 5. Hardware performance of ALE with respect to other AES-based authen-
ticated encryption schemes for different message lengths in lightweight ASIC
implementations

5 High-Performance Software Implementation

In this section, we evaluate the software performance of ALE and compare it
to other authenticated encryption schemes based on the AES. We propose such
evaluation because, as pointed out by Matsuda and Moriai [32], lightweight al-
gorithms will be used in the sensors which will populate the internet of things.
After the collection, the data will be forwarded to the servers of the cloud, where
the same algorithm, this time implemented to achieve high performances, will
be used for decryption.

5.1 The Setting

First, we need to establish a common setting for the performance evaluation
of all algorithms in order to have a fair platform for comparison. We base our
scenario on the following assumptions.

Message lengths. In most communication protocols, typical messages are rel-
atively short, rarely exceeding 1024 bytes [33]. It is therefore of great impor-
tance to include initialisation overhead and take measurements for messages
consisting of only one or a few blocks. At the same time, performance usu-
ally starts to saturate with messages of two or four kilobytes. We therefore
provide data for 16 - 2° bytes, with 0 < b < 10. Furthermore, we assume that
these 2° blocks encompass the already padded message.

Parallel processing of messages. The fact that most processed messages are
rather short suggests that many of them will typically be encrypted under the
same key, but with a different nonce. This implies that a high-performance
software implementation can benefit from processing multiple messages for
different nonces in parallel. Note that the processing of messages with several
different keys and different nonces can be parallelised in the same way.

AES-NI and pipelining. Since we deal with AES-based ciphers, high perfor-
mance software implementations means using the AES-NI instructions [23].
The most critical factor in achieving good performance with AES-NI is to
fully utilise the pipeline, which is 8 cycles for the Sandy Bridge microarchi-
tecture, for which our implementations are optimised.

5.2 Implementation

According to this common scenario, we have implemented the following authen-
ticated encryption schemes: CCM, GCM and OCB3 with AES as the underlying
block cipher; ASC-1, and ALE. As a base line, we also include the unauthen-
ticated modes ECB and CTR. The used OCB3 implementation is the most
recent reference implementation from [37], the GCM implementation is the one
of OpenSSL v1.0.1c.

Those algorithms that are not inherently parallelisable (CCM and ALE)
were implemented following the paradigm of processing multiple messages with
different nonces in parallel, with CCM processing two independent messages in

parallel, and ALE four. ASC-1 was found not to benefit from this, since the
overhead introduced by its key schedule already requires storing key material in
cache memory due to the limited number of 128-bit registers. As an example, its
key scheduling requires the use of the 11th key already in the first round, and
the first key again in the 5th, and so forth. For OCB3, we include the overhead
introduced by calculating the initial key- and nonce-dependent values. However,
we do employ nonce-spreading to avoid the initial block cipher call most of the
time.

For the implementation of ALE, we only have four AES rounds per message
block instead of ten for the authenticated modes. However, this also means that
in order to fill the 8 pipeline stages, we would have to calculate 8 key schedule
updates. Using the native AESKEYGENASSIST instruction for this purpose
actually decreases the performance, since it not pipelined in the same way as
the AES round functions.

With four messages processed in parallel, we can however avoid using AESKEY-
GENASSIST by using AESENCLAST for the S-box step for the four AES keys,
and doing the key schedule’s LFSR manually, but in parallel on 128 bits. This
implies that we can at most issue 5 AES round instructions every 8 cycles. See
the pseudocode below:

loop:
... combine 4%*32 bits from keyl, ..., key4 in keyblock
aesenclast keyblock, O
aesenc statel, keyl
aesenc state2, key2
aesenc state3, key3
aesenc state4, key4
... LEX leaks
... inverse ShiftRows on keyblock
... spread keyblock to keyl, ..., key4
... key schedule LFSR parallel on keyl, ..., key4
goto loop

We also note that in a serial (as opposed to high-performance) implementa-
tion, ALE has the distinct advantage over OCB3 by only requiring 4 AES round
plus key scheduling per block, in contrast to full 10 AES rounds.

5.3 Results

All measurements were taken on a single core of an Intel Core i5-2400 CPU at
3100 MHz, and averaged over 100000 repetitions. Our findings are summarised
in Table [3] and illustrated in Figure [6]

One can see that while the initialisation overhead generally has a huge im-
pact on the performance, this effect starts to fade out already at messages of
around 256-512 bytes. Due to the parallel processing used for CCM, it almost ties
with GCM for medium-size and larger messages. OCB3 achieves nearly optimal
performance starting from 512 byte message length due to its parallelisability
which enables it to fully utilise the eight pipeline stages and compensates for its

Table 3. Software performance of authenticated encryption schemes based on
the AES. The platform is Intel Sandy Bridge (AES-NI). All numbers are given in
cycles per byte (cpb). A star (*) indicates that this implementation is processing
multiple messages in parallel (for inherently serial algorithms for which this
results in a performance increase).

message length (bytes)

Algorithm 128 256 512 1024 2048 4096 8192
ECB 1.53 1.16 0.93 0.81 0.75 0.72 0.71
CTR 1.61 1.22 099 0.87 0.80 0.77 0.76
CcCM* 3.97 349 331 3.22 3.18 3.15 3.15
GCM 4.95 3.88 3.33 3.06 293 290 289
OCB3 269 1.79 134 1.12 1.00 0.88 0.86

ASC-1 7.74 480 3.69 2.88 278 264 261
ALE" 3.55 234 1.74 144 131 123 1.19

speed (cycles per byte)
IS
T

1000
message length (bytes)

10000

Fig. 6. Software performance of AES-based authenticated encryption schemes
for different message lengths on Intel Sandy Bridge (AES-NI).

initialisation overhead. ASC-1 generally performs slower, mostly due to its non-
sequential use of the AES-256 key schedule which requires additional storage of
key material, exceeding the available 128-bit registers.

The experimental findings can be summarised as follows: When implemented
for multiple message processing, ALE provides software performance quite close
to OCB3-AES, and significantly better performance than CCM, GCM or ASC-1.
In [33], McGrew estimates that for high-speed data links, authenticated encryp-
tion with a throughput of up to 100 GBit/s would be desirable. In view of the
results of [3], AES-NT instructions benefit from a practically linear speed-up on
multiple cores. At the moment, standard Sandy Bridge desktop processors are
available with 6 cores at a frequency of 3.1 GHz. For messages of 1KB length,
this implies a throughput of 103.3 GBit/s with ALE, and 132.8 GBit/s with
OCB3. This means that the above-mentioned performance requirement can be
fulfilled with either ALE or OCB3 using only one standard desktop CPU, with
ALE having the advantage of not being patented.

6 Conclusion

In this paper, we have proposed ALE — a new Authenticated Lightweight Encryp-
tion algorithm based on AES. It is a single-pass nonce-based online scheme that
combines some ideas of Pelican MAC, LEX and ASC-1 in a highly lightweight
manner. ALE is about half the size of ASC-1 and in terms of speed in the
lightweight implementation, it is about 4.5 times faster than ASC-1 in its small-
est implementation.

By requiring only 2.5 kGE of area in lightweight ASIC hardware ALE is
actually significantly smaller than most other authentication encryption modes
including the popular modes AES-OCB and AES-CCM. In terms of speed in the
lightweight implementation, ALE is about 2.5 times faster than AES-OCB and
about 5 times faster than AES-CCM. When using the parallel AES-NT instruc-
tions, ALE outperforms AES-GCM, AES-CCM and ASC-1 by a considerable
margin, providing a throughput close to that of AES-OCB, which is a patented
scheme.

Acknowledgments. The authors thank Axel Poschmann for providing the
reference implementation of the AES algorithm. Part of this work was done while
Andrey Bogdanov and Florian Mendel were with KU Leuven. The work has been
supported in part by the Austrian Science Fund (FWF), project TRP 251-N23
and by the Research Fund KU Leuven, OT/08/027.

References

1. ISO/IEC 19772:2009. Information Technology - Security techniques - Authenticat-
ed Encryption (2009)

2. Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. IJWMC 5(1), 48-59 (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Akdemir, K., Dixon, M., Feghali, W., Fay, P., Gopal, V., Guilford, J., Erdinc Oz-
turk, G.W., Zohar, R.: Breakthrough AES Performance with Intel AES New In-
structions. Intel white paper (January 2010)

Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight
Hash. In: Mangard, S., Standaert, F.X. (eds.) CHES. LNCS, vol. 6225, pp. 1-15.
Springer (2010)

Babbage, S., Dodd, M.: The MICKEY Stream Ciphers. In: Robshaw, M.J.B., Bil-
let, O. (eds.) The eSTREAM Finalists, LNCS, vol. 4986, pp. 191-209. Springer
(2008)

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT. LNCS, vol. 4965,
pp. 181-197. Springer (2008)

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference. Sub-
mission to NIST (Round 3) (January 2011), http://keccak.noekeon.org
Biryukov, A.: Design of a New Stream Cipher-LEX. In: Robshaw, M.J.B., Billet,
0. (eds.) The eSTREAM Finalists, LNCS, vol. 4986, pp. 48-56. Springer (2008)
Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
Spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES.
LNCS, vol. 6917, pp. 312-325. Springer (2011)

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.:. PRESENT: An Ultra-Lightweight Block Ci-
pher. In: Paillier, P., Verbauwhede, I. (eds.) CHES. LNCS, vol. 4727, pp. 450—466.
Springer (2007)

Bouillaguet, C., Derbez, P., Fouque, P.A.: Automatic Search of Attacks on Round-
Reduced AES and Applications. In: Rogaway, P. (ed.) CRYPTO. LNCS, vol. 6841,
pp. 169-187. Springer (2011)

Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES. LNCS, vol. 3659, pp. 441-455. Springer (2005)

Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) IMA
Int. Conf. LNCS, vol. 2260, pp. 222-238. Springer (2001)

Daemen, J., Rijmen, V.: The Pelican MAC Function. Cryptology ePrint Archive,
Report 2005/088 (2005)

Daemen, J., Rijmen, V.: Refinements of the ALRED construction and MAC secu-
rity claims. Information Security, IET 4(3), 149-157 (September 2010)

De Canniere, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES. LNCS, vol. 5747, pp. 272-288. Springer (2009)

De Canniere, C., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) The
eSTREAM Finalists, LNCS, vol. 4986, pp. 244-266. Springer (2008)

Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT. LNCS, vol. 5350, pp. 441-454.
Springer (2008)

Dunkelman, O., Keller, N., Shamir, A.: ALRED Blues: New Attacks on AES-Based
MAC’s. Cryptology ePrint Archive, Report 2011/095 (2011)

Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. NIST Special Publication 800-38D (2001)

Engels, D.W., Saarinen, M.J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec. LNCS, vol. 7055, pp. 19-31. Springer (2011)

Englund, H., Hell, M., Johansson, T.: A note on distinguishing attacks (2007)

http://keccak.noekeon.org

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel
white paper (January 2010)

Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO. LNCS, vol. 6841, pp. 222-239. Springer
2011

%—Iell7)M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream
Ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) The eSTREAM Finalists, LNCS,
vol. 4986, pp. 179-190. Springer (2008)

Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES. LNCS, vol. 4249,
pp. 46-59. Springer (2006)

Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D.H., Cho, I.: Provable Security against
Differential and Linear Cryptanalysis for the SPN Structure. In: Schneier, B. (ed.)
FSE. LNCS, vol. 1978, pp. 273-283. Springer (2000)

Jakimoski, G., Khajuria, S.: ASC-1: An Authenticated Encryption Stream Cipher.
In: Miri, A., Vaudenay, S. (eds.) Selected Areas in Cryptography. LNCS, vol. 7118,
pp. 356-372. Springer (2011)

Kavun, E.B., Yalgin, T.: A Lightweight Implementation of Keccak Hash Function
for Radio-Frequency Identification Applications. In: Yalcin, S.B.O. (ed.) RFIDSec.
LNCS, vol. 6370, pp. 258-269. Springer (2010)

Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE. LNCS, vol. 4593, pp. 196-210. Springer (2007)
Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA.
LNCS, vol. 3786, pp. 243-258. Springer (2005)

Matsuda, S., Moriai, S.: Lightweight Cryptography for the Cloud: Exploit the Pow-
er of Bitslice Implementation. In: Prouff, E., Schaumont, P. (eds.) CHES. LNCS,
vol. 7428, pp. 408-425. Springer (2012)

McGrew, D.: Authenticated Encryption in Practice. DIAC — Directions in Au-
thenticated Ciphers (July 2012)

Minematsu, K., Tsunoo, Y.: Provably Secure MACs from Differentially-Uniform
Permutations and AES-Based Implementations. In: Robshaw, M.J.B. (ed.) FSE.
LNCS, vol. 4047, pp. 226-241. Springer (2006)

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT. LNCS, vol. 6632, pp. 69-88. Springer (2011)

Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) Computer and Communications Security. pp. 196-205. ACM (2001)
Rogaway, P., Krovetz, T.: OCB Latest Code and News. Available at http://wuw.
cs.ucdavis.edu/~rogaway/ocb/news/

Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer,
J., Posegga, J., Schreckling, D. (eds.) CARDIS. LNCS, vol. 3928, pp. 222-236.
Springer (2006)

Wu, H., Preneel, B.: Cryptanalysis of the Stream Cipher DECIM. In: Robshaw,
M.J.B. (ed.) FSE. LNCS, vol. 4047, pp. 30-40. Springer (2006)

Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New Birthday Attacks on Some
MACs Based on Block Ciphers. In: Halevi, S. (ed.) CRYPTO. LNCS, vol. 5677,
pp- 209-230. Springer (2009)

http://www.cs.ucdavis.edu/~rogaway/ocb/news/
http://www.cs.ucdavis.edu/~rogaway/ocb/news/

	ALE: AES-Based Lightweight Authenticated Encryption
	 Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and Elmar Tischhauser

