
Higher-Order Side Channel Security and Mask
Refreshing

Jean-Sébastien Coron1, Emmanuel Prouff2, Matthieu Rivain3, and
Thomas Roche2

1 Tranef, France
jscoron@tranef.com

2 ANSSI, Fance
emmanuel.prouff@ssi.gouv.fr

thomas.roche@ssi.gouv.fr
3 CryptoExperts, France

matthieu.rivain@cryptoexperts.com

Abstract. Masking is a widely used countermeasure to protect block
cipher implementations against side-channel attacks. The principle is to
split every sensitive intermediate variable occurring in the computation
into d + 1 shares, where d is called the masking order and plays the
role of a security parameter. A masked implementation is then said to
achieve dth-order security if any set of d (or less) intermediate variables
does not reveal key-dependent information. At CHES 2010, Rivain and
Prouff have proposed a higher-order masking scheme for AES that works
for any arbitrary order d. This scheme, and its subsequent extensions,
are based on an improved version of the shared multiplication processing
published by Ishai et al. at CRYPTO 2003. This improvement enables
better memory/timing performances but its security relies on the refresh-
ing of the masks at some points in the algorithm. In this paper, we show
that the method proposed at CHES 2010 to do such mask refreshing
introduces a security flaw in the overall masking scheme. Specifically, we
show that it is vulnerable to an attack of order dd/2e + 1 whereas the
scheme is supposed to achieve dth-order security. After exhibiting and
analyzing the flaw, we propose a new solution which avoids the use of
mask refreshing, and we prove its security. We also provide some imple-
mentation trick that makes our proposed solution, not only secure, but
also faster than the original scheme.

1 Introduction

In the late nineties, attacks called Side Channel Analysis (SCA for short) have
been exhibited against cryptosystems implemented in embedded devices. Since
the seminal works [7, 8], they have been refined and, in particular, the initial
principle has been generalized in order to exploit several leakage points simul-
taneously. This led to the introduction of the higher-order SCA concept. Those
attacks are based on leakage observations resulting from the handling of several
(say d) intermediate variables during the cryptosystem processing. One way to

make them ineffective is to randomize the algorithm such that the probabil-
ity distribution of any vector of less than d observations is independent of the
key. To perform this randomization, a standard technique is to apply Boolean
masking [2]. It consists in replacing the manipulation of every secret-dependent
intermediate variable x (called sensitive variable) by that of d+ 1 shares x0, . . . ,
xd satisfying x0 ⊕ x1 ⊕ · · · ⊕ xd = x. Usually, the d shares x1, . . . , xd (called the
masks) are randomly picked up and the last one x0 (called the masked variable)
is processed such that it satisfies the previous equality. When d random masks
are involved per sensitive variable, the masking is said to be of order d and every
d-tuple of intermediate variables of the computation is statistically independent
of any sensitive variable. In fact, only attacks exploiting the leakages related
to d+ 1 intermediate variables may succeed in retrieving sensitive information.
Since the efficiency of such an attack becomes impractical as d increases [2], the
masking order is usually considered as a sound criterion to refer to the robustness
against SCA.

When applying the principle of masking to secure a block cipher implemen-
tation, a so-called masking scheme must be designed to operate on the masks
and the masked data. It must ensure that the final shares enable the recovery of
the expected ciphertext, while satisfying the dth-order security property for the
chosen order d. When satisfied, the latter property guarantees that no attack
of order lower than or equal to d is possible. The main difficulty in designing a
Boolean masking scheme lies in masking the non-linear parts of the cipher, the
so-called s-boxes.

The first scheme achieving dth-order security for an arbitrary chosen d has
been designed by Ishai, Sahai and Wagner in [5]. The here called ISW scheme
consists in masking the Boolean representation of an algorithm which is com-
posed of logical operations NOT and AND. Securing a NOT for any order d is
straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0)⊕ x1 · · · ⊕ xd. The

main contribution of [5] is a method to secure the AND operation for any arbi-
trary order d (the description of this scheme is recalled in Section 2). A direct
application of ISW scheme to secure an s-box in software would consist in taking
the Boolean representation of the s-box and to process every logical operation
successively in a masked way. Since the Boolean representation of common s-
boxes involves a huge number of logical operations, a direct application of [5] is
often not possible in practice. A solution to deal with this efficiency issue has
first been proposed by Rivain and Prouff in [10] for the AES (it will be called
RP Scheme in the sequel), and then extended to any block cipher by Carlet et
al. in [1]. Those works start from the observation that the ISW scheme can be
extended to secure a multiplication over any finite field. The core idea is then to
represent the s-box to protect as a polynomial function over a finite field and to
secure the polynomial evaluation thanks to the ISW scheme.

Since the processing of affine transformations is performed by operating on
each share separately, proving its dth-order security is straightforward as noticed
in [5] and [10]. Actually, only the secure processing of the multiplication a×b from
the sharings (a0, a1, · · · , ad) and (b0, b1, · · · , bd) is challenging. In [5], the ISW

scheme is shown to be secure at the order d/2, meaning that a dth-order security
is obtained from a masking of order 2d. As the complexity of ISW is quadratic in
the number of shares, such a doubling of the masking order makes the resulting
implementation roughly 4 times slower. To avoid such a penalty, the authors
of [10] additionally assume that the multiplication operands sharings involve
mutually independent random masks and they prove that ISW scheme is actually
dth-order secure under the latter condition.4 To satisfy this independence when
a multiplication of the form a × g(a) occurs in a secure s-box processing, with
g being a linear function, the authors of [10] suggest to refresh the mask of
g(a) before performing the secure multiplication a × g(a). To do so, they use a
so-called mask-refreshing procedure which from the sharing of g(a), computes a
new sharing of with fresh random values. Such a procedure is mandatory in [10]
as well as in the subsequent schemes [1,6] to deduce the dth-order security of the
whole s-box processing from that of the secure multiplications.

Our Contribution. In this paper, we show that the actual proposal of mask-
refreshing procedure in [10] fails in reaching its goal and introduces a security
flaw in the overall masking scheme. In fact, even if both the mask-refreshing
procedure and the ISW multiplication are secure at order d, their composition is
insecure and it is defeated by an attack of order dd/2e+ 1. After exhibiting and
analyzing the flaw, we propose a secure solution which avoids the use of mask
refreshing, and we prove its dth-order security. Our solution consists in adapting
ISW scheme to directly process, from a sharing of a, the multiplications of the
form a×g(a) with g being a linear function. We also provide an improvement that
allows to avoid costly multiplications over F2n in this context. As a consequence,
the resulting shared multiplication for a× g(a) is not only secure but also more
efficient than the original scheme proposed in [10].

Paper Organisation. In Section 2, we recall the ISW scheme and the existing
solutions to mask a full s-box computation at any order d. The flaw from the
composition of the mask-refreshing procedure and the secure multiplication is
exhibited and analyzed in Section 3. Then, we describe our new algorithm and
prove its dth-order security in Section 4. Eventually, implementation results are
provided in Section 5 to report on the efficiency of our improved algorithm when
plugged in RP Scheme.

2 Higher-Order Masking Schemes for S-Boxes

This section presents the different schemes published in the literature to mask
an s-box processing at any order d. We first recall the ISW scheme [5] which is
the starting point of the different solutions. Then we detail the RP Scheme for

4 Specifically [10] requires that every 2d-tuple composed of d elements from (ai)i and
of d elements from (bi)i is uniformly distributed and independent of any sensitive
variable.

the AES s-box [10]. Eventually, we briefly recall the improvement proposed by
Kim et al. [6], and the extension put forward by Carlet et al. [1].

Ishai-Sahai-Wagner’s Scheme. Let a and b be binary values from F2 and let
(ai)06i6d and (bi)06i6d be dth-order sharings of a and b respectively. To securely
compute a sharing of c = a × b from (ai)i and (bi)i, the ISW method works as
follows:5

1. For every 0 6 i < j 6 d, pick up a random bit ri,j .
2. For every 0 6 i < j 6 d, compute rj,i = (ri,j ⊕ aibj)⊕ ajbi.
3. For every 0 6 i 6 d, compute ci = aibi ⊕

⊕
j 6=i ri,j .

It can be checked that the obtained shares form a sound encoding of c. Namely,
we have:

⊕d
i=0 ci =

(⊕d
i=0 ai

)(⊕d
i=0 bi

)
= ab = c. In [5] it is moreover shown

that the above computation achieves security at order d/2.

Rivain and Prouff’s Scheme. In [10], the authors proposed to use the ISW
scheme to secure a multiplication c = a × b over F2n for any n greater than
1. For completeness sake, we recall the obtained algorithm hereafter, where the
multiplication over F2n is denoted �.

Algorithm 1 SecMult

Input: shares ai satisfying
⊕

i ai = a, shares bi satisfying
⊕

i bi = b
Output: shares ci satisfying

⊕
i ci = a� b

1. for i = 0 to d do
2. for j = i+ 1 to d do
3. ri,j ←$ F2n

4. rj,i ← (ri,j ⊕ ai � bj)⊕ aj � bi
5. end for
6. end for
7. for i = 0 to d do
8. ci ← ai � bi
9. for j = 0 to d, j 6= i do ci ← ci ⊕ ri,j

10. end for
11. return (c0, c1, . . . , cd)

As shown in [10], for Algorithm 1 to be secure at order d, the masks (ai)i>1

and (bi)i>1 in input must be mutually independent. When this condition is not
satisfied, the authors suggest to refresh the masks of one of the operands prior to
the secure multiplication processing. For such a purpose, they suggest to apply
the following mask-refreshing procedure.

5 The use of brackets indicates the order in which the operations are performed, which
is mandatory for security of the scheme.

Algorithm 2 RefreshMasks

Input: shares (zi)i satisfying
⊕

i zi = z
Output: shares (z′i)i satisfying

⊕
i z

′
i = z

1. (z′0, z
′
1, . . . , z

′
d)← (z0, z1, . . . , zd)

2. for i = 1 to d do
3. ri ←$ F2n

4. z′0 ← z′0 ⊕ ri
5. z′i ← z′i ⊕ ri
6. end for
7. return (z′0, z

′
1, . . . , z

′
d)

In [10], Algorithms 1 and 2 are eventually involved to secure the whole ex-
ponentiation to the power 254 over F256 (that is the non-linear part of the AES
s-box). We recall the complete exponentiation algorithm hereafter:

Algorithm 3 SecExp254

Input: shares xi satisfying
⊕

i xi = x
Output: shares yi satisfying

⊕
i yi = x254

1. for i = 0 to d do zi ← x2i //
⊕

i zi = x2

2. (z0, z1, . . . , zd)← RefreshMasks(z0, z1, . . . , zd)
3. (y0, y1, . . . , yd)← SecMult

(
(x0, x1, . . . , xd), (z0, z1, . . . , zd)

)
//
⊕

i yi = x3

4. for i = 0 to d do wi ← y4i //
⊕

i wi = x12

5. (w0, w1, . . . , wd)← RefreshMasks(w0, w1, . . . , wd)
6. (y0, y1, . . . , yd)← SecMult

(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
//
⊕

i yi = x15

7. for i = 0 to d do yi ← y16i //
⊕

i yi = x240

8. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
//
⊕

i yi = x252

9. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (z0, z1, . . . , zd)

)
//
⊕

i yi = x254

Kim-Hong-Lim’s Improvement. In [6], Kim et al. propose an alternative
to Rivain-Prouff’s scheme based on the so-called tower-field representation of
the AES s-box from [11]. The exponentiation is performed by representing the
field F256 as a quadratic extension of F16. In such a way, the AES s-box can
be computed with 5 multiplications over F16 rather than 4 multiplications over
F256. Even if the number of field multiplications is greater than in the orginal
scheme, multiplications over F16 can be tabulated, which eventually leads to a
significant timing improvement.

Carlet-Goubin-Prouff-Quisquater-Rivain’s Scheme. In [1], Carlet et al.
extend [10] to design a higher-order masking scheme for any nonlinear func-
tion from {0, 1}n to {0, 1}m with m 6 n and n small (typically n ∈ {4, 6, 8}).
Their approach is to express such an s-box as a sequence of affine functions over
Fn
2 and multiplications over F2n . Such a strategy is always possible since any

function from {0, 1}n to {0, 1}m (with m 6 n) can be represented by a polyno-

mial
⊕2n−1

i=0 αix
i in F2n [x] and the αi can be obtained from the s-box look-up

table by applying Lagrange Interpolation Theorem. As for the secure exponen-
tiation (Algorithm 3), the secure evaluation algorithms proposed in [1] involve
a mask-refreshing procedure to change the sharing of some intermediate results
before applying the multiplication scheme. Once again, each sub-routine of the
evaluation procedure (affine transformation, multiplication processing and mask
refreshing) is provably dth-order secure and the security of the whole function
evaluation is essentially deduced from those local securities.

3 A Flaw from the Mask-Refreshing Procedure

Even though Algorithms 1 and 2 are both secure against dth-order SCA when
considered separately, we show hereafter that their sequential application, as
done in Steps 2-3 and Steps 5-6 of Algorithm 3, is not. Namely, we exhibit
a tuple of dd/2e+ 1 intermediate variables that jointly depend on the sensitive
input. Hence, for d > 1, this flaw invalidates the claim that the schemes proposed
in [1, 6, 10] achieve dth-order security.

To exhibit the flaw, we assume that the attacked s-box evaluation procedure
contains the following sequence:

(z0, z1, · · · , zd)← (g(x0), g(x1), . . . , g(xd)),

(z′0, z
′
1, · · · , z′d)← RefreshMasks((z0, z1, · · · , zd)),

(y0, y1, · · · , yd)← SecMult((x0, x1, · · · , xd), (z′0, z
′
1, · · · , z′d)),

with (xi)i, being a sharing of some sensitive variable x and with g being some
F2-linear function. Two examples of occurrence of this sequence can be found
in Algorithm 3: from Step 1 to Step 3 (with the function g corresponding to a
squaring over F256), and from Step 4 to Step 6 (with the function g corresponding
to a raising to the 4 over F256). The sequence above also occurs in the schemes
proposed in [1, 6]

For the sake of clarity, we only consider the case where d is even (in the
odd case an extra intermediate variable would be needed). The flaw arises from
a particular intermediate variable of the mask refreshing combined with d/2
intermediate variables of the multiplication. Namely, the targeted intermediate
variables are:

– the variable z′0 just after the fourth step during the (d/2)th iteration of the
loop in RefreshMasks (Algorithm 2), denoted `0 hereafter, and which satisfies

`0 = z0 ⊕
⊕d/2

i=1 ri
= z ⊕

⊕d
i=1 zi ⊕

⊕d/2
i=1 ri

= z ⊕
⊕d/2

i=1(zi ⊕ ri ⊕ zd/2+i)

= g(x)⊕
⊕d/2

i=1

(
g(xi)⊕ ri ⊕ g(xd/2+i)

)
,

(1)

– the product z′i�xj arising at Step 4 of SecMult (Algorithm 1 called on (xi)i
and (z′i)i) for every i ∈ {1, 2, . . . , d/2} and j = i+ d/2, denoted `i hereafter,
and which satisfies

`i = z′i � xd/2+i = (zi ⊕ ri)� xd/2+i = (g(xi)⊕ ri)� xd/2+i . (2)

In a nutshell, the intermediate variable `i = (g(xi)⊕ ri)� xd/2+i is statistically
dependent on the sum g(xi) ⊕ ri ⊕ g(xd/2+i) involved to mask z = g(x) in the
expression of `0 (see (1)). Therefore, the (d/2)-tuple (`i)i defined in (2) provides
information on the d/2 masks g(xi)⊕ ri⊕ g(xd/2+i) and this information can be
used to partially unmask `0. In other terms, the family of d/2 + 1 intermediate
variables `0, `1, . . . , `d/2 depends on the sensitive variable x.

In the context of side-channel attacks, the physical leakage of an implemen-
tation does not reveal the exact values of the intermediate variables but a noisy
function of them. That is why, and according to the methodology described
in [12], we analyze hereafter the quantity of information about x that an at-
tacker can expect to retrieve from noisy leakages on the `i, and we report the
results of some standard side-channel attack simulations in this context.

Information Theoretic Evaluation. To estimate the sensitive information
leakage corresponding to the identified flaw, we conduct hereafter an information
theoretic analysis for d = 2 (i.e. data are split in 3 shares). For comparison
purpose, we also conduct it for the sensitive information leakage corresponding
to a first-order and second-order Boolean masking. To this purpose we consider
that the leakage related to a variable manipulation corresponds to the Hamming
weight of the variable (denoted HW(·)) affected by an independent Gaussian
noise.

Let (Bi)i=1,2,3, denote three mutually independent random variables with
zero mean and standard deviation σ and let (Mi)i=1,2,3 be three mutually in-
dependent random variables with uniform distribution over F256. For the three
considered cases, we computed the mutual information I(X;L) between the tar-
geted sensitive variable X ∈ F256 and the vector of leakages L = (Li)i defined
as follows depending on the case:

1. For the flaw described in this paper with d = 2 and g being the squaring in
F256, we have L = (L1, L2) such that:

L1 = HW(X2 ⊕M2
1 ⊕M2

2 ⊕M3) +B1 ,
L2 = HW(M2 � (M2

1 ⊕M3)) +B2 .

2. For the classical third-order leakage on a second-order Boolean masking, we
have L = (L1, L2, L3) where

L1 = HW(X ⊕M1 ⊕M2) +B1 ,
L2 = HW(M1) +B2 ,
L3 = HW(M2) +B3 .

3. For the classical second-order leakage on a first-order Boolean masking, we
have L = (L1, L2) where

L1 = HW(X ⊕M1) +B1 ,
L2 = HW(M1) +B2 .

-6

-5

-4

-3

-2

-1

 0

 1

 0 1 2 3 4 5 6

l
o
g
1
0

(
I
M
)

Noise Standard Deviation

2O Bool.Mask. 2O Flaw
2O Bool.Mask. 3O Flaw
1O Bool.Mask. 2O Flaw

Fig. 1. Mutual information I(X;L) over an increasing σ.

The results are given in Figure 1. We see that, for d = 2 and g = (·)2, the
flaw described in this paper delivers only small information about the sensitive
variable. This can be explained by the algebraic complexity of the relation be-
tween the sensitive variable and the two leakages. However, the progression of
the information leakage as σ grows is comparable to that of the classical second-
order leakage. This means that the security of the flawed second-order masking
scheme tends towards the security of a first-order masking scheme as the amount
of noise increases.

Attack Simulations. We have analyzed above the information leakage result-
ing from the exhibited flaw in comparison to unflawed first-order masking and
second-order masking. However, we did not discuss the capacity of an attacker
to exploit this information leakage using classical side-channel attack techniques.
To fill this gap we applied two classical side-channel distinguishers on simulated
traces using the introduced leakage model for different values of noise standard
deviations. Specifically we launched a second-order Correlation Power Analy-
sis (CPA for short) and a second-order Mutual Information Analysis (MIA for
short). The second-order CPA was performed by means of the centered product

combining function and its associated optimal prediction function as described
in [9], whereas the second-order MIA used an histogram-based bivariate pdf esti-
mation [4]. None of these attacks reached a success rate greater than 20% when
applied on the exhibited second-order flaw for a number of leakage measure-
ments up to one million, even when the noise component was null (i.e. σ = 0).
These results show that although the information leakage is comparable to a
classical leakage of order dd/2e + 1 over an increasing noise, it seems difficult
to turn it into an efficient key-recovery using common side-channel attack tools.
It is however not excluded that a more powerful attacker using advanced side-
channel techniques (e.g. multivariate and/or profiling attacks) could properly
exploit the exhibited information leakage.

4 A Secure Solution

In the previous section we have exhibited a flaw of order dd/2e + 1 in the dth-
order masking scheme proposed in [10] (and its extensions [1,6]). This flaw arises
from the mask-refreshing procedure involved in the secure computation of the
multiplications of the form x� g(x) (where g is a linear function). Although the
resulting information leakage is small and seems difficult to exploit by standard
side-channel attack techniques, it is asymptotically stronger than the information
from a proper dth-order secure masking scheme. In order to avoid such a security
flaw, we propose in this section a new solution for the secure masked processing
of multiplications of the form x� g(x).

Let a and b be two sensitive variables such that b = g(a) for a F2-linear
function g. When such a relation stands for a and b in Algorithm 3, their corre-
sponding sharings (ai)i and (bi)i before the call to the mask-refreshing procedure
satisfy bi = g(ai) for every i ∈ [0; d]. By exploiting this property, the idea is to
modify the secure multiplication algorithm in such a way that the masks refresh-
ing is not longer needed.

Before introducing our solution, let us introduce the function f defined from
F2n × F2n to F2n by

f(x, y) = x� g(y)⊕ g(x)� y ,

where � denotes the multiplication over F2n . It can be checked that the F2-
linearity of g implies the F2-bilinearity of f . That is, for every x, y, r ∈ F2n , f
satisfies:

f(x, y) = f(x⊕ r, y)⊕ f(r, y) = f(x, y ⊕ r)⊕ f(x, r) . (3)

When bi equals g(ai) for every i, the value rj,i computed at Step 4 of the
ISW Scheme (Algorithm 1) satisfies:

rj,i = aibj ⊕ ajbi ⊕ ri,j = f(ai, aj)⊕ ri,j ,

where ri,j is a freshly generated random value. One can then compute rj,i by
evaluating f on (ai, aj) and by adding the random value ri,j . However, f(ai, aj)

cannot be directly computed since it would leak on two different shares of a
at the same time. To avoid such a leakage we use an additional fresh random
value, denoted r′i,j , to split the computation of f(ai, aj) into the computation of
f(ai, aj ⊕ r′i,j) and f(ai, r

′
i,j). That is, the variable rj,i is computed as:

rj,i =
(
ri,j ⊕ f(ai, r

′
i,j)
)
⊕ f(ai, aj ⊕ r′i,j) ,

where the brackets indicate the order in which the operations are processed. Do-
ing so, we avoid any joint leakage on ai and aj . We give hereafter the algorithmic
description of our solution.

Algorithm 4 Secure evaluation of h : x 7→ x� g(x)

Input: shares (ai)i such that
⊕

i ai = a
Output: shares ci satisfying

⊕
i ci = a� g(a) for some F2-linear function g

1. for i = 0 to d do
2. for j = i+ 1 to d do
3. ri,j ←$ F2n

4. r′i,j ←$ F2n

5. t← ri,j ⊕ ai � g(r′i,j)
6. t← t⊕ (r′i,j � g(ai)) // t = ri,j ⊕ f(ai, r

′
i,j)

7. t← t⊕ (ai � g(aj ⊕ r′i,j))
8. t← t⊕ ((aj ⊕ r′i,j)� g(ai)) // t = ri,j ⊕ f(ai, aj)
9. rj,i ← t

10. end for
11. end for
12. for i = 0 to d do
13. ci ← ai � g(ai)
14. for j = 0 to d, j 6= i do ci ← ci ⊕ ri,j
15. end for

In Algorithm 4, the computation of rj,i involves four additions and four
multiplications over F2n . When n is small enough (e.g. n = 4), the multiplication
over F2n can be tabulated in a look-up table with 22n n-bit elements. However for
greater values of n (e.g. n = 6, n = 8), the size of such a table becomes prohibitive
and other strategies must be considered to implement the multiplication. A
typical choice is to use so-called log/alog tables (see for instance [3]), but the
resulting multiplication is less efficient. We show hereafter how the bilinearity of
f can be exploited to prevent such an efficiency loss.

Let us first introduce the function h mapping F2n to F2n and satisfying
h(x) = x�g(x). The F2-linearity of g then implies the following relation between
f and h:

f(x, y) = h(x⊕ y)⊕ h(x)⊕ h(y) ,

for every x, y ∈ F2n . Then (3) gives:

f(x, y) = h(x⊕ r ⊕ y)⊕ h(x⊕ r)⊕ h(y ⊕ r)⊕ h(r) ,

for every x, y, r ∈ F2n . Our approach is then to store a look-up table for h and
to compute rj,i as:

rj,i =
(((

ri,j ⊕ h(ai ⊕ r′i,j)
)
⊕ h(r′i,j ⊕ aj)

)
⊕ h(ai ⊕ r′i,j ⊕ aj)

)
⊕ h(r′i,j) .

We give the algorithmic description of our improved solution in Algorithm 5.
Note that the use of brackets in Step 8 indicates the order in which the operations
are processed.

Algorithm 5 Secure evaluation of h : x 7→ x� g(x)

Input: shares (ai)i such that
⊕

i ai = a, a look-up table for h : x 7→ x� g(x)
Output: shares ci satisfying

⊕
i ci = a� g(a) for some F2-linear function g

1. for i = 0 to d do
2. for j = i+ 1 to d do
3. ri,j ←$ F2n

4. r′i,j ←$ F2n

5. t← ri,j
6. t← t⊕ h(ai ⊕ r′i,j)
7. t← t⊕ h(aj ⊕ r′i,j)
8. t← t⊕ h

(
(ai ⊕ r′i,j)⊕ aj

)
9. t← t⊕ h(r′i,j) // t = f(ai, aj)⊕ ri,j

10. rj,i ← t
11. end for
12. end for
13. for i = 0 to d do
14. ci ← h(ai)
15. for j = 0 to d, j 6= i do ci ← ci ⊕ ri,j
16. end for

In Section 5, we provide implementation results to compare the above solu-
tion when plugged in the RP Scheme (Steps 1 to 3 and Steps 4 to 6 in Algorithm
3) to the original scheme using mask refreshing. We see that the scheme using
our new solution is not only secure, but also faster than the original scheme.

The only drawback of the new scheme is to require more random generations.
Specifically it needs d(d + 1) random field elements versus d (mask refreshing)
plus d(d+ 1)/2 (secure multiplication) for the original scheme. However, the
mask refreshing procedure involved in the original scheme is flawed and it is
not clear whether it could be patched with less than d(d+ 1)/2 random field
elements.

Security Proof. We prove hereafter that our solution achieves dth-order secu-
rity. Namely we show that any d-tuple of intermediate variables of Algorithm 4
is independent of the sensitive variable a. The (very similar) proof for Algorithm
5 is given in appendix.

Our proof consists in constructing a strict subset I of indices in [0; d] such
that the distribution of any d-tuple (v1, v2, . . . , vd) of intermediate variables of
Algorithm 4 can be perfectly simulated from a|I := (ai)i∈I . This will prove the

dth-order security since, by definition, a|I is independent of a as long as the car-
dinality of I is strictly smaller than d.

By construction, it can first be checked that an intermediate variable vh of
Algorithm 4 necessarily belongs to one of the five following categories:

1. ai, g(ai) and ai � g(ai)
2. r′i,j , g(r′i,j), ai � g(r′i,j) and r′i,j � g(ai),
3. aj ⊕ r′i,j , g(aj ⊕ r′i,j), ai � g(aj ⊕ r′i,j) and (aj ⊕ r′i,j)� g(ai)
4. ri,j , f(ai, r

′
i,j)⊕ ri,j , f(ai, r

′
i,j)⊕ ai � g(aj ⊕ r′i,j)⊕ ri,j and f(ai, aj)⊕ ri,j

5. ai � g(ai)⊕
⊕j0

j=0(f(aj , ai)⊕ rj,i) with j0 6 i− 1 and

ai � g(ai)⊕
⊕i−1

j=0(f(aj , ai)⊕ rj,i)⊕
⊕j0

j=i+1 ri,j with i < j0 6 d

For the sake of clarity we use the notations ri,j and rj,i in the above list only
for fresh random values (i.e. the ri,j are always such that i < j and the rj,i are
always such that j < i).

To construct the set I, we proceed as follows. Initially, I is empty. First,
for every vh in category 1 or 5, we add i to I. Then, for the remaining vh (in
categories 2, 3 and 4), we add j to I if i is already in I and we add i to I
otherwise.

Now that the set I has been determined – and note that since there are at
most d intermediate variables vh, the cardinality of I can be at most d – we show
how to perfectly simulate the d-tuple (v1, v2, . . . , vd) using only the components
of a|I . First, we assign a random value to every ri,j and r′i,j entering in the
computation of any vh (as done in Steps 3 and 4 of Algorithm 4). Then every
intermediate variable vh is simulated as follows.

1. If vh is in category 1, then i ∈ I and vh is directly computed from ai.
2. If vh is in category 2, then i ∈ I and vh is directly computed from ai and
r′i,j .

3. If vh is in category 3, then i ∈ I and two possible cases occur:
– if j ∈ I, then vh can be directly assigned from ai, aj and r′i,j ,
– if j /∈ I, then r′i,j does not enter in the expression of any other vh

(otherwise j would be in I), and aj ⊕ r′i,j is randomly distributed and
mutually independent of the variables in {v1, v2, . . . , vd}\{vh}. Hence vh
can be assigned to either r, g(r), ai�g(r), or r�g(ai), where r is a fresh
random value (and r′i,j does not need to be assigned to a random value
at the beginning of the simulation).

4. If vh is in category 4, then i ∈ I and two possible cases occur:
– if j ∈ I, then vh can be directly assigned from ai, aj , ri,j and r′i,j ,
– if j /∈ I, then ri,j does not enter in the expression of any other vh

(otherwise j would be in I), and vh is randomly distributed and mutually
independent of the variables in {v1, v2, . . . , vd}\{vh}. Hence vh can be
assigned to a fresh random value (and ri,j does not need to be assigned
to a random value at the beginning of the simulation).

5. If vh is in category 5, then i ∈ I and the firm term ai � g(ai) is hence

directly computed from ai, whereas the second term
⊕j0

j=i+1 ri,j is directly
deduced from the ri,j ’s. Eventually, every element f(aj , ai)⊕ rj,i in the sum⊕i−1

j=0(f(aj , ai)⊕ rj,i) is assigned as follows:
– if j ∈ I then f(aj , ai)⊕ rj,i is directly assigned from aj , ai and ri,j ,
– if j /∈ I then rj,i does not enter in the expression of any other vh (oth-

erwise j would be in I), and f(aj , ai)⊕ rj,i is randomly distributed and
mutually independent of the variables in the set {v1, v2, . . . , vd}\{vh}.
Hence f(aj , ai) ⊕ rj,i can be assigned to a fresh random value (and rj,i
does not need to be assigned to a random value at the beginning of the
simulation).

5 Implementation Results

In this section, we give implementation results to compare, the original RP
Scheme with our new proposal. We implemented the RP scheme (Algorithm 3)
using Algorithm 5 for multiplications of the form x � g(x) (i.e. for Steps 2–3
and Steps 4–6 in Algorithm 3) with the appropriate look-up tables (for h being
x 7→ x � x2 and x 7→ x � x4 respectively). Codes were written in assembly
language for an 8051 based 8-bit architecture with bit-addressable memory.

Table 1. Timings (clock cycles) for a masked implementation of the
AES s-box w.r.t. the masking order d.

d = 1 d = 2 d = 3

Rivain and Prouff scheme [10] 533 832 1905
Improved scheme (this paper) 407 622 1237

Table 2. Timings (clock cycles) for a masked implementation of a
multiplication of the form x � g(x) where g is F2-linear and with
masking order d ∈ {1, 2, 3}.

d = 1 d = 2 d = 3

Algorithm 1 110 252 346
Algorithm 5 41 107 204

Table 1 lists the timing performances of the two versions of the scheme for
d ∈ {1, 2, 3}. In Table 2, we also report on the timing performances of a secure
multiplication of the form x�g(x) when processed either with our new algorithm
(Algorithm 5) or with the original ISW scheme (Algorithm 1). We see that our

improved method achieves a significant gain in timings. Regarding memory, the
RAM consumption is similar for both implementations, while our new secure
multiplication requires more ROM for the storage of the look-up table. For the
RP scheme, our new solution implies a 600-byte overhead in ROM to store the
two look-up tables (x 7→ x � x2 and x 7→ x � x4) and for Algorithm 5 source
code.

References

1. C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-order
masking schemes for s-boxes. In A. Canteaut, editor, FSE, volume 7549 of Lecture
Notes in Computer Science, pages 366–384. Springer, 2012.

2. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

3. J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.

4. B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede. Revisiting Higher-
Order DPA Attacks: Multivariate Mutual Information Analysis. Cryptology ePrint
Archive, Report 2009/228, 2009. http://eprint.iacr.org/.

5. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

6. H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher-Order Masking
of AES S-Box. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and
Embedded Systems, 13th International Workshop – CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 95–107. Springer, 2011.

7. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

8. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

9. E. Prouff, M. Rivain, and R. Bévan. Statistical Analysis of Second Order Differ-
ential Power Analysis. IEEE Transactions on Computers, 58(6):799–811, 2009.

10. M. Rivain and E. Prouff. Provably secure higher-order masking of aes. In S. Man-
gard and F.-X. Standaert, editors, CHES, volume 6225 of Lecture Notes in Com-
puter Science, pages 413–427. Springer, 2010.

11. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In E. Boyd, editor, Advances in Cryptology
– ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
239–254. Springer, 2001.

12. F.-X. Standaert, T. Malkin, and M. Yung. A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In A. Joux, editor, Advances in Cryp-
tology, 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques – EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 443–461. Springer, 2009.

A Security Proof for Algorithm 5

Similarly to what has been done in Section 4 for Algorithm 4, we show here
that any d-tuple of intermediate variables of Algorithm 5 is independent of the
sensitive variable a.

Our proof consists in constructing a set I of indices in [0; d] with cardi-
nality lower than or equal to d and such that the distribution of any d-tuple
(v1, v2, . . . , vd) of intermediate variables of Algorithm 5 can be perfectly simu-
lated from a|I := (ai)i∈I . This will prove the dth-order security, by definition,
since a|I is independent of a as long as the cardinality of I is strictly smaller
than d.

Let us first enumerate five possible categories for the intermediate variables
of Algorithm 5:

1. ai or h(ai);
2. r′i,j , ai ⊕ r′i,j , h(r′i,j) or h(ai ⊕ r′i,j);
3. aj ⊕ r′i,j , ai ⊕ r′i,j ⊕ aj , h(aj ⊕ r′i,j) or h(ai ⊕ r′i,j ⊕ aj);
4. ri,j , ri,j ⊕ h(ai ⊕ r′i,j), ri,j ⊕ h(ai ⊕ r′i,j)⊕ h(aj ⊕ r′i,j),
ri,j ⊕ h(ai ⊕ r′i,j)⊕ h(aj ⊕ r′i,j)⊕ h(ai ⊕ r′i,j ⊕ aj),
or ri,j ⊕ h(ai ⊕ r′i,j)⊕ h(aj ⊕ r′i,j)⊕ h(ai ⊕ r′i,j ⊕ aj)⊕ h(r′i,j);

5. h(ai)⊕
⊕j0

j=0(f(aj , ai)⊕ rj,i) with j0 6 i− 1, or

h(ai)⊕
⊕i−1

j=0(f(aj , ai)⊕ rj,i)⊕
⊕j0

j=i+1 ri,j with j0 6 d

For the sake of clarity we use the notations ri,j and rj,i in the above list only
for fresh random values (i.e. the ri,j are always such that i < j and the rj,i are
always such that j < i).

To construct the set I, we proceed as follows. Initially, I is empty and all
the vh’s are unassigned. First, for every vh of category 1 or 5, we add i to I.
Then, for every vh of category 2, 3 or 4, if i is already in I, then we add j to I,
otherwise we add i to I.

Now that the set I has been determined – and note that since there are at
most d intermediate variables vh, the cardinality of I can be at most d – we show
how to complete a perfect simulation of the d-tuple (v1, v2, . . . , vd) using only
the values of a|I . First, we assign a random value to every ri,j and r′i,j entering
in the computation of any vh (as done in steps 3 and 4 of Algorithm 5). Then
every intermediate variable vh is simulated as follows.

1. If vh is of category 1, then i ∈ I and vh is directly assigned from ai.
2. If vh is of category 2, then i ∈ I and vh is directly assigned from ai and r′i,j .
3. If vh is of category 3, then i ∈ I and two possible cases occur:

– if j ∈ I, then vh can be directly assigned from ai, aj and r′i,j ,
– if j /∈ I, then r′i,j does not enter in the expression of any other vh (other-

wise j would be in I). Therefore aj⊕r′i,j (or ai⊕r′i,j⊕aj) is randomly dis-
tributed and mutually independent of variables in {v1, v2, . . . , vd}\{vh}.
Hence vh can be assigned to either r or h(r), where r is a fresh random
value (and r′i,j does not need to be assigned to a random value at the
beginning of the simulation).

4. If vh is of category 4, then i ∈ I and two possible cases occur:
– if j ∈ I, then vh can be directly assigned from ai, aj , ri,j and r′i,j ,
– if j /∈ I, then ri,j does not enter in the expression of any other vh (oth-

erwise j would be in I), and vh is randomly distributed and mutually
independent of variables in {v1, v2, . . . , vd}\{vh}. Hence vh can be as-
signed to a fresh random value (and ri,j does not need to be assigned to
a random value at the beginning of the simulation).

5. If vh is of category 5, then i ∈ I, h(ai) is directly assigned from ai, and⊕j0
j=i+1 ri,j is directly assigned from the ri,j ’s. Then for the sum

⊕i−1
j=0(f(aj , ai)⊕

rj,i), every f(aj , ai)⊕ rj,i is assigned as follows:
– if j ∈ I, then f(aj , ai)⊕ rj,i is directly assigned from aj , ai and ri,j ,
– if j /∈ I, then rj,i does not enter in the expression of any other vh (oth-

erwise j ∈ I), and f(aj , ai)⊕ rj,i is randomly distributed and mutually
independent of variables in {v1, v2, . . . , vd}\{vh}. Hence f(aj , ai) ⊕ rj,i
can be assigned to a fresh random value (and rj,i does not need to be
assigned to a random value at the beginning of the simulation).

