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Abstract. This paper studies state-of-the-art software implementation
of lightweight symmetric primitives from embedded system program-
mer’s standpoint. In embedded environments, due to many possible vari-
ations of ROM/RAM-size combinations, it is not always easy to obtain
an entire performance picture of a given primitive and to create a fair
benchmark from top speed records.
In this study we classify these size combinations into several categories
and optimize operation speed in each category. We implemented on Re-
nesas’ RL78 microcontroller - a typical CISC embedded processor, four
block ciphers and seven hash functions with various combinations of
ROM and RAM sizes to make performance characteristics of these prim-
itives clearer. We also discuss how to create an interface and measure
size and speed of a given primitive from a practical point of view.
As a result, our AES encryption codes run at as fast as 3,855 cycles/block
in the ROM-1KB RAM-64B category, and 6,622 cycles/block in the
ROM-512B RAM-128B category. For another examples aiming at mini-
mizing a ROM size, we have achieved 453-byte Keccak, 396-byte Skein-
256 and 210-byte PRESENT encryption codes on this processor.

1 Introduction

Lightweight crypto has become one of hot topics in cryptography, with increas-
ing market requirements of embedded security as a background. In the SHA-3
project, suitability to embedded applications was regarded as an important met-
ric for selection, and ISO/IEC 29192 is standardizing lightweight cipher primi-
tives. Lightweight crypto has been more often discussed in hardware contexts,
such as low area and low power consumption, but some of recent studies focus
on software implementation on low resource processors, which is, we believe,
equally important since it is rather common in embedded systems that encryp-
tion is carried out in hardware, but decryption is done in software.

One of such activities is ECRYPT II block cipher and hash function projects
[1][2], which have published performance evaluation results of many symmetric
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primitives on the ATtiny45 processor. All codes were written in an assembly
language, aiming at low-cost implementation. These works are effectively the
first extensive benchmarking on a low-end microprocessor.

The paper also deals with assembly language programming of symmetric
primitives on a low-end embedded processor, but takes different approaches.
First of all, our target processor RL78 has an accumulator-based CISC archi-
tecture with 8 registers and read-modify instructions, while ATtiny is a RISC
processor with 32 registers and a fixed instruction length. Looking at imple-
mentations of the same algorithm on different processor architectures will be of
independent interest.

Secondly we aim at demonstrating various ROM/RAM-size and speed trade-
offs for each primitive, not only pursuing pin-point top speed records. Embedded
system programmers often deal with a crypto routine as an almost black box
and want to know beforehand whether given size and speed can be achieved or
not on a target processor. One of our purposes is to give them information about
what ROM/RAM-size combinations are possible or impossible to implement
on this processor. To do this, we first classify the size combinations into several
categories and optimize each primitive in each category. Additionally we show a
code toward a fastest speed and another code focusing on a smallest ROM size,
accepting (very) slow computation speed.

Also we discuss interface and metric issues of symmetric primitives for embed-
ded applications. In particular we point out that currently there is no consensus
of how to count a RAM size of a given program. We here again take embedded
programmers’ viewpoint. What they are interested in is the amount of resources
that they must allocate for a primitive. In this regard, we count the entire tem-
porary area internally used in the primitive as RAM bytes, say, argument area
and stack consumption including callee save register storage with a standard
subroutine interface.

Our target primitives are AES [3], Camellia [4] and Clefia [5] with 128-bit key
and Present [6] with 80-bit key for block ciphers. Note that AES and Camellia are
included in ISO/IEC 18033-3, and Clefia and Present have been recently adopted
as ISO/IEC 29192-2, a standard of lightweight block ciphers. For hash functions,
our choices are SHA-256, SHA-512 [7], Keccak-256 [8], Skein-256, Skein-512 [9]
Grøstl-256 and Grøstl-512 [10], where Keccak-256, Skein-256 and Skein-512 de-
note Keccak[r=1088,c=512], Skein-256-256 and Skein-512-512, respectively.

As a result, it is shown that AES achieves excellent size-speed balances for
all ROM/RAM combinations on this processor. It runs at the speed of 3,855
cycles/block in the ROM-1KB RAM-64B category. Its ROM size was able to be
reduced down to 486 bytes. Camellia outperforms AES in decryption. It is also
demonstrated that the key scheduling of Clefia is a bottleneck for minimizing
a code and Present is slow due to its harware-oriented nature, but its simple
structure contributes to creating a very small program; we were able to write its
encryption code with 210 ROM bytes.

For hash functions, it is shown that SHA-256 and SHA-512 are still good
choices from a performance point of view. For 256-bit hash functions SHA-256
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is fastest if 1KB or more ROM is given, and for 512-bit hash functions Skein-512
is the only option if only 256-byte RAM is given. It is also demonstrated that
Keccak and Skein can be implemented in a very compact way; our smallest codes
of Keccak-256/Skein-256 had 453/396 ROM bytes, respectively.

2 The RL78 Microcontroller

RL78 is Renesas Electronics’ next-generation low-power microcontroller family
combining advanced features from both the 78K and R8C families [11] which
have been widely used in embedded applications such as in-vehicle controlling
and mobile communication systems. It supports a wide range of pin, package and
memory size combinations, currently covering Flash-ROM/RAM size variations
of low-end 2KB/256B up to 512KB/32KB.

RL78 has a typical CISC architecture with an 8-bit accumulator-based in-
struction set including a small number of 16-bit instructions. It has eight 8-bit
general registers a,x,b,c,d,e,h,l, which can be also used as register pairs
ax,bc,de,hl. Most instructions allow only register a as a destination register,
and only register pair hl as a general address pointer. For instance, xor a,[hl]

is a valid instruction, but xor b,[hl] and xor a,[de] are not. This often causes
size and speed penalties in programming symmetric primitives.

On the other hand, an advantage of this architecture is that it supports read-
modify instructions and its average instruction length is short. Most instructions
of RL78 used in a small model i.e. all segments are within 64KB, are one- to
three-byte long. For instance, xor a,[hl] is a read-modify one-cycle instruction
whose length is one byte.

As for the memory access speed, reading from internal RAM takes only one
cycle, but reading from ROM takes four cycles. Moreover when an address reg-
ister is modified in the preceding instruction, an additional one-cycle delay hap-
pens due to an address generation interlock stall. Hence a table lookup can be
costly on this processor.

Table 1 shows some of the instructions essential in our programming:

instruction length latency comment

addw ax,[hl+byte] 3 bytes 1 cycle 16-bit add without carry-in (with carry-out)

sknc 2 bytes 1 cycle skip next instruction if non-carry

xor/and/or reg1,reg2 1 byte 1 cycle reg1 or reg2 must be register a

shl/shr a/b/c,cnt 2 bytes 1 cycle 8-bit left/right shift; shr accepts only a

shlw/shrw ax/bc,cnt 2 bytes 1 cycle 16-bit left/right shift; shrw accepts only ax

rolc/rorc a,1 2 bytes 1 cycle 8-bit rotate shift with carry

rolwc ax/bc,1 2 bytes 1 cycle 16-bit rotate shift with carry; left shift only

push/pop regpair 1 byte 1 cycle push/pop a register pair to/from stack

call 16bit-adrs 3 bytes 3 cycles stack pointer is subtracted by 4 bytes

ret 1 byte 6 cycles stack pointer is added by 4 bytes

Table 1. Key Instructions on RL78 in Symmetric Programming.
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The 16-bit add instruction addw is convenient but unfortunately only works
without carry-in (its result affects the carry bit, though). Using sknc, however,
a memory-to-memory 32-bit addition can be implemented as shown below, which
is slightly shorter and faster than using an 8-bit add-with-carry instruction:

movw ax,[mem1+2]

addw ax,[mem2+2]

movw [mem3+2],ax

movw ax,[mem1]

sknc ; skip next instruction if no carry

incw ax ; ax = ax + 1

addw ax,[mem2]

movw [mem3],ax

On the other hand, no 16-bit operations are supported in logical instructions
such as xor,or,and, and these instructions accept only register pair hl as an
address pointer. Also note that a subroutine call is quite expensive in this pro-
cessor. A call/ret pair takes a total of nine cycles, and consumes stack by four
bytes. For comparison, AVR’s rcall/ret pair (short call) takes seven cycles
with two stack bytes [12]. A programmer must try to minimize the number of
subroutine calls if aiming at a speed record on RL78. Interestingly, however, a
push/pop pair is inexpensive and handy for avoiding register starvation.

3 Interface and Metrics

3.1 Interface

First of all, we have adopted a commonly accepted program interface in em-
bedded systems; i.e. we implemented a target primitive as a subroutine callable
from C language, which we believe is a portable and small-overhead choice. In
the following we use the calling conventions described in [13]: (1) the first argu-
ment is passed by ax, (2) other arguments are passed through stack, and (3) hl
must be recovered at the end of the subroutine (callee-save register).

To reduce register pressure, we use only the first argument, and ax points
to the RAM area prepared by a caller, which includes a message block to be
encrypted or hashed, secret key (if any), a flag indicating first/middle/last block,
and temporary buffer for internal use. For instance, one of our AES encryption
routines has the following argument format that consists of a total of 50 bytes:

Bytes 00-15: plaintext/ciphertext

Bytes 16-31: secret key

Bytes 32-33: flag (bit 0/1: active in the first/last block)

Bytes 34-49: buffer for internal use

The first 16-byte plaintext is replaced by its correspondent ciphertext after
encryption. It is allowed to overwrite this area during encryption to minimize
RAM usage. The secret key can be also destroyed, but our codes were designed
so that a caller does not have to rewrite the same secret key every block when
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encrypting a multiple number of blocks. Note that this does not always mean
that the secret key area remains unchanged.

Our routines process one block in a single call. A caller is responsible for
creating a block format from a target message and calling a routine block-by-
block. This looks common in block cipher setting, but it is not obvious which side
(caller or callee) should be responsible for formatting the last block including a
padding in hash functions from performance point of view. In fact, in embedded
applications message size is often fixed or at most varies within a small range
and in such a case a fully general interface supporting an arbitrary length in the
callee side could simply lead to an overhead. Therefore in this paper we have
decided that, from a minimalist point of view, rather than pursuing a full black
box design, the interface policy of hash functions should be the same as that of
block ciphers.

3.2 ROM/RAM Count

There does not seem to exist a consensus of how to count ROM/RAM size of a
given crypto subroutine, especially RAM bytes on an embedded processor. Since
RAM is much more expensive than ROM, it is important to give unambiguous
information about RAM consumption to an embedded system programmer.

For instance, out of three implementation papers on the AVR processor
[14][15][16], the first one does not count mandatory parameters such as plaintext
and key areas as RAM bytes, the first and second papers seem to have excluded
stack consumption from the RAM count, and the second and third papers in-
troduce an uncommon subroutine calling convention where a callee can destroy
any register without restoration.

For another example, a code of Grøstl designed by Feichtner on the same
processor [10] pushes/pops 20 callee-save registers out of a total of 32 registers
at the beginning and end of the routine, which agrees with our code design
policy. In our metric, the ROM/RAM size should indicate the entire resource
consumption of a target subroutine, and hence, for example, we count the size
of RAM that the following sample code consumes as (at least) twelve bytes:

_Encryption_Routine: ; 4 bytes for calling this routine itself

push hl ; 2 bytes for storing hl, callee-save register

movw hl,ax

call _Leaf_Routine ; 4 bytes for calling this function

..

pop hl ; restoring hl

ret

_Leaf_Routine:

push bc ; 2 bytes for pushing bc

..

pop bc

ret
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A consequence of this is that 64-byte RAM is very restrictive for most 128-bit
block ciphers with 128-bit key, because 32-byte RAM is a must (plaintext+key)
and often we need additional 16 bytes for keeping temporary data. Moreover, as
mentioned above, if we call an internal subroutine, 12-byte stack is needed. At
this stage we have only four free RAM bytes.

3.3 Categorization as to Resources

One of the purposes of this paper is to give a system programmer practical
information on size and speed trade-offs for each algorithm, not only pin-point
record data. We expect that this approach will make performance characteristics
of each algorithm much clearer, and in addition, will reveal that a specific size-
speed combination is impossible to implement on this processor, which is also
important information for a programmer.

On the other hand, it is not realistic to write codes for too many possible
ROM/RAM size combinations. Hence in this paper, we introduce several cate-
gories as to given memory size. Specifically, we categorize ROM size variations
into 512B, 1024B and 2048B and RAM size variations into 64B, 128B, 256B,
512B (first two are for block ciphers and latter two are for hash functions). Our
interest is to find out in which category i.e. in which ROM/RAM combination,
a target primitive is implementable or not, and if yes, what performance it can
achieve within the amount of resources specified in the category.

Our complete implementation results are given in appendix A, but in the
next section, we use the following type of diagram to illustrate a performance
portfolio of each algorithm:

ROM-Min (400B) ROM-512B ROM-1024B ROM-2048B

RAM-128B 20,000 9,000 3,000 -

RAM-64B x x 4,000 3,500

Table 2. Portfolio of a Primitive (an example).

This table shows five different implementations for the target algorithm, one of
which runs at 3,000 cycles/block with less than 1024 ROM bytes and 128 RAM
bytes. If the given RAM resource is reduced down to 64 bytes, then its speed also
goes down to 4,000 cycles/block. Also if only 512 ROM bytes is available, then its
speed penalty becomes serious, 9,000 cycles/block. ‘x’ means that it is (or seems)
impossible to implement in this category, and ‘-’ denotes “satiated”, i.e. already
reached enough resource for achieving high speed and having further resource
does not lead to significant speed-up as compared with other implementations
(left or down whichever faster; 3,000 cycles/block in this case). From this table,
we can deliver important messages to an application programmer such as:

– 1024B/128B are most reasonable ROM/RAM resources for this primitive.

– If ROM size is less than 1024 bytes, its speed rapidly worsens.

– If only 512B/64B are available, using this primitive should be given up.
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In the next section, we skip rows and columns that contain only ’-’ or ’x’
entries. A special case is the left-most column, which is a ROM-minimum im-
plementation concentrating on minimizing ROM memory, lowering priority of
speed. We believe that this information is also practically important. In fact, in
some industrial systems, speed is not an issue since mechanical motion is usually
far more time-consuming than cryptographic applications.

3.4 Portability

All of our codes were written in assembly language in the small model, but
we tried them to be as portable as possible. Our codes are relocatable, i.e.
independent of the address where the code/data are located in physical memory.

Also we took into consideration that our codes should not conflict with other
modules, and therefore avoided to access system memory area. We used only
a single bank (RL78 has four register banks, each of which has an independent
register memory), and also we did not access 256-byte short address RAM, which
is a special area where a fast and short instruction is available. This area is shared
with system programs and use of this area could affect portability.

4 Implementations

4.1 Block Ciphers

AES: We implemented encryption-only and encryption-decryption versions sep-
arately for all block ciphers. For AES, all of our RAM-64B programs are based
on “flat” implementation, i.e. its round function including a key scheduling step
(due to the on-the-fly implementation) does not contain any loop/subroutine
inside. These flat programs required 1KB ROM for encryption-only version and
2KB ROM for encryption-decryption version, respectively. To reduce the ROM
size to 512B and 1KB, we introduced a loop inside MixColumns, having a single
vector-matrix multiplication code, instead of having the entire matrix-matrix
multiplication. As a result, the RAM size of these codes exceeded 64B.

On RL78, multiplying {02} can be done with the following simple sequence
of instructions without a branch:

shl a,1

sknc

xor a,#01bh

In table 4, the first number of each entry denotes encryption cycles, and the
second/third number shows decryption cycles for first/second (and later) block,
respectively. Note that in decryption, the second and later blocks can be faster
than the first block by skipping part of its key scheduling. The right most col-
umn is another implementation for aiming at maximum speed by unrolling non-
critical parts, which exceeded 2048 ROM bytes.

It looks that around 3,800 and 5,700 cycles/block is the fastest speed of AES
encryption and decryption on this processor, respectively.
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ROM-Min (486B) ROM-512B ROM-1024B

RAM-128B 7,288 6,622 -

RAM-64B x x 3,855

Table 3. AES128 Encryption-only Portfolio.

ROM-Min (970B) ROM-1024B ROM-2048B Fast (2380B)

RAM-128B 7,743:12,683/10,862 7,339:10,636/9,106 - -

RAM-64B x x 3,917:6,804/5,911 3,865:6,541/5,706

Table 4. AES128 Encryption-Decryption Portfolio.

Camellia: The key scheduling part of Camellia has rotate shifts on 128-bit data
whose shift counts are irregular. This irregularity and its FL functions lead to
a penalty in terms of ROM size. However since Camellia has Feistel structure,
its decryption is as fast as encryption and is faster than AES decryption. Main
ROM-size and speed trade-offs come from the number of different S-boxes that
the code contains, which can vary from one (256B) to four (1KB), and the
number of independent rotate shift routines. Its speed converges to around 4,000
cycles/block for both encryption and decryption.

Several efforts were made to create ROM-minimum codes (800B for encryption-
only and 1024B for encryption-decryption): The P matrix is stored in an 8-byte
ROM table and its computation is done bit-by-bit. Also having only one rotate
shift routine that shifts 128-bit data by one bit, an n-bit rotate shift is done
by running the routine n times. Obviously these methods resulted in heavy per-
formance penalty, but it should be again noted that we focused on minimizing
ROM size, and hence this is a forget-the-speed option, unlike other categories.

ROM-Min (800B) ROM-1024B ROM-2048B

RAM-128B 43,182/39,358 5,539/4,631 4,738/3,966

RAM-64B 5,733/4,820 4,918/4,125

Table 5. Camellia128 Encryption-only Portfolio.

ROM-1024B ROM-2048B

RAM-128B 43,190/39,357 : 175,417/152,023 4,978/4,125 : 5,255/4,244

RAM-64B x 5,126/4,337 : 5,512/4,477

Table 6. Camellia128 Encryption-Decryption Portfolio.

Clefia: Clefia has two independent 256-byte S-boxes, two 4x4 Matrices and a
240-byte constant value used in its key scheduling part, which causes a heavy
ROM size penalty. However the constant value can be generated on-the-fly. All
implementations except ROM-2048B versions used this technique to reduce their
code size.
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The methodology for implementing Clefia is basically the same as that for
AES. RAM-128B versions are a bit faster than RAM-64B version, which is
mainly because the former codes were able to allocate more and enough memory
for on-the-fly subkey. The ROM-2048B versions have unrolled their most critical
parts but are not still flat programs. We have not written a fastest possible flat
code by accepting more ROM bytes, but it looks that around 5,000 cycles/block
is a maximal performance of this primitive.

ROM-Min (961B) ROM-1024B ROM-2048B

RAM-128B 17,434 12,367 8,208/5,302

RAM-64B x x 9,142/6,194

Table 7. Clefia128 Encryption-only Portfolio.

ROM-Min (1,309B) ROM-2048B

RAM-128B 18,062 : 18,759 9,399/6,208 : 9,931/6,740

RAM-64B 11,388/7,768 : 11,419/7,799

Table 8. Clefia128 Encryption-Decryption Portfolio.

Present: Present is a 64-bit block cipher with 80-bit key, and a 64-byte mem-
ory is enough for its RAM size. On the other hand, this algorithm is heavily
optimized for hardware and in software we have to compute its round func-
tion bit-by-bit. Main design trade-offs come from a 4-bit S-box v.s. an 8-bit S-
box. Our ROM-1024B version for encryption-only and ROM-2048B version for
encryption-decryption have a latter choice. Once an 8-bit output of the S-box is
stored on register x, then the pLayer of Present can be implemented basically
by a repetition of the following simple code:

mov a,reg1

addw ax,ax (shrw ax,1 in decryption)

mov reg2,a

As seen below, its fastest speed is around 9,000 cycles/block, significantly slower
than other lightweight block ciphers. On the other hand, since the structure
of Present is very simple, further reduction of code size is possible at the cost
of speed. Our ROM-minimum implementation requires only 210 ROM bytes
(encryption only), which runs at the speed of 144,879 cycles/block.

ROM-Min (210B) ROM-512B ROM-1024B

RAM-64B 144,879 122,00 9,007

Table 9. Present80 Encryption-only Portfolio.

ROM-512B ROM-1024B ROM-2048B

RAM-64B 61,634 : 104,902/60,834 13,883 : 16,046/14,014 9,007 : 10,823/8,920

Table 10. Present80 Encryption-Decryption Portfolio.
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4.2 Hash Functions

SHA: It is obvious that SHA-256/SHA-512 cannot be implemented within
128/256 RAM bytes and we assume that 256/512-byte RAM is given. Then we
have room for storing intermediate message words Wi(0 ≤ i ≤ 15) doubly. This
makes the message scheduling part simpler by arranging the double-size message
buffer as W0||W1||...||W15||W0||W1||...||W15 where the first Wi and the second
Wi always the same. All of our codes of SHA-256/SHA-512 use this method.

For SHA256, our ROM-2048B version has achieved a flat code - its step
function is fully unrolled -, which actually needed only 1,239 ROM bytes. This
ROM size was able to be reduced to 1024B by introducing a byte-wise loop
within the Ch and Maj functions and making frequent xor-to-memory operations
a subroutine. The ROM-minimum version has a single rotate shift routine that
rotates by one bit (as that of Camellia). For SHA512, 2048 ROM bytes were not
enough for creating a flat code and 2,499 bytes were needed. The implementation
method for the ROM-2048B/ROM-minimum version of SHA-512 is the same as
that for the ROM-1024B/ROM-minimum version of SHA-256, respectively.

ROM-Min (796B) ROM-1024B ROM-2048B

RAM-256B 216,775/216,393 41,175/40,793 25,265/25,143

Table 11. Portfolio of SHA-256.

ROM-Min (1,285B) ROM-2048B Fast (2499B)

RAM-512B 819,034/818,268 81,610/80,844 66,008/65,562

Table 12. Portfolio of SHA-512.

Keccak: Keccak can be implemented within 256 RAM bytes only if a message
size is always within a single block. Hence we assume that 512-byte RAM is given.
Our flat code slightly exceeded 2048B, and in order to create a smaller code, we
had to deal with reduction of a total of 24 different rotate shift operations in the
ρ function. Our ROM-1024B code has a 1-bit rotate shift routine and m-byte
rotate shift routines (1 ≤ m ≤ 7) independently, and a given n = 8n1+n2-bit
rotate shift is done by carrying out the n1-byte shift routine and an n2-time
repetition of the 1-bit shift routine. Similarly our ROM-512B routine has a 1-
byte rotate routine and a 1-bit rotate routine, and an n-bit shift is made by
an n1-time repetition of the former and an n2-time repetition of the latter. The
ROM-minimum version has a 1-bit rotate routine only and repeating it n times
creates an n-bit rotate shift.

ROM-Min (453B) ROM-512B ROM-1024B ROM-2048B

RAM-512B 516,528/517,022 237,960/238,454 155,209/155,703 118,705/119,171

Fast (2,214B)
RAM-512B 110,185/110,651

Table 13. Portfolio of Keccak.
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Skein: An advantage of Skein is that it allows a very compact ROM/RAM
implementation. 2048 ROM bytes and 256 RAM bytes are enough for creating
a flat implementation of Skein-256. The methodology for reducing its ROM size
is basically the same as that of Keccak. Our ROM-1024B/512B/Min versions
correspond to Keccak’s ROM-1024B/512B/Min versions, respectively.

For Skein-512, our ROM-2048B code contains n1-byte rotate routines (1≤
n1 ≤ 7) and n2-bit rotate routines (1 ≤ n2 ≤ 7) independently, and our ROM-
1024B code uses four rotate routines (1-byte, 3-byte, 1-bit and 5-bit shifts) to
create a given n-bit rotation. The ROM-512B version has a 1-byte rotate routine
and a 1-bit rotate routine.

ROM-Min (396B) ROM-512B ROM-1024B ROM-2048B

RAM-256B 122,348/121,964 42,566/42,182 30,524/30,140 20,156/19,772

Table 14. Portfolio of Skein-256.

ROM-Min (457B) ROM-512B ROM-1024B ROM-2048B

RAM-256B 823,806/823,038 121,590/120,822 66,834/66,066 46,747/46,299

Table 15. Portfolio of Skein-512.

Grøstl: The most time-consuming part of Grøstl is obviously a computation of
MixBytes. To minimize speed penalty, reducing this part must be the last op-
tion. Most of our ROM-2048B/1024B programs have an unrolled 8-dimensional
vector-matrix multiplication code and ROM size reduction comes from AddRoundConst.
Special implementations were made for the RAM-512B versions Grøstl-256. In
these programs, the 256-byte S-box is copied from ROM to RAM before starting
the first block for better performance, since reading from RAM is faster than
reading from ROM. As a result, we achieved a small gain of performance.

In the following table, the cycle count of the output transformation Ω is
included in that of the first block.

ROM-Min (615B) ROM-1024B ROM-2048B

RAM-512B 95,271/63,286 73,011/47,746

RAM-256B 164,664/111,349 99,625/67,126 77,365/51,586

Table 16. Portfolio of Grøstl-256.

ROM-Min (672B) ROM-1024B ROM-2048B

RAM-512B 452,122/306,713 277,626/188,889 215,634/144,159

Table 17. Portfolio of Grøstl-512.
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5 Comparative Figures

This section briefly discusses performance comparison of our target algorithms.
Throughout this section, left and right graphs correspond to low and high re-
sources (1024 ROM bytes or less/2048 ROM bytes), respectively. The horizon-
tal axis denotes message length (bytes) and the vertical axis shows speed (cy-
cles/byte). We have excluded ROM-minimum implementations since they are
not optimized for operation speed. Note that only points make sense as perfor-
mance data. Lines are added only for visibility of these graphs.
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Figure 2 shows performance comparison of encryption-decryption programs of
block ciphers, where (E)/(D) denotes encryption/decryption, respectively. Again
AES achieves a good performance. In this case, if a given ROM size is 1KB,
Camellia and Clefia are excluded. Note that however if 2KB ROM is given,
Camellia’s decryption speed outperforms AES.
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Fig. 3. 256-bit Hash Functions

Figure 3 shows performance comparison of 256-bit hash functions. Interestingly,
SHA-256 is fastest for both low and high resource categories assuming 1KB ROM
is given. However SHA-256 is excluded and Keccak-256 and Skein-256 survive
when ROM size is limited to 512 bytes.
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Fig. 4. 512-bit Hash Functions

Figure 4 shows performance comparison of 512-bit hash functions. The perfor-
mance of Keccak-512 (Keccak[r=576,c=1024]) was derived from that of Keccak-
256 (Keccak[r=1088,c=512]), since these codes can be almost the same except
for input block sizes. This case Skein-512 is fastest on low resources but SHA-512
again remains a good choice when 2KB ROM is available. The SHA-3 winner
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Keccak is not a high speed primitive, but is a low memory option with Skein on
this processor.

6 Concluding Remarks

We here mention a couple of possibilities to further improve performance on
this processor. As described in section 3.4, we did not access any short address
RAM area to maintain portability of our programs. In general it is expected that
utilizing this area could lead to a shorter code, but in our case, its gain seems
to be limited unless we aim at a new ROM-minimum record.

Another possibility for speeding-up is to copy constant ROM data to RAM.
RL78 takes one cycle to read a RAM byte/word to register, but takes four cycles
to read from ROM. So if we copy ROM data to RAM before starting the routine
or in the first block, then the overall performance could be improved in return for
additional RAM resources. We tried this implementation in RAM-512B versions
of Grøstl only, which resulted in 10% performance improvement, but obviously
there are many possibilities of applying this method to other primitives.

Also we have found that minimizing a ROM size is a tricky puzzle. Reducing
10 bytes often makes a code 10 times slower. While our strategy in minimizing
the ROM size was just to ignore speed, there must exist other various trade-
offs between size and speed in exploring this extreme goal. Going deeper to this
direction looks like another interesting topic.
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Appendix: Summary of Our Implementation Results

Block Ciphers

Category AES128 Enc-only AES128 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

1KB 128B - - - 1,024 84 7,339 : 10,636/9,106
512B 128B 510 78 6,622 x x x
Min 128B 486 78 7,288 970 84 7,743 : 12,683/10,862

Fast 64B - - - 2,380 64 3,865 : 6,541/5,706
2KB 64B - - - 1,989 64 3,917 : 6,804/5,911
1KB 64B 1,021 60 3,855 x x x

Category Camellia128 Enc-only Camellia128 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

2KB 128B 2,004 70 4,738/3,966 2,047 74 4,978/4,125 : 5,255/4,244
1KB 128B 1,023 70 5,539/4,631 1,020 78 43,190/39,357 : 175,417/152,023
Min 128B 800 74 43,182/39,358 x x x

2KB 64B 2,037 64 4,918/4,125 2,033 64 5,216/4,337 : 5,512/4,477
1KB 64B 1,024 64 5,733/4,820 x x x

Category Clefia128 Enc-only Clefia128 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

2KB 128B 2,006 94 8,208/5,302 2,040 86 9,399/6,208 : 9,931/6,740
1KB 128B 1,024 74 12,367 x x x
Min 128B 961 76 17,434 1,309 76 18,062 : 18,759

2KB 64B 2,037 64 9,142/6,194 2,026 64 11,388/7,768 : 11,419/7,799

Category Present80 Enc-only Present80 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

2KB 64B - - - 1,855 48 9,007 : 10,823/8,920
1KB 64B 897 42 9,007 1,009 54 13,883 : 16,046/14,014
512B 64B 510 46 12,200 512, 62 61,634 : 104,902/60,834
Min 64B 210 54 144,879
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Hash functions

Category SHA256 SHA512
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

Fast 512B - - - 2,499 420 66,008/65,562
2KB 512B - - - 2,034 428 81,610/80,844
Min 512B - - - 1,285 430 819,034/818,268

2KB 256B 1,239 216 25,265/25,143 x x x
1KB 256B 1,016 224 41,175/40,793 x x x
Min 256B 796 224 216,775/216,393 x x x

Category Keccak256
ROM RAM ROM RAM cycles/block

Fast 512B 2,214 392 110,185/110,651
2KB 512B 2,017 392 118,705/119,171
1KB 512B 1,024 392 155,209/155,703
512B 512B 512 392 237,960/238,454
Min 512B 453 392 516,528/517,022

Category Skein256 Skein512
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

2KB 256B 1,615 166 20,156/19,772 1,921 254 46,747/46,299
1KB 256B 1,015 166 30,524/30,140 1,024 252 66,834/66,066
512B 256B 502 144 42,566/42,182 509 252 121,590/120,822
Min 256B 396 144 122,348/121,964 457 252 823,806/823,038

Category Grøstl256 Grøstl512
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

2KB 512B 1,481 476 73,011/47,746 2,044 412 215,634/144,159
1KB 512B 1,023 476 95,271/63,286 1,015 412 277,627/188,889
Min 512B 672 412 452,122/306,713

2KB 256B 1,471 220 77,365/51,586 x x x
1KB 256B 1,019 220 99,625/67,126 x x x
Min 256B 615 230 164,664/111,349 x x x


