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Abstract. Security against related-key attacks is an important criteria
for modern cryptographic constructions. In the related-key setting, the
adversary has the ability to query the underlying function on the target
key as well as on some related-keys. Although provable security against
related-key attack has received considerable attention in recent years,
most of the results in the literature aim to achieve pseudorandomness
and semantic security and often lead to inefficient constructions.
In this paper, we formalize the notion of unpredictability in the related-
key setting. We start with the definitions of related-key security of Mes-
sage Authentication Codes and identify required properties of related-
key derivation functions for provable security. We show that unlike PRFs,
MACs can inherently tolerate related-key attacks against constant trans-
formations. Next, we consider the construction of variable-input-length
MACs from fixed-input-length related-key unpredictable functions. We
present simple attacks against XCBC and TMAC. We present a general
construction of related-key secure MACs. Our construction, instantiated
with Enciphered CBC construction of Dodis, Pietrzak and Puniya (EU-
ROCRYPT 2008), results into first provably secure domain extension of
related-key secure unpredictable functions. Finally, we present two con-
structions of related-key secure MACs from DDH assumption. The first
construction is extremely efficient and tolerates group-induced partial
key transformations. The second construction achieves security against
independent group-induced tranformations and is more efficient than the
RK-PRFs achieved by Bellare and Cash (CRYPTO 2010).
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1 Introduction

A series of cryptanalytic results have established the threat of related-key attacks
as a mainstream cryptographic challenge. Introduced by Biham and Knudsen
[17, 7] for block ciphers, related-key cryptanalysis has led to high profile attacks,
ranging from key recovery [8] to distinguishers [9–11]. In a related-key setting,
the secret key of a cryptosystem/primitive can be partially controlled by the
adversary. Specifically, the adversary can apply key transformations to change
the key and observe the outcome under the modified keys. A typical example of
such transformation is fault injection attack.



Motivated by the cryptanalytic applications, Bellare and Kohno [6] initiated
a theoretical study of related-key (RK) security of block ciphers, traditionally
modelled as pseudorandom permutations (PRPs) and pseudorandom functions
(PRFs). They defined related-key security with respect to a class of related-
key-deriving (RKD) functions, Φ, which specifies the relations available to the
adversary, and considered an adversary who can (adaptively) choose the relation
from Φ during the attack. Although in some of the examples of [6], choice of
RKD set makes the adversary quite powerful, they help to characterize the set
of functions.

Despite of its importance in applied cryptography only a few positive results
are known in the RK setting [2, 4, 6, 18]. Bellare and Kohno [6], followed by
Lucks [18] considered the construction of RK secure pseudorandom functions
and permutations from the ideal primitives like ideal cipher. Lucks introduced
the notion of group induced RKD class where, if the keyspace forms a group
under some given operation, then the RKD functions may be chosen by an
adversary using this group-operation. An obvious example of such operation
is bit wise exclusive or (XOR) operation of a key with some known constant
(of same bit length as the key). In a breakthrough result, Bellare and Cash [3]
constructed RK secure PRPs based on hardness of DDH/DLIN assumptions.
Although this construction proves an important feasibility result , the solution
is quite inefficient and hard to use in practice.

On the other hand, related-key distinguishers have been found for widely
used block-ciphers including AES [11]. Naturally, concerns are mounting over
the security of the primitives, designed based on these ciphers [19]. Specifically,
security of applications like message authentication codes, where block-ciphers
are used heavily as the underlying primitive, needs to be revisited in light of
the related-key attacks. Although, most of the popular MAC constructions were
proven to be pseudorandom assuming pseudorandomness of the underlying block
cipher, much weaker security notion, like unpredictability, is sufficient for MACs.
As AES and some other block-ciphers are believed to remain unpredictable, even
against related-key attacks, a natural question is what security guarantee we can
prove from this assumption. Specifically, Can we achieve an efficient construction
of Message Authentication Code, secure against related-key attacks, if we only
assume related-key unpredictability from the underlying block ciphers ?

Our Results. In this paper, we focus our attention to the security of message
authentication codes against related-key attacks. Instead of modeling the block
cipher as RK-PRP, we model underlying block cipher as only RK unpredictable.
We reconsider several practical and popular constructions from the literature,
and analyze them in the light of related-key attacks, towards their feasibility
as related-key MACs. We also present two proofs of concept RK unpredictable
functions, both based on DDH assumption. A more detailed description of our
results follows.

Definitions We start with presenting general definition of unpredictability against
related-key attacks. We consider two types of security of unforgeability. In the
first type (called Weak Related-Key Unforgeability), adversary’s prediction has



to be on a fresh message, i.e. she can not predict the output of the function (on
the target key) on a message, which she has queried earlier even on a related-
key. In the stronger type (called Related-Key Unforgeability), adversary can be
more powerful. She is allowed to forge a message, even if she has queried it on a
related-key (although, not on the target key).

Handling constant functions We revisit the necessary conditions for the class
of related-key transformations argued by Bellare and Kohno[5], specifically trans-
formations mapping all keys to some constant. We present a simple proof that a
general message authentication code is inherently secure against constant RKD
functions. To the best of our knowledge, this results to a first symmetric key
construction which can handle constant RKD transformations.

Cryptanalysis of popular MAC construction Next, we show negative re-
sults on many popular constructions. We show simple attacks against XCBC
and TMAC. We also prove that, if the key of the MAC construction is viewed
as a single key, ECBC and FCBC constructions do not guarantee unforgeability,
irrespective of the strength of underlying block ciphers.

A Related-Key Secure Domain Extension The natural question that arises
from the results of previous paragraph is whether any existing construction pre-
serves unpredictability against a related-key adversary. For the general setting,
most designs use the NI construction of [1]. The general idea behind the con-
struction is a collision at the output would imply a collision at the compression
function (by standard MD argument). Then one would try to design an efficient
weak collision resistant compression function from unpredictable functions, and
prove that a collision at the compression function output can be used to predict
the output of the underlying functions. However, in the related-key scenario,
this need not be the case. Indeed, the collision of the mode as well as the com-
pression function may be with a related-key query. If the related key query was
made later, then the previous approach will not work.

To solve this problem, we propose a Merkle-Damg̊ard based construction
(prefix-free NI) for related-key unpredictability. Specifically, our construction is
a prefix free MD domain extension with an extra round at the end. Using this
extra round, we prove that even if the collision is with a related-key query, input
of the last round (during the evaluation of forgery output) is either new (hence
can be used for prediction) or generates a collision with a previous query on
the target key. Then one can extend the standard MD based arguments to find
forgery on the underlying functions.

We instantiate this mode of operation by the enciphered CBC construction
of Dodis, Pietrzak and Puniya [14], and prove that this gives a variable input
length related-key unpredictable function from fixed input length related-key
secure unpredictable functions and permutations.

A general construction of RK Unpredictable Functions. Our final contri-
bution is a provably secure construction of Related Key Unpredictable function
in the standard model. We instantiate this construction by two recent construc-
tions in [12]. Our basic construction, secure against partial key-transformations,
is much efficient in terms of keysize. Specifically, the keysize in our case is linear



as compared to quadratic keysize in [3]. Our second construction is fully secure
against component-wise group induced transformations. The construction of Bel-
lare and Cash [3] can be seen as a special case of our construction. Additionally,
the concept of key homomorphism in this work avoids the complexity of key mal-
leability faced in [3]. Compared to Bellare-Cash construction, this construction
is efficient in terms of exponentiation.

2 Overview of our technique

Claw-free RKD sets. In this work, like most of the previous positive results,
we focus on claw-free related-key deriving (RKD) functions. Roughly speaking,
a set Φ of RKD functions is called claw-free if for all but negiligible fraction of
k, distinct functions φ1 and φ2 from Φ, φ1(k) 6= φ2(k). We note that, Bellare,
Cash, and Miller [4] have constructed related-key secure signature scheme where
they could break this requirement. However, their construction heavily depends
on the notion of ICR pseudorandom generator, which in turn depends on RK-
secure pseudorandom functions. We stress that, no construction of RK-secure
pseudorandom function against non-claw free RKD set is known till date, and
constructions of [4] are not instantiable by current RK-secure PRFs. In such a
situation, we consider the claw-free RKD sets as worthy target.

Handling Multiple Keys The most popular paradigm to design variable-
input-length (VIL) MAC (or PRF) is the Hash then MAC (or Hash then PRF)
approach. The message is first hashed by applying a collision resistant hash func-
tion, and then passed through an independent fixed input length MAC (PRF).
Naturally, the key of such a construction contains the key(s) of the hash func-
tion (or the underlying primitive) and an independently sampled key of the final
transformation. The key of the variable input length MAC is simply the con-
catenation of these sampled keys. The question is, how will the adversary change
this key, i.e. should she consider functions which work independently over the
individual keys? Or we can allow her to consider any claw-free RKD transforma-
tion over the keyspace (Cartesian product of the keyspace of the hash function
and the final transformation) of the variable input length MAC.

In Section 6, we show that if we allow any claw-free RKD transformation over
the keyspace, then multi-key constructions have an inherent limitation. Specif-
ically, we show attacks on ECBC and FCBC, where the related-key adversary
can turn a three key construction into a two key construction, using a claw-free
RKD class.

We identify an alternative yet natural class of RKD functions, called component-
wise transformation as a feasible target. A component-wise transformation over
the keyspace Kn is an n-element vector of RKD functions over K. Let φ =
(φ1, φ2, · · · , φn) be such a vector where each φi is a function over K. For any
key k = (k1, k2, · · · , kn), φ(k) is defined by (φ1(k1), φ2(k2), · · · , φn(kn)). We re-
mark that this idea of component-induced transformation is not new. In fact,
constructions of RK-PRFs [3] were shown essentially for such classes. However,
we are the first to formalize such idea.



Removing Unkeyed Collision Resistance Assumption One of the
most important tools of the related-key secure VIL-PRF of [3] is an unkeyed
collision resistant hash function with carefully chosen range. Thus, security of
this PRF is based on the assumption of existence of unkeyed collision resistant
hash function. This assumption is very strong (in fact, stronger than existence of
one-way function) and thus undesirable. However, the problem is, if we consider
keyed hash function, then that key is also subject to related key attack. It is not
clear from [3], how to tackle that problem.

We solve this problem by introducing the notion of identity collision resis-
tance and target preimage resistance for keyed hash functions. Intuitively, against
an identity collision resistant hash function H with key k, a related-key adver-
sary (which makes adaptive queries serially) will not be able to output, with
significant probability, a message m such that Hk(m) matches with the output
of the (related-key) queries she already made. We prove such a notion along
with a notion of target preimage resistance (lifted to the RK setting) is enough
for the Hash and MAC construction. We also show how to construct such an
hash function from length preserving related-key secure MACs/permutations.
Although we faced some technical challenges (mentioned in the previous sec-
tion), we solve them with an elegant prefix-free padding and Merkle-Damg̊ard
mode of operation.

Independent work

Independent to our work, Xagawa [20] also considered related key security of
message authentication codes over additive rkd sets, extending the results of
[13]. Some of his results are similar to our algebraic constructions in Section 10.

3 Notations and Security Definitions

Notations: If x is a string, |x| denotes the length (number of characters) of the
string, x[i] denotes the ith character of x, and x1||x2||..||xt denotes concatenation
of t strings. For a finite set X , |X| denotes the size of the set. x ←R X means
selecting an element x uniformly at random from the set X. A→ x denotes that
an algorithm A outputs x. Func(D,R) denotes the set of all functions from D to
R. A family of functions F : K×D → R takes a key k ∈ K and an input m ∈ D,
and outputs F (k,m). Throughout the paper Fk denotes the function F (k, .). A
block-cipher is a family of permutations E : K × D → D and Ek denotes the
permutation E(k, .) for k ∈ K.

Unforgeability of a function family: The security of F as a MAC is
expressed via the following security game, where A is an adversary with oracle
access to Fk,

Game UF-CMA

– Setup: k ←R K.
– Query Phase: A makes a set of queries Q to the oracle Fk



– Guess Phase: A → (m,σ).
– Verify: If m /∈ Q and Fk(m) = σ then A wins, else A looses.

A family of function F is said to be (q, `, ε) unforgeable under chosen message
attack if for all adversary A who makes q queries with total size of the queries
` bits,

AdvmacF (A)
def
= Prob[A wins game UF-CMA] ≤ ε.

We note that the notion of unforgeability is also known as the unpredictability.

Framework for Related-Key Attack In the related-key setting, security
of a function family F (K,D,R) is defined against a related-key adversary. At the
beginning of the corresponding security game the adversary outputs a set of func-
tions Φ ⊆ Func(K,K), called related-key deriving (RKD) functions. Throughout
the game, the adversary has access to a related-key oracle FRK. The oracle takes
an ordered pair (m,φ) as input (m ∈ D, φ ∈ Φ) and returns F (φ(k),m), where
Fk ∈ F (K,D,R) for some k(←R K) unknown to the adversary.

If Φ contains the identity function id then FRK can also simulate the oracle
F (k, .). For the rest of the paper unless specified we will assume that Φ includes
the function id.

In [18] Lucks described an elegant way of choosing Φ as a set of group-induced
transformations when (K, ∗) is a group.

Definition 1. (Group Induced Transformations[18]) Let K be a group un-
der operation ◦. A group induced transformation is a set of functions, Φ, over
K defined as

Φ
def
= {φ : K → K|∃δ ∈ K : φ(k) = k ◦ δ}

Another important family of RKD functions, called partial transformations,
is also used in [6, 18]. Partial transformations restrict the adversary to choose a
function which can change only a part of the entire key. For example if we have
a family of functions with key space K × K , then a partial key transformation
φ′ can be defined as φ′(k1, k2) = (k1, φ(k2)) where φ is an RKD function on K.

Finally, we introduce the notion of component-induced key transformations
for multiple-key constructions.

Definition 2. (Component-wise Transformations) Let K = K1 × K2 ×
· · · Kn be a set of keys. A component-wise transformation is a set of functions Φ
over K defined as

Φ
def
= {φ = (φ1, φ2, · · · , φn)|∀i, φi : Ki → Ki,∀k = (k1, k2, · · · , kn) ∈ K

φ(k) = (φ1(k1), φ2(k2), · · · , φn(kn))}

We stress that, in case of component-wise transformations each φi is applied
on ki and is independent to other kjs.



4 Unforgeability against Related-Key Attack

We start with a formal definition of the related-key security for MACs. Recall
that, in the related-key setup, the adversary may query the oracle on a message
and a related-key. The obvious way (analogous to [16], in the context of signa-
ture) to define the notion of related-key-unforgeability would be to ensure that
the forgery m∗ was never queried to the oracle with the relation id. However, the
adversary may define the RKD function to be such that it agrees with id for all
but negligable fraction of the keys. For such a function, the security gets broken
trivially. In other words, such a restriction would force the RKD class to be
claw-free. We present a general definition of related-key unforgeability through
the following game between an adversary and the challenger. The adversary A
has oracle access to FRK.

Game RK-UF-CMA

– Setup: k ←R K , A gets the security parameter λ. A submits the description
of the RKD class Φ. Q = ∅.

– Query: A adaptively queries with (m,φ), the challenger returns F (φ(k),m).
Q = Q∪ (m,φ).

– Guess: A outputs a forgery (m∗, σ∗).
– Verify: If F (k,m∗) = σ∗, and φ(k) 6= k for all (m∗, φ) ∈ Q then A wins else
A looses.

Definition 3. (Related-Key Unforgeability) A family of functions F is said
to be (q, `, ε) unforgeable under chosen message related-key attack over the RKD
set Φ if for all adversary A who makes q queries with total size of the queries `
bits,

Advrk−macF (A, Φ)
def
= Prob[A wins game RK-UF-CMA with RKD set Φ] ≤ ε

where the probability is taken over the key k and the internal randomness of A.

5 Properties of RKD Transformations

In this section, we analyze the necessary properties of Φ, the RKD transforma-
tion, necessary for related-key security of MAC. In [5], Bellare Kohno proposed
two essential conditions, namely unpredictability and claw-free ness, for RKD
functions for related-key security. Specifically, they proved that if Φ contains a
constant function, then no block cipher can be pseudorandom against related-
key attack over Φ. In a sharp contrast, we now prove that, a general message
authentication code is inherently secure against constant RKD functions.

Theorem 1. Let F : K × D → R be a MAC. Let Φ
def
= {φc : c ∈ K,∀k ∈

K, φc(k) = c} be the set of constant RKD transformations. For all related-key



adversary ARK against related-key unforgeability of F over RKD set Φ, there
exists adversary A such that

Advrk−macF (ARK , Φ) ≤ AdvmacF (A)

Proof. The main idea of the proof is the following: the adversary A will simulate
ARK . When ARK queries with id, A will answer the queries by making query to
its own oracle. However as the related-key functions are constant functions,A can
answer any related-key query (m,φc) by computing F (c,m) on its own3. Finally
when ARK outputs a forgery (m∗, σ∗), A outputs (m∗, σ∗). By the condition of
the game RK-UF-CMA, (m∗, id) was never queried by ARK . Hence (m∗, id) was
never queried by A as well. So, A succeeds whenever ARK succeeds.

Insecurity against colliding functions The claw-freeness condition,
however, is essential for security of related-key security of MAC. The attack of
[5], involving addition and xor over the keyspace, can indeed recover the secret
key, resulting a forgery. For detailed description of this attack, we refer the reader
to Proposition 4.3 of [5].

6 Related-Key Attacks against popular MAC
constructions

In this section we show examples of some simple related-key adversaries against
some well known MAC constructions. We consider two popular variants of CBC-
MAC, namely XCBC and TMAC. Constructions like ECBC and FCBC can also
be attacked with a more aggressive class of transformations. Due to space con-
straint, the cryptanalysis of ECBC and FCBC are omitted in this proceedings
version. All these constructions were proved to be secure under the assumption
that underlying block cipher is PRP. Although our ultimate aim is to achieve a
related-key secure MAC when the underlying primitive is related-key unforge-
able, in the following examples we show that the XCBC and TMAC can be
forged using related-key attack even if the underlying block ciphers are related-
key secure prp.

Proposition 2 XCBC is not related-key secure.

Proof. The attack is extremely simple. Let n be the block length of the underly-
ing block cipher. Consider a message m = m1||m2 such that |m1| = |m2| = n. Let
the RKD set chosen by adversary be ARK . Φ = {φi(k1, k2, k2) = (k1, k2⊕ i, k3) :
0 < i < 2|k2|}∪ id. ARK makes a related-key query (m,φi) for any i > 0. Suppose
σ be the answer. ARK returns (m∗, σ) , where m∗ = m1||m2 ⊕ i.

let y = Ek1(m1). Then the last block operation is Ek1(y⊕m2⊕k2). We know
that Ek1(y⊕m2 ⊕ (k2 ⊕ i)) = Ek1(y⊕ (m2 ⊕ i)⊕ k2). Hence XCBCRK(m,φi) =
XCBC(m∗) = σ. This implies (m∗, σ) is a valid forgery and Advrk−macXCBC (AXCBC , Φ) =
1.

3 Note that, obvious description of φc leaks the constant c.



TMAC can be viewed as a variant of XCBC MAC and instead of using three
keys it uses two keys in the construction. The last block operation of TMAC is
given as Ek1(m′⊕ (k2 ·u)), where u is a constant polynomial in GF (2n) and the
product is performed in the same field. The simplification of the product x · u is
linear in x. Hence using a RKD set similar as above the adversary will be able
to forge TMAC.

Corollary 1. TMAC is not a secure MAC against related-key attack.

Prewhitening key and RKA: Both the attacks described above exploit the
use of prewhitening key. Suppose a MAC construction involves an operation
of the form Ek′(k ∗ x) (where x is a chaining value independent of k and ∗ is a
commutative-group induced operation ) and k is independent of k′ and other keys
used in the construction. Then it is always possible to mount similar related-key
attack as above.

7 Technical Tools

In this section we introduce the tools we use in our construction. First we
introduce the notion of weak unforgeability against related-key attack, which
essentially bridges the notion of unforgeability between the standard and the
related-key settings.

Weak Unforgeability against Related-Key Attack

Definition 4. (Key-Homomorphic MAC) Let F : K × D → R be family of
MACs. We say that F is key-homomorphic MAC if K and R are groups with
efficient operations (◦ and ∗ respectively) and for any fixed m ∈ D, there is a
group homomorphism form K to R. Specifically, for any k1, k2 ∈ K,

Fk1 ◦ k2(m) = F (k1,m) ∗ F (k2,m)

Let F be a family of key-homomorphic MACs and Φ◦ a (K, ◦) group-induced
RKD set. Essentially, for φ ∈ Φ◦, one can compute F (φ(k),m) by making queries
to F (k,m) and using the group homomorphism property of F . In the RK-UF-CMA
game, the adversary is challenged to forge F (k, .). Apparently, finding F (φ(k), .)
from F (k, .) does not directly help her. However, the adversary may first query
the related-key oracle and get F (φ(k),m) for some m, then using the group
homomorphism property, predict the value of F (k,m). To see this, consider an
adversary A who makes a query (m,φ) to FRK for some m ∈ D. Now, we know
that φ(k) = k ◦ δ for δ ∈ K. So, A knows σ1 = F (φ(k),m) and can compute
σ2 = F (δ,m) on her own as the family F is public. Hence, A successfully forges
F (k, .) with (m,σ) where σ = σ1 ∗ σ−12 .

We observe that, previous adversary A is not a unique-message adversary.
Against a unique-message adversary of the RK-UF-CMA game, a key-homomorphic



MAC is related-key unforgeable over group induced Φ. Motivated by this obser-
vation, we introduce the notion of weak unforgeability against related-key attack.
In this case, the adversary is not allowed to forge a message which she has queried
even on some non-id RKD function.

Game WeakRK-UF-CMA

– Setup: k ←R K , A gets the security parameter λ. A submits the description
of the RKD class Φ. Q = ∅.

– Query: A adaptively queries with (m,φ), the challenger returns F (φ(k),m).
Q = Q∪ (m,φ).

– Guess: A outputs a forgery (m∗, σ∗).
– Verify: If F (k,m∗) = σ∗, and (m∗, φ) /∈ Q for any φ then A wins else A

looses.

Definition 5 (Weak RK-Unforgeability). A family of functions F is said to
be (q, `, ε) weakly unforgeable under chosen message related-key attack (WRK-
UF) over the RKD set Φ if for all adversary A who makes q queries with total
size of the queries ` bits,

Advwrk−macF (A, Φ)
def
= Prob[A wins game WeakRK-UF-CMA with RKD set Φ] ≤ ε

where the probability is taken over the key k and the internal randomness of A.

For a key homomorphic MAC the following lemma can be proved in a straight-
forward way.

Lemma 1. (Key Homomorphic MAC is WRK-UF) Let F : K×D → R be
a family of key-homomorphic MACs. Let Φ be a claw-free set of group induced
RKD functions. F is a secure WRK-UF over Φ. Specifically, for every (q, `)
adversary A, there exists a (q, `) adversary AF such that

Advwrk−macF (A, Φ) ≤ AdvmacF (A)

Identity Fingerprint The main technical tool used in [3] in order to construct
the RK secure PRF is the notion of key fingerprint. Informally, a key fingerprint
(as defined in [3]) is a vector over the message space, such that under two different
keys, outputs of the function will be different on at least one index. However,
as observed in [4], this notion is too demanding and may not be achievable for
some PRFs.

In this paper, we consider the following relaxed notion of key fingerprint.

Definition 6. (Identity Fingerprint) Let F : K ×D → R be family of func-
tions and Φ be a set of RKD functions over K. Let w be a d dimensional vector
over D. We call w an identity-fingerprint of F over Φ if

Probk←RK

[
∀φ ∈ Φ :

(
F (k,w1), F (k,w2), · · · , F (k,wd)

)
6=

(
F (φ(k), w1), F (φ(k), w2), · · · , F (φ(k), wd)

)]
> 1− negl



where d = O(|k|), negl is some negligible function in terms of |k|.

We remark that, the identity key fingerprint notion of [4] is similar. As ar-
gued in [4], few distinct points from the domain can be considered as a candidate
identity fingerprint for any practical block-cipher. Although we cannot prove it
formally, such an assumption seems to be consistent with the premise of crypt-
analysis.

ICTPR hash function In this paper we remove the collision resistant hash
function assumption. In our framework, we encounter keyed hash function which
is subject to tampering by the adversary. To achieve security even in such a
scenario, we propose and use the notion of ICTPR hash functions.

An ICTPR hash function H : K × D → R has two properties: identity-
collision (IC) resistance and target preimage (TP) resistance
Identity Collision Resistance. Roughly, the identity collision resistance
ensures that, for (related-key) adversary with oracle access to HRK, output of a
query on a message m and the secret key (i.e. query of the form (m, id)), does
not collide with the output of some previous query (even on a related-key). The
formal security game works in the following way.

Game ID-CR

– Setup: k ←R K , A gets the security parameter λ. A submits the description
of the RKD class Φ. Q = ∅.

– Query: A adaptively queries with (m,φ), the challenger returns H(φ(k),m).
Q = Q∪ (m,φ).

– Collision: A outputs a message m∗.
– Verify: If for some (m,φ) ∈ Q, H(φ(k),m) = H(k,m∗) and (m∗, id) /∈ Q

then A wins else A looses.

Definition 7. (Identity Collision Resistant Hash Function) Let H : K ×
D → R be family of hash functions and Φ be a set of RKD functions on K. H
is said to be (q, `, ε) identity collision resistant (ICR) over the RKD set Φ if for
all adversary A who makes q queries with total size of the queries ` bits,

AdvicrH (A, Φ)
def
= Prob[A wins game ID-CR with RKD set Φ] ≤ ε

where the probability is taken over the key k and the internal randomness of A.

Target Preimage Resistance against Related-Key Attack. In addition
to the identity collision resistance, we also need a notion of everywhere preimage
resistance against related-key attacks. The preimage resistance game between an
adversary A and a challenger for a hash function H : K × D → R is described
as following

Game RK-TPR



– Setup: k ←R K , A gets the security parameter λ. A submits t targets
z1, · · · , zt ∈ R, and the description of the RKD class Φ. Q = ∅.

– Query: A adaptively queries with (m,φ), the challenger returns H(φ(k),m).
Q = Q∪ (m,φ).

– Preimage: A outputs a message m∗.
– Verify: If H(k,m∗) = zi, for some i then A wins else A looses.

Definition 8. (Related-Key Target Preimage Resistant Hash Function)
Let H : K×D → R be family of hash functions and Φ be a set of RKD functions
on K. H is said to be (q, t, `, ε) related-key target preimage resistant (RK-TPR)
over the RKD set Φ if for all adversary A who submits t targets, makes q queries
with total size of the queries ` bits,

Advrk−tprH (A, Φ)
def
= Prob[A wins game RK-TPR with RKD set Φ] ≤ ε

where the probability is taken over the key k and the internal randomness of A.

We define ICTPR advantage of an adversary A against a hash function H as

AdvictprH = Advrk−tprH + AdvicrH

8 Construction of Related-Key secure MAC

In this section, we show a general construction of related-key secure MAC. The
basic essence of our construction is essentially the Hash then MAC paradigm of
An and Bellare [1], lifted to the related-key setting. In fact most of the proposed
VIL-MAC constructions [15, 14] have been proved secure in this paradigm. The
intuitive approach while extending the arguments of [1] would be to show that a
suitable hash function H followed by a FIL-related-key unforgeable MAC F will
give us a VIL-related-key secure MAC G. However, in the following theorem, we
prove that, for claw-free RKD sets, if the hash function is ICTPR, it is enough
for F only to be weak related-key unforgeable (cf. Definition 5).

Theorem 3. Let F : K1 × D → R be a weak related-key unforgeable MAC
over RKD set Φ1 with identity fingerprint w = (w1, w2, · · · , wd). Let H : K2 ×
{0, 1}∗ → D be a ICTPR hash function over the RKD set Φ2. Let G : (K1 ×
K2)× {0, 1}∗ → R be a family of function defined as

G(k1, k2,m)
def
= F (k1, H(k2,m‖F (k1, w1)‖F (k1, w2)‖ · · · ‖F (k1, wd)))

where k1 ∈ K1, k2 ∈ K2. G is related-key unforgeable against chosen message

attack over the component-induced RKD set Φ
def
= Φ1 × Φ2. Specifically if there

exists a (q, l) adversary AG against G, then there exists a (q, q log |D|) adversary
AF against F , and a (q, l) adversary AH against H such that

Advwrk−macF (AF , Φ1) + AdvictprH (AH , Φ2) ≥ Advrk−macG (AG, Φ)



Proof. Let τid = F (k1, w1)‖F (k1, w2)‖ · · · ‖F (k1, wd), and τφ1
= F (φ1(k1), w1)‖

F (φ1(k1), w2)‖ · · · ‖F (φ1(k1), wd). The basic idea of the proof is the following.
Let (m∗, σ) be a valid forgery. If x∗ = H(k2,m

∗‖τid) does not collide with any
previous H query (including the related-key oracles, thus maintaining identity
collision resistance), or one of the wis of the identity fingerprint w (thus main-
taining target preimage resistance), then the query to F (k, .) is new and was
not queried even to the related-key oracle FRK. Hence (x∗, σ) is a valid forgery
against weak related-key unforgeable Fk. Hence we need to show that against
any related-key adversary if x∗ collides with the output of some previous HRK

query or x∗ ∈ {w1, · · · , wd}, ICTPR property of Hk2 can be broken. The argu-
ments for those cases are straightforward. We refer the reader to the full version
for the formal proof.

Up to this point, our approach closely matched with the approach of Bel-
lare and Cash, who also used similar arguments. The difference comes in while
constructing a ICTPR hash function. While [3] assumes an unkeyed collision
resistant function with tailor-made range, we present a mode of operation based
on fixed-input length related-key secure MAC ( to construct VIL-related key
unforgeable MAC) in the next section. We mention that given a keyed colli-
sion resistant hash function H(k, .), one can easily get an ICTPR hash function
(against claw-free transformations), Ĥ(k, .) defined as Ĥ(k,m) = k‖H(k,m).
However, when constructing from block ciphers (as done in practice), this con-
struction is trivially insecure (as it gives away the key). Additionally, to use it
in Theorem 3, the final transformation requires to have a larger domain. On
the other hand, our construction can be instantiated with a single related-key
unpredictable function with independently sampled keys.

9 ICTPR from FIL-RKUF

In this section, we propose a mode of operation to construct a ICTPR hash
function from length preserving related-key unforgeable MACs. Such a mode
along with Theorem 3 will give us a variable input length MAC. We stress
that the proof works for any RKD set, i.e. if one starts with a fixed-
input-length related-key unpredictable function, secure without the
claw-free assumption on the RKD set, the resulting MAC remains
secure without the claw-free assumption.

We will describe the mode in two steps. First we shall describe a domain
extension of fixed-input-length ICTPR compression function. Then we shall
show that the enciphered CBC compression function of Dodis, Pietrzak, and
Puniya [14] can be used to construct a fixed-input-length ICTPR compression
function from length preserving related-key unforgeable MACs.

9.1 VIL-ICTPR Hash Function from ICTPR compression function

We shall use a variant of prefix free Merkle-Damg̊ard iteration. Let D = {0, 1}2n,
R = {0, 1}n, and H ′ : K ×D → R be a fixed-input-length ICTPR compression
function.



Padding Rule Let m be input message. Let len(m) = |m| be the length of the
message. The message m is divided into blocks of n− 1 bits. If len(m) is not a
multiple of n− 1, the last block is padded with a bit 1 and sufficiently many 0s.
After this padding let m1,m2, · · · ,ml be the blocks. The final padded message
Pad(m) will be the following

Pad(m) = y1‖y2‖ · · · ‖yl‖y,

where each yi = 0‖mi, and y = 1‖len(m).
The Mode. Our mode is essentially the Merkle-Damg̊ard mode with an extra
round at the end with 1‖0n−1 as the message block. Formal algorithm of the
iteration is the following

Algorithm 1 pseudo-code for the pfNI mode of operation

function pfNIH
′
(k, m)

h0 ← 0n

Pad(m) = y1||y2|| · · · ||yl||y
for 1 ≤ i ≤ l do

hi ← H ′(k, hi−1||yi)
hl+1 ← H ′(k, hl||y)
h← H ′(k, hl+1||1||0n−1)
return h

Security. Now we show that the pfNI mode is ICTPR preserving. Let H ′ :
K × {0, 1}2n → {0, 1}n be a compression function. We shall prove that, if there

exists an adversary AH against H
def
= pfNIH

′
breaking the ICTPR property,

then there is an adversary AH′ against the ICTPR property of H ′. To show
this, we need to show reductions for both identity collision resistance and target
preimage resistance (cf. Section 7).

Simulation of H. AH′ has access to the oracle H ′RK. Simulation of oracle HRK

will be performed by querying H ′RK. During the simulation, AH′ maintains a list
Q containing the queries to H ′RK and the corresponding responses.

Reduction for Identity Collision Resistance: Suppose AH breaks the identity
collision resistance of H. Recall that, identity collision resistance requires that
no query (m∗, id) generates a collision with a previous (m,φ) (φ may or may
not be id) query. Hence, AH makes a (m∗, id) query to H such that H(k,m∗) =
H(φ(k),m) and (m,φ) query was made before (m∗, id) query.

Let h`∗+1 be the penultimate chaining value during the computation of
H(k,m∗). The following two cases can happen depending on whether h`∗+1

was given as a response of some previous H ′RK query. Let x = h`+1‖10n−1 be the
last H ′ query during the computation of H(φ(k),m).

1. h`∗+1 = IV : If h`∗+1 is equal to IV, then we can show a reduction breaking
the target preimage resistance of H ′. We analyze it in the reduction for target
preimage resistance.



2. H ′(k, h`∗+1‖ω) was not queried during the simulation for any ω ∈
{0, 1}n: The padding ensures that 10n−1 is the last message block of all
the queries. Hence h`∗+1 6= h`+1. Moreover, H ′(k, h`∗+1‖10n−1) has been
queried after H ′(φ(k), h`+1‖10n−1).
As H(k,m∗) = H(φ(k),m), obviously

H ′(k, h`∗+1‖10n−1) = H ′(φ(k), h`+1‖10n−1).

This collision breaks the identity collision resistance property of H ′.
3. H ′(k, h`∗+1‖ω) was queried during the simulation for some ω: If
h`∗+1 is not equal to IV , then h`∗+1 matches with some chaining value
during the simulation of the pfNI mode on some previous (m′, id) query.
As m∗ 6= m′, by standard argument of prefix free padding and collision
resistance of Merkle-Damg̊ard iteration, we will find a collision with some
previous H ′(k, .) query.

Reduction for Target Preimage resistance: When AH submits the set of “tar-
get images” {z1, · · · , zt}, AH′ submits T = {IV, z1, · · · , zt}. For each HRK(m,φ)
query, AH′ , simulates the pfNIH

′
RK by making queries H ′RK. She checks whether

during the simulation, output of some H ′(k, .) query is in T . In such a case, she
wins trivially. Note that, this takes care of the left out case in the reduction of
identity collision resistance.

If none of the outputs are in T , and AH outputs m∗, AH′ simulates the pfNI
mode and outputs the last compression function input (h∗` + 1‖|10n−1) as the
output.

So in all the cases, if AH breaks the ICTPR property of H, AH′ breaks the
ICTPR property of H ′.

Lemma 2. Let H ′ : K × {0, 1}2n → {0, 1}n be a compression function. Let
H : K × {0, 1}∗ → {0, 1}n be a hash function defined as

H(k,m)
def
= pfNIH

′
(k,m).

For all adversary AH making q queries of total bit length l, there exists an
adversary A′H making dql/(n−1)e+q queries of total bit length n(dql/(n−1)e+q),
such that

AdvictprH (AH , Φ) ≤ AdvictprH′ (AH′ , Φ)

9.2 Constructing ICTPR hash function using Length Preserving
RK-MAC

In this section we prove that the pfNI mode instantiated with enciphered CBC-
MAC compression function using a length-preserving, related-key-unforgeable
function, gives a ICTPR hash function. Let F : K×{0, 1}n → {0, 1}n be a fam-
ily of functions. The EnCBC compression function based on length preserving
function F is defined as H ′k1,k2(x1, x2) = F (k1, x1)⊕ F (k2, x2).



Lemma 3. Let F : K× {0, 1}n → {0, 1}n be a family of related-key unforgeable
function over Φ with identity fingerprint w = {w1, · · · , wd}. Define H ′ : (K ×
K)× {0, 1}2n → {0, 1}n as

H ′k1,k2(x1, x2)
def
= F (k1, x1)⊕ F (k2, x2).

Define H : (K ×K)× {0, 1}∗ → {0, 1}n as

H(k1, k2,m)
def
= pfNIH

′
(k1, k2,m)

Define Ψ : {0, 1}2κ → {0, 1}2κ as

((Φ \ {id})× Φ) ∪ (id, id)

Then H is ICTPR against Related-Key Attack over the RKD set Ψ . For all
adversary AH making q queries of total bit length l, there exists an adversary
AF making dql/(n− 1)e+ q queries of total bit length n(dql/(n− 1)e+ q), such
that

AdvictprH (AH , Ψ) ≤
(
q4

2
+
q2d

2

)
Advrk−macF (AF , Φ)

The most natural way to prove the above Lemma will be to show that EnCBC
construction, instantiated with RK-MAC gives an ICTPR compression func-
tion. However, there is an obstacle to prove such a claim. Recall that we want
to show that when there is an ICTPR attack against the compression function,
we can mount related-key forgery against the underlying RK-MAC. The general
technique is to guess the colliding queries, and predict the output of chronolog-
ically last query. Unfortunately, the chronologically last query can indeed be on
related-key(the target key of ICTPR attack may be derived from two separate
target key queries made before the related-key query).

We give a direct proof the ICTPR security of the mode of operation, instanti-
ated with EnCBC compression function. Specifically, we show that for both the
conditions, described in the previous section, we can mount related-key forgery
against the underlying MACs. We refer the reader to full version for the full
proof.

10 Bellare-Cash construction is MAC preserving

Finally, as an application of Theorem 3, we show that the PRF construction of
Bellare and Cash [3], can also be used to construct a related-key unforgeable
MAC against chosen message attack. Note that, this construction uses an un-
keyed collision resistance hash function H. Although, we focused on keyed hash
function for all the previous results, we state this result to be complete in our
analysis of related-key security of message authentication codes.



Theorem 4. Let F : K × D → R be a weak related-key unforgeable MAC over
RKD set Φ with identity fingerprint w = (w1, w2, · · · , wd). Let H : {0, 1}∗ →
D\{w1, · · · , wd} be a collision resistant hash function. Let G : K×{0, 1}∗ → R
be a family of functions defined as

G(k,M)
def
= F (k,H(M‖F (k,w1)‖F (k,w2)‖ · · · ‖F (k,wd))) k ∈ K.

G is related-key unforgeable against chosen message attack over the RKD set Φ.
Specifically if there exists a (q, l) adversary AG against G, then there exists a
(q, q log |D|) adversary AF against F , and a (q, l) adversary AH against H such
that

AdvcrH (AH) + Advwrk−macF (AF , Φ) ≥ Advrk−macG (AG, Φ)

Proof (Proof Sketch). The proof is similar (infact, special case) to Theorem 3
and we skip the proof.

10.1 Security against partial key transformation from DDH
assumption

In this section, we give a concrete construction of a related-key secure MAC
based on the following MAC construction, due to Dodis, Kiltz, Pietrzak, and
Wichs [12] based on the hash proof system of Cramer and Shoup.

MACHPS

– Setup. p is a large prime. G is a group of order p. g is a random generator of
G. Ĥ : G2 ×D → Zp is a collision resistant hash function. K = Z3

p, R = G3.
– Key Generation: the secret key is k = (k1, k2, k3)←R Z3

p.
– MAC: F : K ×D → R is defined as

F (k1, k2, k3,m)
def
= (g ←R G, V = gk1, gk2Ĥ(g,V,m)+k3) m ∈ D, k1, k2, k3 ∈ Zp.

For any element k = (k1, k2, k3) ∈ K and ∆ = (0, δ2, δ3) ∈ Z3
p, define k ◦∆ =

(k1, k2 + δ2, k3 + δ3) where + is addition modulo p. It is easy to check that K
is a group under ◦. The group induced RKD class over K will be defined as

Φ
def
= φ∆(k) = (k ◦∆).
Although MACHPS is not key-homomorphic in general, but it is indeed key

homomorphic over Φ. Hence, we get the following lemma.

Lemma 4. MACHPS is weakly unforgeable against related-key attack over Φ.

To use Theorem 4, it is now enough to prove the existence of a fingerprint
for MACHPS . Due to space constraint we leave out the identity-fingerprint for
MACHPS in this version.

Theorem 5. Let G be a prime order group of p elements, g1, g2 be two random
generators of G. Let w1, w2 be two distinct elements from D. Suppose H : D ×



G→ D\{w1, w2} and Ĥ : G2×D → Zp be two collision resistant hash functions.
Define K = Z3

p, R = G3. Define GHPS : K ×D → R defined as

GHPS(k1, k2, k3,m)
def
= MACHPS(k1, k2, k3, H(m,Γ ))

where

Γ = g1, g
k1
1 , g

k2Ĥ(g1,V,w1)+k3
1 , g2, g

k1
2 , g

k2Ĥ(g2,V,w2)+k3
2 )

Let AG be an adversary against the related-key unforgeability of G under
chosen message attack over RKD set Φ, and AG makes q queries. Then we can
construct an adversary ADDH against the DDH problem in G, an adversary
AH against collision resistance of H, and an adversary AĤ against collision

resistance of Ĥ such that

Advrk−macG (AG, Φ) ≤ AdvddhG (ADDH) + AdvcrH (AH) + Advcr
Ĥ

(AĤ)

10.2 Towards full security

Previous construction, although very efficient in terms of the keysize, is only
secure against partial key transformation. Now, we construct a related-key un-
forgeable MAC against a full group induced key transformation. The weak un-
forgeable MAC is based on another construction of Dodis et. al. [12] which is
again based on weak PRF and arguments of Waters.

MACW

– Setup. p is a large prime. G is a group of order p. Message space is {0, 1}λ.
K = Zλ+1

p , R = G3.

– Key Generation: the secret key is k = (k0, k1, · · · , kλ)←R Zλ+1
p .

– MAC: F : K ×D → R is defined as

F (k0, k1, · · · , kλ,m)
def
= (g ←R G, gk0+

∑λ
i=1m[i]ki)

For any element k = (k0, k1, · · · , kλ) ∈ K and ∆ = (δ0, δ1, · · · , δλ) ∈ Zλ+1
p ,

define k ◦∆ = (k0 + δ0, · · · , kλ + δλ) where + is addition modulo p. It is easy to
check that K is a group under ◦. The group induced RKD class over K will be

defined as Φ
def
= φ∆(k) = (k ◦∆).

MACW is key-homomorphic in an obvious way. Using Lemma 1

Lemma 5. MACW is weakly unforgeable against related-key attack over Φ.

Using Theorem 4, we get the following theorem

Theorem 6. Let G be a prime order group of p elements. Let

w = {0λ, 10λ−1, 010λ−2, · · · , 0λ−11}



Suppose H : D × G2(λ+1) → D \ {w} be a collision resistant hash functions.
Define K = Zλ+1

p , R = G2. Define GW : K ×D → R as

GW (k,m)
def
= MACW (k,H(m,MACW (k, 0λ),MACW (k, 10λ−1), · · · ,MACW (k, 0λ−11)))

Let AG be an adversary against the related-key unforgeability of GW under
chosen message attack over RKD set Φ, and AG makes q queries. Then we can
construct an adversary ADDH against the DDH problem in G, an adversary AH
against collision resistance of H such that

Advrk−macG (AG, Φ) ≤ AdvddhG (ADDH) + AdvcrH (AH)

11 Conclusion

Security against related-key attacks is currently considered as a major challenge
for symmetric key cryptography. In this paper, we considered security of mes-
sage authentication codes against related-key attacks. We formalized the secu-
rity definitions and identified feasible key transformations. We also presented the
first security analysis for domain extension of related-key secure unpredictable
functions(MAC). However our reduction for the Enciphered CBC construction
achieves a reduction-factor of O(2n/4) queries (Lemma 3). Finding constructions
with improved security bound is an interesting open problem. Specifically, anal-
ysis of related-key security of Dodis-Steinberger construction [15] will be very
interesting.
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