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Abstract. In this paper we attack round-reduced KECCAK hash func-
tion with a technique called rotational cryptanalysis. We focus on KEcC-
CAK variants proposed as SHA-3 candidates in the NIST’s contest for
a new standard of cryptographic hash function. Our main result is a
preimage attack on 4-round KECCAK and a 5-round distinguisher on
KECCAK-f[1600] permutation — the main building block of KECCAK
hash function.
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1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) an-
nounced a public contest aiming at the selection of a new standard for a cryp-
tographic hash function. The main motivation behind starting the contest has
been the security flaws identified in the SHA-1 standard in 2005. Similarities
between SHA-1 and the most recent standard SHA-2 were worrisome and NIST
decided that a new, stronger hash function would be needed. Overall, 51 func-
tions were submitted to the first round of the contest. In July 2009 out of the
submitted functions, 14 were selected to the second round. At the end of 2010,
the five finalists were announced and eventually in October 2012 the winner has
been selected. The new SHA-3 standard will be KECCAK hash function [5]. In
this paper we analyze KECCAK using a technique called rotational cryptanalysis.

Rotational analysis is a relatively new type of attack. The technique was
mentioned and applied in [2,14, 16], and formally introduced in [12]. Unlike the
differential analysis, where for a pair (z,y) the attacker follows the propagation of
the difference @y through the cryptographic system, in the rotational analysis,
the adversary investigates the propagation of the rotational relations through
the cryptographic transformations. Khovratovich and Nikolié¢ in [12] analyze the
primitives composed of only three operations: addition, rotation, xor (ARX). For
these primitives, they prove that the probability that a rotational pair of inputs



will produce a rotational pair on the output depends on the number of additions
only. In [17] a rotational distinguisher was designed for the keyed permutation
of the Shabal hash function. Rotational cryptanalysis was combined with the
rebound attack and applied to the compression function of the SHA-3 candidate
Skein and its underlying cipher Threefish [13].

The known cryptanalytic results on KECCAK can be divided into two types.
The first type is showing a non-random behaviour, weakness in the KECCAK’s
internal permutation, such as our rotational distinguishers. The second type is
attacking the core security properties of the whole function (a preimage attack
and a collision attack). The distinguisher of Keccak’s permutation with the high-
est number of rounds is the zero-sum distinguisher proposed in [1] and later im-
proved in [6,9]. However, the complexity of these distinguishers is very high. For
example, the zero-sum distinguisher for all 24 rounds has the complexity of 21°7°.
A differential analysis of KECCAK’s internal permutation, given in [10], leads to
distinguishers up to 8 rounds with complexity of 249147 and for 5 rounds with
complexity of 28. Among the attacks on the KECCAK hash function, the most
rounds were reached by Bernstein in his 8-round preimage attack [3]. However,
the attack is much slower than parallel exhaustive search and it is inherently
memory-intensive. Also with the aid of differential analysis, Naya-Plasencia et
al. mounted the preimage and collision attacks on 2-round KEccak [15]. In [11]
the same result (2-round preimage and 2-round collision attacks) were obtained
through the SAT-based attacks. The most successful collision attack was given
in [8] where 4-round collisions were presented.

In this paper we focus our analysis on the KECCAK variants proposed as SHA-
3 candidates. First we analyze the permutation KECCAK-f[1600]. We mount the
4-round rotational distinguisher and then enhance it with a correlation analysis
which improves the result to 5 rounds. We implement the distinguishers and
verify the experimental results. Unlike the other rotational analysis we treat
rotational relations between bits independently and we operate on probabilities
of rotational relations. Our rotational cryptanalysis not only serves as a mean
to show a non-random behaviour in the cryptographic primitive, but also for
the first time the technique is used for mounting the preimage attack. A family
of 4-round distinguishers is the base for our 4-round preimage attack with the
complexity 64 times lower than exhaustive search. This is also the first 4-round
preimage attack with a negligible amount of memory needed for the attack.

2 KEccAK

In this section we provide a description of KECCAK to the extent necessary for
understanding the attack described in the paper. For a complete specification,
we refer the interested reader to the original specification [5].

*These results were provided for us by the author of the attack. Originally in [3] the
results are given only for 6,7 and 8 rounds.



Table 1. Best known preimage attacks on the KECCAK variants proposed as SHA-3
candidates. The number in the column ‘Variant’ denotes a hash length.

Rounds| Variant Time Memory Reference
6/7/8 | 512 |2500 /2507 j95I1:5(9176 19320 19508 3]
4 |224/256| 22173 /22493 961 3"
4 |384/512| 23773 95053 961 Bk
4 512 2506 negligible [Section 4.2
4 384 2378 negligible |Section 4.2
4 256 2252 negligible |Section 4.2
4 224 2221 negligible  |Section 4.2
Fig. 1. Sponge Construction [4]
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KECCAK uses the sponge construction and hence is a member of the sponge
function family [4]. Figure 1 shows the construction. It can be used as a hash
function but also can be applied for generating infinite bit stream, making it
suitable as a stream cipher or a pseudorandom bit generator. In this paper we
focus on the sponge construction for cryptographic hashing. KECCAK has two
main parameters r and ¢, which are called bitrate and capacity, respectively.
The sum of those two makes the state size, which KECCAK operates on. For
the SHA-3 proposal, the state size is 1600 bits. Different values for bitrate and
capacity give the trade-off between speed and security. The higher bitrate gives
the faster function that is less secure. KECCAK follows the sponge two-phase
processing.

The initial 1600-bit state is filled with 0’s. In the first phase (also called
the absorbing phase), interleaved with applications of the permutation f (called
KECCAK-f in the specification). The absorbing phase is finished when all message
blocks have been processed. In the second phase (also called the squeezing phase),
the first r bits of the state are returned as part of the output bits, interleaved
with applications of the function f. The squeezing phase is finished after the
desired length of output digest has been produced.

For the variants proposed as SHA-3 candidates, the value of the parameter
¢ is equal to a hash length multiplied by 2. For example, the SHA-3 candidate
with 512-bit hash length is KECCAK with ¢ = 1024 and r = 576 (r + ¢ = 1600).
In this paper we denote variants proposed as SHA-3 candidates by KECCAK-512,
KEccAK-384, KECCAK-256, and KECCAK-224. (The number is a hash length for
a given variant.)

KECCAK can also operate on smaller states but through the whole paper we
always refer to the default variant with 1600-bit state. The state can be visualised
as an array of 5x5 lanes, each lane is 64-bit long. The state size determines the
number of rounds in KECCAK-f function. For the default 1600-bit state there
are 24 rounds. All rounds are the same except for constants which are different
for each round.

Below there is a pseudo-code of a single round. In the latter part of the paper,
we often refer to the algorithm steps (denoted by Greek letters) described in the
following pseudo-code.

Round (A,RC) {

0 step
C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor Alx,4], forall x in (0...4)
D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)
Alx,y] = Alx,y] xor D[x], forall (x,y) in (0...4,0...4)
p step forall (x,y) in (0...4,0...4)

Alx,y] = rot(Alx,yl, rlx,yD),



T step forall (x,y) in (0...4,0...4)
Bly,2*x+3*y] = A[x,y],

X step forall (x,y) in (0...4,0...4)
Alx,y]l = Blx,y] xor ((not B[x+1,y]) and B[x+2,y]),

L step

A[0,0] = A[0,0] xor RC

return A }

All the operations on the indices shown in the pseudo-code are done modulo 5.
A denotes the complete permutation state array and A[x,y] denotes a particular
lane in that state. B[x,y], C[x], D[x] are 64-bit intermediate variables. The
constants r[x,y] are the rotation offsets, while RC are the round constants.
rot(W,m) is the usual bitwise rotation operation, moving bit at position ¢ into
position ¢ 4+m in lane W (i +m are done modulo 64 — note that 64 is the lane size
for the default variant of KECCAK). 6 is the linear operation intends to provide
diffusion for the state. p is a permutation between bits in the lanes and 7 is a
permutation between the whole lanes. The only non-linear operation is x which
can be treated as a layer of 5-bit Sboxes. Finally, ¢+ xores the round constant
with the first lane. The constants play a vital role in our analysis and it is worth
mentioning that they have the very low Hamming weight. The constants for
the first 5 rounds are: 0000000000000001, 0000000000008082, 800000000000808a,
8000000080008000, 000000000000808b (given respectively in hexadecimal using
the little-endian format).

In our work we often need to refer to a particular bit of the state and we do
that by A(,y,.). The coordinates x,y range from 0 to 4 specifying the lane in
the state and the coordinate z ranges from 0 to 63 specifying the bit number
in the given lane. With this notation we can refer to a state by A, to a lane by
A(3,2), to a value of a single bit by A(; 4, or to a position of a single bit by
(3,1,60).

3 Rotational distinguishers for the KECCAK-f[1600]
permutation

In our analysis we follow the relation between two states (A, A*) which change
through subsequent steps of KECCAK-f[1600] permutation. In particular we are
interested in evolution of a rotational pair of states. Let us define the rotational
pair in the context of the KECCAK-f[1600] permutation.

Definition 1. A pair of two 1600-bit states (A, A< ) is called a rotational pair
when each lane in the state A< is created by bitwise rotation operation of the
corresponding lane in the state A. The operation mowves the bit from the position
(x,y,2) to the position (x,y,z + n), where z + n is done modulo 64. The coor-
dinates x,y range from 0 to 4 specifying the lane in the state and the coordinate



z ranges from 0 to 63 specifying the bit number in the given lane. n is called a
rotational number and is the same for every lane. Thus in the rotational pair

V(x,y, Z) : A(a:,y,z) =A

-
(#,y,2+n)"

Remark 1. Following Definition 1, there are up to 64 possible rotational pairs
including a pair, where A and A* are the same (having n = 0). We will use this
fact in the preimage attack described later in the paper.

In some parts of this work we are interested in the probability that a given
pair is a rotational one or a given pair of corresponding bits preserve the rota-
tional relation. Two following definitions help to formally define this probability.

Definition 2. Set S, is a set of 2% pairs of states which are created by an
operation (some number of steps of KECCAK-f[1600] or their inverse) applied
to all possible rotational pairs. (All possible means 2150 possible rotational pairs
for a chosen rotational number n.)

Definition 3. Probability p?z y.2) is the probability that for a pair of states (A,
A) randomly selected from the set S, we have A, ) # A,

(z,y,24n)"
Dl y.») CON be expressed as Ploys) = 1/2"‘6?1,34,2)' Therefore ife?mﬁy’z) =1/2, the
corresponding bits have opposite values and if 6&, 2) = —1/2, the corresponding

n

(z,y,2) — 0, the bits are independent.

bits are equal. In case €

Fig. 2. Probabilistic relation between bits in a pair of states (4, A7)
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When mounting distinguishers we refer to a random permutation which now
we define formally.

Given a permutation of n-bit sequences, i.e p : {0,1}"™ — {0,1}". The collec-
tion of all permutations over n bit sequences is denoted by P,,. The cardinality
of the set P, is n!l.

Definition 4. Given a probability distribution D,, that assigns the probability
% for each permutation p € P,. A permutation is called random if it is chosen
according to the (uniform) distribution D,,.



For a random permutation we assume that p?w,y)z) follows the binomial dis-
tribution B(t,s) where ¢ is a number of trials and s is a probability of success
and is equal to 0.5. The mean for the binomial distribution equals s - ¢ and the
standard deviation o = /(1 — s)s -t .

To distinguish KECCAK-f[1600] permutation from a random permutation we
check whether the experimental results (for a chosen p, . ) follow the binomial
distribution B(t,0.5). We choose a typical 95% confidence interval and hence
the mean from the experimental sample should be within the range 0.5¢ + 20.
If the mean is beyond that range we conclude that experimental results do not
follow the binomial distribution B(¢,0.5) and hence KECCAK-f[1600] can be
distinguished from a random permutation.

To calculate how the probabilities change through the successive steps of the
algorithm, let us first analyze two basic bitwise operations used in KECCAK.

For the following Lemmas it is assumed that each p(, , .y is independent. Also
we assume that if corresponding bits from (A, A7) are equal, both combinations
(‘00” or ‘11’) have the same probability to be the actual values. The same applies
for combinations with opposite bits (‘01" or ‘10).

Lemma 1 (AND). Given the bitwise AND operation, its input bits a, b and
the output bit out. Then the probability

1
Pout = §(pa + Py _papb)7

where the probabilities p, and py, are defined according to Definition 3.

Lemma 2 (XOR). Given the bitwise XOR operation, its input bits a, b and
the output bit out. Then the probability

Pout = pa + o — 2paps,
where the probabilities p, and py are defined according to Definition 3.

Proofs of the lemmas are given in Appendix.

There is also the bitwise NOT operation in the algorithm but it does not
affect the probabilities. NOT flips the values of the corresponding bits A, ,, »)
and A(; yrtn) but their relation (or precisely speaking the probability of relation
p& y,z)) remains unchanged. Also the bitwise rotation operation (denoted in the
pseudo-code as rot (W,n)) does not change the values of probabilities. It rotates
the bits in the lane so their positions (coordinates z in p?myy’z)) change while
their probabilities p"wh%z) are not changed.

Having explained how the basic bitwise operations change the rotation prob-
abilities, the analysis of the KECCAK-f[1600] steps remains mostly straightfor-
ward. In the transformation 6, there is the XOR operation only, applied a number
of times. Due to the linearity of the XOR operation, the repeated application
of Lemma 2 will give the correct results of calculated probabilities. For the per-
mutations p and 7, nothing needs to be calculated as only the positions of bits



change. In the transformation y, the two Lemma 1 and Lemma 2 are applied. The
last step is the transformation ¢, where the lane (0,0) is xored with a constant.
Xoring with ‘0’ does not change anything. However, if there is ‘1’ at position
m in the constant and a rotational number n > 0, then xoring with a constant
change the probabilities as follows

p?0,0,m) =1 p?0,0,m) and
p?(),O,mfn) =1- p?0,0,mfn)

Ezample 1. Let us consider two 8-bit lanes Ay ) and A(%’O) with the rotational
number n = 3. The lanes have the following binary values: A ) = 00000010
and AZB,O) = 00010000. Because Vz: A(g,0,2) = AZB’O’Z%), then Vz: p?m’y’z) =0
(according to Definition 3). Now if both lanes are xored with 8-bit constant
C = 00000001, new values of lanes are A o) = 00000011 and AEB,O) = 00010001.
Rotational relation has been spoilt at two positions (0 and 5), therefore the
probabilities p?ooo) and p?0,0,5) are now equal to 1. In KECCAK-f[1600] the

constants are 64-bit long but the reasoning shown above is still valid.

3.1 4-round distinguishers

We build a 4-round rotational distinguisher and show that after 4 rounds, there
are some coordinates (z,y, z) and the rotational number n for which p?T %) does
not follow the binomial distribution B(t,0.5). Figure 3 illustrates an evolution of
rotation probabilities. A single square represents a value (or a range of values)
of the probability p(z y.2)" Usually in this paper, we refer to a lane by its two
coordinates (z,y). However here for the sake of diagram readability instead of 5x5
matrix of lanes there are 25 rows, each representing a single lane. For example,
a value of p?O,l,O) is represented by the leftmost square in the sixth row and
p& 1,63) is represented by the rightmost square in the last (25th) row.

In the beginning, all corresponding bits from a rotational pair are equal so
V(x,y, 2 p(gC vz 0. After the first application of ¢, some probabilities p(z .7)
change and in tﬁe subsequent steps these changes propagate and influence other
bits. For most rotational numbers n, there are some probabilities p?L y.2) devi-
ating from 0.5 until the end of the 4th round. According to our calculations,
at the end of 4th round the probability p?fi 414) = 0.5625. To verify the distin-
guisher we chose randomly 10000 rotational pairs and ran them on the 4-round
KECCAK-f[1600]. The mean from that sample was equal to 5682 (for 5682 rota-
tional pairs bits had different values). For a random permutation which follows
the binomial distribution B(10000,0.5), the mean equals 5000 and the stan-
dard deviation equals 50. Thus the mean from the experiment on the 4-round
KECCAK-f[1600] should be within the range 5000 + 2 - 50 and clearly 5682 is
beyond that range. Hence we conclude we have a distinguisher for the 4-round
KECCAK- f[1600] permutation.

We could not directly extend the distinguisher to 5 rounds because after 6
in the 5th round all p&,y)z) =0.5.



Fig. 3. Evolution of probabilities pZ> through 4 rounds of KECCAK-£[1600].
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3.2 Extension to 5-round distinguisher

To extend the distinguisher to 5 rounds, we show that correlation between some
corresponding bits from A and A deviates from what is expected from random
permutation. Let us first give an observation which helps to mount the 5-round
distinguisher.

Observation 1 Consider two bits (A(z,y.z), A(z,y,2)) from state A which are in
the same column and let us assume that we know the probability that A, , .y #
Az, ,2))- Our point is that 6 does not change this probability. It is because 0
treats each bit within a column in the same way: either it flips all 5 of them or
it leaves them unchanged.

We can use this observation in our rotational analysis. The difference is that

now we look at relations in one pair (A, . 2), A(: Y Z+n)) and the second pair
(A(z,y,2)s Az, 24n))- Each of these two pairs has the relation between its bits

(that is bits have either the same or opposite values). We are interested whether
the relations are the same in both pairs, specifically the probability that rela-
tions are the same in both pairs. For a random permutation this probability
has the binomial distribution B(¢,0.5). If we can show that for the 5-round
KECCAK-f[1600] experimental results do not follow this distribution, then we
have a distinguisher.

First we determine a rotational number n for which p?z’yyz) and p?m_’y,_rz)
have the highest deviation from 0.5 at the end of the 4th round. It turns out
that for n = 63, p?§,1,37) and p?§,2,37) is the best pair* (p?gl)?m = 0.5625 and
p?§’72737) = 0.49219).

Now let P, denotes a probability that in the first pair (A, .), A

—
(z,y',2+4n)

—
(r,y72+n))
and in the second pair (A, ), A ) is the same relation. That is the

probability:
Pe =0y Ploysy (1= Ploy) 1 = Ploy 2)
We can calculate P, for the chosen pair p?§,1,37) and p?23¢2737)'
P. =0.5625 - 0.49219 + (1 — 0.5625)(1 — 0.49219) = 0.49902375

This is the P. value at the beginning of the 5th round. Then we have to ex-
amine how the steps in the algorithm change this probability. As explained in
Observation 1, 6 does not change this value. Subsequent algorithm steps p and
7 also do not change P, value, they only change a position of P, which now
refers to different pairs of bits (A 2,43), AH,2744)) and (A(2,0,16) AEE,O,N))' Af-
ter that there is x which preserves the relation between the first pair and the
second with a probability equals 0.53125. The reason that this value deviates

* An anonymous reviewer pointed that a better pair can be found, that is p%’oﬁ)
and p?&gﬁ). It improves the distinguisher by a factor of 4.



from 0.5 is that x is a non-linear operation and precisely the bitwise AND oper-
ation which introduces the bias. All the details on how this value is calculated
are given in Appendix. Finally, ¢ does not affect our analysis here. Therefore, to
have our pairs with the same relation at the end of the 5th round, there are two
ways this event may occur. Either the pairs enter into the 5th round with the
same relation and y does not spoil it or they enter into the 5th round with the
opposite relation and x ‘fixes’ it. Then the total probability P, for the chosen
pair at the end of the 5th round is:

P, =0.53125 - 0.49902375 + (1 — 0.53125) - (1 — 0.49902375) = 0.499938984

For a random permutation, P, follows the binomial distribution with the
probability of success s = 0.5 — very close to 0.499938984. Then the bias for
5-round KECCAK-f[1600] is expected to be very small. To experimentally verify
and observe the bias we need to check many rotational pairs. A sufficient number
of rotational pairs m is calculated from Chernoff bound [7] and can be expressed
as the following inequality:
> L 1 1
=P 052 e

where € is the probability of an error of the bound (typically set to 0.05). From
the inequality we have m > 402 332890 ~ 2286 and in the experiment we checked
403 000 000 rotational pairs. The distinguisher we implemented can be described
in a few short steps:

m

1. Generate randomly 403 000 000 rotational pairs
2. For each pair
(a) Run 5-round KECCAK-f[1600] on the state A and the state A ;

(b) if (Aq1,2,43) ® Al 2.00) ® A20,16) B Ay 0,17) = 0) then
mean := mean + 1;

The mean from the experiment was equal to 201 450 503. For a random per-
mutation which follows the binomial distribution B(403 000000,0.5), the mean
equals 201500000 and the standard deviation equals 10037. Thus the mean
from the experiment on the 5-round KECCAK- f[1600] should be within the range
20150000042 -10037 and 201450 503 is beyond that range. Hence we conclude
we have a distinguisher for the 5-round KECCAK- f[1600] permutation.

3.3 5-round distinguisher with lower complexity

The idea allowing us to reduce the complexity of the 5-round distinguisher is
to start not from a rotational pair of states but from the pair of states (called
‘good’ states) which after one round gives the rotational pair. First diagram in
Figure 4 shows the structure which is used to generate a pair of ‘good’ states.
Now we explain how we construct this structure. (A rotational number n is set
to 63 in the following explanation but for any other n the logic of construction
stays the same.)

On the way to the rotational pair from a pair of ‘good’ states the following
should happen:



Fig. 4. 1-round transition to a rotational pair. A rotational number n set to 63.
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rotational pair after ¢, there have to be p?go 0 =L p?go ;) = 1 and for all

63

other p )= 0 before ¢ step.

(z,y,2
e We want that p?g,o,o) =1, p?g”O’l) =1 and all other P?ﬁ,y,z) = 0 are going to
x and x does not change any of p?i”%z). This way ¢ gets the right p?i”yvz) to

produce the rotational pair.

However y is a non-linear operation and to have the condition fulfilled, some
Az,y,2) and AZ;,WJFM have to be fixed. To have values fixed at this point it has
to be taken under consideration at the beginning of the first round. Once we
know the relation of the states A and A< before x step, it is easy to go back till
the beginning of the round. It is because 7, p and 6 are all linear operations and
they change the rotational relation with probability 1. Thus we simply invert

these three operations to get the rotational relation at the beginning of the first



round. Figure 4 shows a 1-round transition to a rotational pair where exact
positions of the fixed bits are marked. The values of fixed bits which lead to this
transition are given in Appendix.

We hoped that this 1-round transition to a rotational pair would give one
more round in the distinguisher. However it is not the case and the problem is
that the constant of the second round has the Hamming weight 3 (and not 1 as
for the first round). More 1’s in the round constant introduce more pj’, gy = 1
which subsequently cause more p( y.2) with undesirable value of 0.5. Yet this 1-
round transition can be used to lower the complexity of the 5-round distinguisher.
Similarly as in the distinguisher from the previous section, we are interested in
the pair of p&’y’z) at the end of 4th round which are in the same column and
whose values deviate from 0.5. For a rotational number n set to 63, we find an
excellent pair where both p?i&ﬂ) and p?i 4.22) are equal to 0. We calculate P,
in exactly the same way as in Section 3.2 but this time the total probability
P, is much higher and is equal to 0.53125. Putting this value to the Chernoff
inequality, we calculate the number of pairs m needed to detect the bias and
obtain m > 1534 ~ 2!! | Around 2'! needed pairs make the complexity of the
distinguisher roughly equal 212.

Trying to win more rounds by ‘going backwards’ by 2 (or more) rounds is
problematic. Either we end up with all fixed bits at the beginning of the distin-
guisher (then in fact is not a structural distinguisher any more), or if we assume
that transitions can be probabilistic the complexity of the distinguisher becomes
much higher than the complexity of the generic ‘attack’. We also tried the ap-
proach where each undesirable p( ) = = 0.5 becomes 0 with probability 271
However, we could not reach anythmg better than 5 rounds without exceeding
the generic complexity.

4 Preimage attacks on round-reduced KECCAK

First, we describe the preimage attack on 3-round KECCAK-512 which is based
on the rotational distinguisher given in the previous section. Then we show how
to extend the attack to 4 rounds. To have the attack working on KECCAK hash
function, we have to consider padding and KECCAK parameters. Let us consider
KEccAK-512 which has r = 576, ¢ = 1024 and a hash length set to 512 bits. For
the preimage attack we propose the following structure of the message. A message
length is 574 bits, where first 8 lanes (512 bits) are unknown (to be determined
by the attacker). Last 62 bits of the message are set to 1. The message is padded
with two 1’s giving a block of 576 bits. This way we fulfil a condition that all
lanes (except first 8 lanes) have all 0’s or 1’s. We would use similar constraints
on a message when attacking KEcCcak with different parameters (including all
KECCAK variants proposed as SHA-3 candidates).

4.1 3-round preimage attack

The goal of our attack is to find a preimage for a given 512-bit hash h. In the
structure of the message described above we have 512 unknown bits, then we



can expect that among 2°'2 possible messages there is, on average, one with a
given hash. The main idea of our attack is to find a rotational counterpart of
the preimage and show that the workload for this task is below exhaustively
trying all 2°'2 values. Once we have a rotational counterpart of the preimage,
we simply rotate it back and get the preimage.

As stated in Remark 1, for a given state there are up to 64 possible rotational
pairs (including the identity function). There are 512 unknown preimage bits in
the state A, then the probability that we guess one of the rotational counterpart
A< is 27712 .64 = 27596, Thus we need 2°°¢ guesses. There is a subtlety here
which should be mentioned. There are some messages which have fewer than 64
rotations. These ‘special’ messages have a cyclic pattern. For example a message
starting with four 0’s then four 1’s, then four 0’s and so on. However, the number
of ‘special’ messages is relatively small in comparison to 2°12. It can be shown
there are 2256 such messages for our case. (See Appendix for detailed analysis.)
For simplicity, we can start our attack with checking 22°6 these special messages.
Then there are still almost 2512 possibilities left, but at least we are sure that in
this poll each state gives 64 rotational pairs.

To make our attack working, at the end of the 3rd round we need some
p?‘z’yvz) =0 or p?'w)%z) = 1 for each rotational number n. In the precomputation
phase of the attack we generate 64 diagrams (the same as shown in Figure
3), each with a different rotational number n. From these diagrams for each
rotational number n we make a list of 10 sets of coordinates (z,y, z) for which
p?z’yyz) equals 0 or 1 at the end of the 3rd round. Please note that we have to
consider only (z,y, z) such that 642+ 320y + 2z < 512 because the attacker knows
only 512 bits of a hash (not the whole 1600-bit state).

Here is the main loop of the attack given in the following pseudo-code:

1. guess first 8 lanes (512 bits) of the state A, the other bits are fixed according
to the structure of the message given above.

2. run 3-round KECCAK-f[1600] on the state A*.

3. for n:=0ton <64 do

(a) candidate := true;

(b) for all 10 sets of coordinates (x,y, z) being on the list created in pre-
computation do

if (p?z’yyz) =0)and (A, # AZ;%ZJF")) then candidate := false;
if (p?z’y’z) =1)and (A, = Aa,y,ern)) then candidate := false;

(c) if (candidate=true) then rotate back the guessed state by n bits and
run 3-round KECCAK-512 on it to check whether the state is the preim-
age of a given hash.

(@,2)
the actual values of A (the given hash) and A* state (a result of 3-round

KECCAK-512 on a guessed state). So, for example, if p?23 ) = 0, then the

The attacker compares the probabilities p from the distinguisher with



bits Az 31) and Aa371+n) have to be the same. If the bits are different, then
the candidate is rejected as a potential rotational counterpart of the preimage.
(It is the point in the pseudo-code where a variable candidate becomes false.)
As said earlier, running the main loop 2°°¢ times, we should get one rotational
counterpart of the preimage. It could be the case that our guess (candidate) of
a rotational counterpart is not rejected, but in fact it is not a rotational coun-
terpart. Let us call it a false positive candidate. There will be many such false
positive candidates and the number of them is calculated as follows. For each
rotational number n there is a list of 10 sets of (x,y, z) (created in precomputa-

tion) for which p?z v.2) equals 0 or 1. A probability that we hit on a candidate
for which all 10 values of p& y.z) are the same as on the list is 2710, Hence there

will be around 2512 /210 = 2502 false positive candidates to check.

Now let us analyze the workload of inner loops. For each candidate there
are 64 rotational numbers n, and for each n there are 10 sets of coordinates to
check. Checking one set of coordinates can be implemented with 3 bitwise XOR,
operations. So the workload of inner loops is roughly 64 - 10 - 3 = 1920 XOR
operations. This workload is negligibly small as in the single step 6 (in a single
round) there are 3200 bitwise XOR operations.

Summing up, the workload of the attack is 2256 (checking special messages) +
2596 (main loop) + 2°92 (checking false positive candidates). Thus complexity of
the attack is roughly 2°°¢ KECCAK-512 calls, 64 times better than the exhaustive
search.

4.2 Extension to 4-round preimage attack

A direct extension of the attack to 4 rounds is not possible since there are not
any p?x vz) = 0 or p?z vz) = 1 at the end of the 4th round of the rotational

n

(5,y,2) €quals 0 or 1 for mounting

distinguisher. (As said earlier, we need some p
the attack.)

It is easy to notice from Figure 3 that ¢ flips some pfj, , ., and in consequence

it leads to undesirable p?I 5 = 0.5. Then if we could limit this effect, hopefully
some pf‘aj v2) = 0 or p’(; 2) = 1 would be kept till the end of the 4th round and

make the attack work for 4 rounds. To realize this, we do the following. We trace
the rotational relations between A and A* (as in previous sections), but this
time A% is run on the modified version of KECCAK- f[1600] — KECCAK- f[1600]
without ¢. Such a modification leads to the following observation.

Observation 2 In Example 1, Section 3 it was shown that application of ¢ to
A and A% states flips the value p?%y’z) for some triples (z,y, z). Our point is
that if we do not apply ¢ to an A* state, there will be half as many flips. (It
is not a general rule but for constants with very low Hamming weight there are
roughly half as many flips.) Let us see a simple example.

Ezample 2. Let us consider two 8-bit lanes A gy and AEB 0) with the rotational

number n = 3. The lanes have the following binary values: Ay o) = 00000010



and AEE 0 = = 00010000. Now A o) is xored with 8-bit constant C' = 00000001
and A (0.0) is left without changes Then we have Ay = 00000011 and the
unchanged A(o 0 = = 00010000. Therefore a rotational relation has been spoilt at
only one position so now p(o,o,o) is equal to 1. In KECCAK-f[1600] the constants
are 64-bit long but the reasoning shown here stays the same.

Now is the key point. As stated earlier, fewer flips lead to fewer p(I v.2) with
undesirable 0.5 value. In consequence, now in the 4th round there are 9 triples
(z,y, z) for which p( =0or p{, ., ) = = 1. These triples fulfil the condition
64x + 320y + 2 < 512 as the attacker is given only 512 bits of a hash. In fact
p&yyz) 0 or p(z_’yyz) = 1 are not at the end of the 4th round but before x in the
4th round. (Step x destroys these desirable probabilities.) Fortunately, we can
invert ¢+ and x from the given hash as y operates on the rows independently and
can be inverted on a row-by-row basis. In Appendix we give a diagram showing
how the probabilities p&,y,z) evolve and propagate in the modified version of
KECCAK- f[1600] without ¢.

In precomputation phase we generate the list of sets of coordinates in the
very similar way as described for the 3-round attack. The only difference is that
now we use the diagram dedicated to the modified version of KECCAK-f[1600]
(without ¢). The diagram and exact positions where Pls.y,z) €quals 0 or 1 is given
in Appendix. Also in precomputation we invert ¢ and x of the 4th round from
the given hash (since these desirable p?m’yvz) are before y in the 4th round, x
destroys them). The result of the inversion is now our state A to which we refer
in the pseudo-code of the attack.

Here is the main loop of the attack given in the following pseudo-code:

1. guess first 8 lanes (512 bits) of the state A%, the other bits are fixed according
to the structure of the message given above.

2. run 4-round modified KECCAK-f[1600] on the state A

3. for n:=0ton <64do

(a) candidate := true;

(b) for all 9 sets of coordinates (x,y, z) being on the list created in precom-
putation do

if (p(, ..y =0) and (A(yy ) # A(, , .. ,,)) then candidate := false;
if (p&’y’z) =1)and (A, = AZ; v, Z+n)) then candidate := false;

(c) if (candidate=true) then rotate back the guessed state by n bits and
run 4-round KECCAK-512 on it to check whether the state is the preim-
age of a given hash.

The main loop of the 4-round preimage attack on KECCAK-512 is very similar
to the 3-round variant, they differ only in a few places. In Step 2 of the pseudo-
code instead of running a normal, full 4-round KECCAK-f[1600], we run the
modified version without ¢ (in all 4 rounds) up to x in the 4th round. Finally,



there will two times more false positive candidates as there are only 9 triples
(z,y, z) for which Py =008 Pl ) =1 The complexity of the attack stays
the same as in the 3-round attack. That is 2256 (checking special messages) +
2596 (main loop) + 2593 (checking false positive candidates), which is amounts
roughly to 2°%6 evaluations of the 4-round KECCAK-512.

For KECCAK-512, the preimage attack is better than the exhaustive search by
a factor of 26. The same gain can be achieved in the attack on KECCAK-384. Our
preimage attack works also on KECCAK-256 and KECCAK-224 but the gain is
slightly smaller for these variants. The reason is that there are more false positive
candidates to check. It is because an attacker knows fewer bits of a hash (a hash
is shorter in these variants) and hence there are fewer triples (z,y,2) (fewer
than in KECCAK-512 and KECCAK-384) for which p?@,’yyz) =0or p?x,%z) =1.
Consequently, the complexities of the preimage attacks on KECCAK-224 and
KECCAK-256 are 222! and 2252, respectively.

Please also note that if we try to attack KECCAK variant with higher bitrate
r (e.g. a variant with » = 600, ¢ = 1000, and a hash length equals 512), the
claimed security for this variant is 2¢/2 = 2590, In such a case our attack would
not be actually an attack as its complexity is higher than the claimed security
provided by designers.

We could not extend the attack to 5 or more rounds because in the 5th round

all p&,’y&) = (0.5, while for the attack we need some p?z’y’z) =0or p?z’y’z) =1.

5 Conclusion

In this paper we have presented the rotational distinguisher for KEccAK-f[1600]
permutation — the main building block of the KECCAK hash function. The dis-
tinguisher has been enhanced with the correlation analysis, allowing us to reach
5 rounds with the complexity of 2'2. We have implemented and verified the
distinguisher and experimental results have been consistent with the theoretical
model. A family of 4-round distinguishers helps us to mount the 4-round preim-
age attack on KECCAK-512 variant with the complexity of 2596, All the presented
attacks are valid for all the KECCAK variants submitted as SHA-3 candidates.
As future work, it would be interesting to investigate whether the differential
rebound attack could improve the rotational distinguishers. These two types of
analysis (rebound and rotational) were combined in the attacks on Skein hash
function [13].
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Appendix

Proof of Lemma 1

Analyzing the AND operation we consider two pairs of input bits. A pair from an
A state and its counterpart from an A" state. There are 16 possible combinations
of pairs and we group them in fours. We assume that all pairs of bits inside
the groups are uniformly distributed. It is shown in Figure 5. Probabilities of
getting the given group are also shown. The most inner circles represents pair
of output bits (one bit from an A state and its counterpart from an A% state).
It is clear from Figure 5 that four paths lead to a circle with output bits having
opposite values (pairs (0,1) and (1,0)). Actually, one path has probability 0 thus
a calculation of P,,: (a probability that output bits have opposite values) comes
down to adding probabilities of the three paths. We have:

1 1
= —(pa + Db — Pab)

1 1
Pout:papb~*+(17pa)pb~*+(lfpb)pa-5 5

2 2

Fig. 5. All possible ‘paths’ for the bitwise AND operation for rotational pairs of bits.

Proof of Lemma 2

Proof of Lemma 2 is the same as for Lemma 1. The only difference is that now
there are only two paths leading to a circle with output bits having opposite



values. It is shown in Figure 6. We have:

Pout = (1= pa)pe - 1+ (1 = pp)pa - 1 = pa + Py — 20aps

Fig. 6. All possible ‘paths’ for the bitwise XOR, operation for rotational pairs of bits.

Probability of relation preservation by x

We are given two pairs of bits (A1 2 43), AH,2,44)) and (A(2,0,16), Ag,0,17))' Each
of these two pairs has the relation between its bits (that is bits have either the
same or opposite values). We can also look at relation between pairs and there
are two possibilities: either the same relation in both pairs or different relation in
each pair. For example a pair (0,1) and a pair (1,0) means that relations in both
pairs is the same (bits are different in pairs). We are interested in a probability
that x preserves the relation between pairs. xy changes the values of bits in the
following way.

A(1’2’43) = A(1’2’43) XOR (A(2’2’43) AND A(3’2’43)) first rotational pair
AH,2,44) = AH,2,44) XOR ( (3,2,44) AND A(Ts,z,44))
A(2,0,16) := A(2,0,16) XOR (A(3,0,16) AND A(4,0,16))

second rotational pair
A(E,o,m = A(Zo,m XOR (Ag,o,17) AND A(Zo,n))}

To keep the relation between bits A(; 5 43) and AEQ 44y from the first pair,
the result of the AND operation has to be the same in both equations from the



first pair. The probability of such event can be calculated from Figure 5. We add
probabilities (paths) leading to the left, inner circle. (This circle represents the
output bits with the same values.) Then a probability is:

1 1 1
P = (1—pa)(1—pb)-1+papb-§+(1—pa)pb~§+(1—pb)pa-5

In the 5th round, after 6 all p?m’y’z) = %, then a numerical value of p is:
1 1 111 1.11 1.11 5
P=1-21-2)1+=--+1-2)==4+(1—-2)z= ==
( 2)( 2) +222+( 2)22 ( 2)22 8

For the second rotational pair calculations are exactly the same with the
result of g. The event that y preserves the relation between the first and second
pair can happen either when the relation in each pair is preserved or the relation
in each pair is spoilt. Thus the probability of this event is equal to:

5 ) 34
1--)(1-<)=— =0.5312
+( 8)( 8) o 0.53125

oo| Ut

5
Pe'uent = g :

Values of fixed bits in the distinguisher from Section 3.3

Bits given in tables below are set to 1. All other fixed bits which are not listed
below (but are marked as fixed in Figure 4) are set to 0.

Bit |Value Bit |Value
A(4,4,50) 1 A(g,3,21) 1
Auasy| 1 Gosn| 1
Alasn| 1 AGssy| 1
Ap22n| 1 (3oso)| 1

(%,3721) 1 873750) 1
AEB,O,22) 1 (?,0’52) 1

672,22) 1 AE,2,52) 1
Aosay| 1 (asy| 1

(0.4,22) 1 AGasy| 1
Ag,o,zo) 1 (%,2,51) 1

(2320 1 Alssy| 1
A5,2,21) 1

As a consequence of such settings, after m some bits have also fixed (known)
values. Specifically, A(1,,0) and Ay ,1) with their rotational counterparts are
equal to 0. Also A(49,0) and A4 0,1) with their rotational counterparts are fixed,
equal to 1. With this known values we are sure that the non-linear x changes
the states into the desirable rotational relation, as shown in Figure 4.



Calculation of a number of special messages

According to Definition 1 and Remark 1, for a given state A there are up to
64 possible rotational pairs (including an identity function). There are some
messages which have fewer than 64 rotations. These special messages must have
a cyclic pattern (e.g. alternating four 1’s and four 0’s) in all lanes. All 0’s or all
1’s in the given lane are also considered cyclic here. Please note that if at least
one lane in a state A is not cyclic then there are exactly 64 possible rotational
pairs (A, A¥). It is because this non-cyclic lane is distinct for each rotational
number n and consequently the whole A< will be distinct.

For a 64-bit lane there are 232 cyclic patterns. In our preimage attack there
are 8 unknown lanes in the A state (remaining lanes are fixed and cyclic), so the
number of combinations of cyclic patterns in these 8 lanes is: 232232 ... 232 =

8 factors

2256 And hence the number of special messages is 22°6.

Evolution of probabilities p?w v,2) in the modified KECCAK variant

Figure 7 shows how probabilities p& v,2) change in the modified KECCAK variant
(without ¢). The variant was used in 4-round preimage attack. Please note that
in the 4th round, after €, there are still p?$7y7z) =0or p?z’yyz) = 1 which is the
key observation for the 4-round preimage attack.



Fig. 7. Evolution of probabilities p{,, , ., in the modified KECCAK variant.
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