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Abstract. We consider tweakable blockciphers with beyond the birth-
day bound security. Landecker, Shrimpton, and Terashima (CRYPTO
2012) gave the first construction with security up to O(22n/3) adversar-
ial queries (n denotes the block size in bits of the underlying blockcipher),
and for which changing the tweak does not require changing the keys for
blockcipher calls. In this paper, we extend this construction, which con-
sists of two rounds of a previous proposal by Liskov, Rivest, and Wagner
(CRYPTO 2002), by considering larger numbers of rounds r > 2. We
show that asymptotically, as r increases, the resulting tweakable block-
cipher approaches security up to the information bound, namely O(2n)
queries. Our analysis makes use of a coupling argument, and carries
some similarities with the analysis of the iterated Even-Mansour cipher
by Lampe, Patarin, and Seurin (ASIACRYPT 2012).
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1 Introduction

Tweakable Blockciphers. Tweakable blockciphers (TBC), introduced by Lis-
kov, Rivest, and Wagner [12], are families of (efficiently invertible) permutations
indexed by two functionally distinct parameters: the key (as usual for a block-
cipher) and the tweak. Phrased differently, a TBC is a family of blockciphers
indexed by a tweak. The tweak is usually seen as a public parameter bringing
more versatility to the blockcipher, and in particular is assumed to be under
control of the attacker when defining security for a TBC.

There are very few constructions of blockciphers which are tweakable “by-
design”. The notable examples are the Hasty Pudding cipher [21], Mercy [3], and
Threefish, the blockcipher underlying the Skein hash function [6]. See also Gold-
enberg et al. [7] who considered how to incorporate a tweak in a Feistel structure.
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Most of the time however, proposed constructions start from an existing block-
cipher (which is assumed to be a secure strong pseudorandom permutation) and
build on top of it (in a black-box way) a new family of permutations admitting
a tweak. An important property of a TBC is that changing the tweak should
be very efficient (this is required for example for applications such as disk or
database encryption). Most of the time, changing the key in a blockcipher is
a costly operation. Hence, TBC designs where a change in the tweak implies
a change in the keys used for calls to the underlying blockcipher tend to be
avoided.

Simple constructions of tweakable blockciphers, such as the two proposals
made in the original paper by Liskov et al. [12], or the XE and XEX construc-
tions by Rogaway [20], are usually proven secure up to the so-called birthday
bound (BB), i.e. up to O(2n/2) adversarial queries for a blockcipher with n-bit
block length. The first proposal with beyond BB security was made by Mine-
matsu [16], however the construction suffers from a restricted tweak length and
requires rekeying the blockcipher when changing the tweak. More recently, Lan-
decker, Shrimpton, and Terashima [11] considered chaining two rounds of the
second proposal by [12] (called LRW2 in [11]), which works as follows: given a
blockcipher E with keyspace K and an ε-AXU2 family of functions H, the TBC
constructed from E through the LRW2 construction has key space K ×H, and
given a key k ∈ K and a function h ∈ H, the encryption of x with tweak t is
given by Ẽk,h(t, x) = h(t)⊕ Ek(x⊕ h(t)). Landecker et. al. named CLRW2 the
construction resulting from the chaining of two LRW2 constructions, namely:

Ẽ(k1,k2),(h1,h2)(t, x) = h2(t)⊕ Ek2

(
h1(t)⊕ Ek1

(
x⊕ h1(t)

)
⊕ h2(t)

)
.

They proved that the resulting TBC is secure (against adaptive chosen-plaintexts
and ciphertexts attacks) up to O(22n/3) queries. Moreover it admits arbitrary
tweaks (by choosing a suitable family H) and does not require rekeying the
blockcipher E when changing the tweak, hence resulting in a very interesting
design.

Contributions of this Work. In this paper, we extend the work of Landecker
et al. [11] by considering longer chains of the LRW2 construction, with the hope
that security increases with the number r of rounds (see Figure 1 for an idea
of the construction). We simply call this the CLRW construction with r rounds
(r-CLRW for short). And indeed, we show that asymptotically as r goes to +∞,
the r-CLRW TBC achieves security up to O(2(1−ε)n) adversarial queries. More
precisely, we show the following:

– first, against non-adaptive chosen-plaintexts (NCPA) adversaries, r-CLRW
achieves security up to O(2rn/(r+1)) queries;

– then, we prove a general “two weak make one strong” composition theorem
for TBCs stating that, given two TBCs Ẽ and Ẽ′ secure against (information-
theoretic) NCPA adversaries, the composition Ẽ′−1 ◦ Ẽ is secure against
adaptive chosen-plaintexts and ciphertexts (CCA) adversaries (care must



be taken in how the tweak is handled when composing). We then use this
theorem to prove that r-CLRW achieves security up to O(2rn/(r+2)) queries
against CCA adversaries (in other words, it is a strong tweakable pseudo-
random permutation up to this number of queries).

Our proof technique for the first part (NCPA adversaries) of the proof uses
a coupling argument. The coupling technique is a very useful tool for upper
bounding the statistical distance of the distribution of the outputs of an iterated
structure to the uniform distribution, and was previously used in cryptography
in [17,18,8]. More specifically, our analysis carries some similarities with the
analysis of the iterated Even-Mansour cipher by Lampe, Patarin, and Seurin [10],
with important differences though. The iterated Even-Mansour cipher [5,2] (also
called key-alternating cipher) is the construction of a blockcipher in the random
permutation model defined as follows: given r public permutations P1, . . . , Pr on
{0, 1}n, encryption of x is computed as:

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P1(k0 ⊕ x) · · · )) ,

where k0, . . . , kr are r + 1 keys of n bits.3 This construction was shown to be
secure (against CCA adversaries) up to O(2n/2) queries for r = 1 in [5], and up to
O(22n/3) queries for r = 2 in [2]. Later, Lampe et al. [10] showed, using a coupling
argument, that the construction is secure up to O(2rn/(r+1)) queries against
NCPA adversaries, and up to O(2rn/(r+2)) queries against CCA adversaries.

Though these results sound similar to ours, the two settings are quite differ-
ent. Namely, in the Even-Mansour setting, internal permutations P1, . . . , Pr are
publicly accessible by the adversary, whereas in the CLRW setting, Ek1 , . . . , Ekr
remain “hidden” in the construction. On the other hand, in the Even-Mansour
setting, keys are drawn at random at the beginning of the security experiment
and fixed afterwards, whereas in the CLRW setting, values hi(t) (which may
be seen as the analog of keys in the iterated Even-Mansour cipher) can be “re-
freshed” by the adversary through the tweak t. Yet, in both settings, problems
that have to be handled in the security proof are collisions at the input of the
internal permutations (but the way the adversary provokes such events in both
settings is quite different).

Application to MAC and Authenticated Encryption. In [11], the authors
defined a nonce-based MAC construction from a TBC called TBC-MAC2 (this
is a variant of a previous proposal by [12] called TBC-MAC). This construction
preserves the security of the underlying TBC. When instantiated with r-CLRW,

3 We remark that the iterated Even-Mansour cipher can be modified to use only r
keys (k1, . . . , kr) as follows: the encryption of x is computed as the composition of r
rounds of the single-key construction x 7→ ki⊕Pi(x⊕ki). The resulting construction
is then the strict analog of r-CLRW. Moreover results of [10] carry over to this
construction.



this directly yields a secure MAC (i.e. a secure PRF) up to O(2rn/(r+2)) queries.4
MAC schemes with security beyond the birthday bound are quite rare, and two
notable examples have been given by Yasuda [24,25]. Dodis ans Steinberger [4]
also gave an example with security close to O(2n) queries. Their construction
is more complex, but relies only on the weaker assumption that the underlying
blockcipher is unpredictable.

Besides MAC schemes, the r-CLRW construction can also be used to ob-
tain an authenticated encryption scheme with security close to the information
bound: for example, the OCB1 construction by Rogaway [20] gives an authenti-
cated encryption scheme from a TBC with a tight security bound.

Open Problems. We conjecture that our NCPA bound in fact also holds for
CCA adversaries, i.e. that the r-CLRW construction is secure up to O(2rn/(r+1))
queries against CCA adversaries. We think that this is probably the main open
problem regarding the construction since for r small, this makes a meaningful
gap in the bound. For example, we prove security up to O(23n/4) queries against
CCA adversaries only for 6 rounds, but we conjecture that this already holds
for 3 rounds. We note that the corresponding problem is equally open for the
iterated Even-Mansour cipher. In a recent preprint [23], Steinberger showed that
the iterated Even-Mansour cipher with 3 rounds is secure up to O(23n/4) queries
against CCA adversaries. We are currently unable to transfer his proof technique
to the r-CLRW construction for r = 3.

We also stress that we view our security proofs more as a feasibility result
than a practical one. Indeed, as soon as r is more than 4 or maybe 5, the key size
and the number of blockcipher calls of the resulting construction will become
too large to be reasonably practical. We think however that it is interesting to
see that a relatively simple construction enables to approach the information
bound. Moreover, improvements may come which will make the construction
more efficient or even practical for larger values of r.

Organization. We define the notation and give some useful definitions in Sec-
tion 2. Then, in Section 3, we prove our security result for r-CLRW against
NCPA adversaries. Finally, in Section 4, we prove our composition theorem for
tweakable blockciphers and apply it to characterize the security of r-CLRW
against CCA adversaries.

2 Preliminaries

2.1 Notation and Security Definitions

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. When S is a non-
empty finite set, we write s ←$ S to mean that a value is sampled uniformly
4 The security of TBC-MAC2 relies on the security of the underlying TBC against

adaptive CPA adversaries. We do not have a better bound for r-CLRW against such
adversaries than against adaptive CCA ones.



at random from S and assigned to s. By AO1,O2,...(x, y, . . .)⇒ z we denote the
operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1,O2, . . . (possibly none), and letting z be the output.

For a set D, we note Perm(D) the set of permutations of D, and we use
Perm(n) to denote the set of permutations of D = {0, 1}n. For two sets D
and K, we denote BC(K,D) the set of blockciphers with domain D and key
space K, i.e. the set of functions E : K × D → D such that for all k ∈ K,
Ek := E(k, ·) ∈ Perm(D). For three sets D, K, and T , we denote TBC(K, T ,D)
the set of tweakable blockciphers with domain D, key space K, and tweak space
T , i.e. the set of functions Ẽ : K × T × D → D such that for each tweak
t ∈ T , Ẽ(·, t, ·) ∈ BC(K,D). We will use Ẽk(·, ·) as a shorthand for Ẽ(k, ·, ·). We
denote BC(K, n) (resp. TBC(K, T , n)) the set of blockciphers (resp. tweakable
blockciphers) with domain D = {0, 1}n. The perfect cipher over D is defined as
the (inefficient) blockcipher whose key space is Perm(D). In the following, when
the domain is clear (D = {0, 1}n most of the time), we will simply denote E∗ the
perfect cipher over D. Sampling a random key for E∗ simply means sampling a
random permutation over D.

Fix an integer q ≤ |D|. Given a tuple t = (t1, . . . , tq) ∈ T q, we will denote
Ωt ⊂ Dq the set of possible inputs x = (x1, . . . , xq) ∈ Dq such that all pairs
(ti, xi) are pairwise distinct:

Ωt = {x := (x1, . . . , xq) ∈ Dq : (xi, ti) 6= (xj , tj),∀i 6= j} .

Let D,K, T be sets, E ∈ BC(K,D) a blockcipher and Ẽ ∈ TBC(K, T ,D) a
tweakable blockcipher. An adversary A is said to be non-adaptive if it chooses
all its queries (possibly randomly) before issuing the first one, and adaptive
otherwise. For any q, τ , we define the following advantages (where, depending
on the security experiment, one has k ←$ K, π ←$ Perm(D), or π̃ ←$ BC(T ,D)):

Advncpa
E (q, τ) = maxA

∣∣Pr
[
AEk(·) ⇒ 1

]
− Pr

[
Aπ(·) ⇒ 1

]∣∣
Advcca

E (q, τ) = maxA
∣∣∣Pr
[
AEk(·),E−1

k
(·) ⇒ 1

]
− Pr

[
Aπ(·),π−1(·) ⇒ 1

]∣∣∣
Advñcpa

Ẽ
(q, τ) = maxA

∣∣∣Pr
[
AẼk(·,·) ⇒ 1

]
− Pr

[
Aπ̃(·,·) ⇒ 1

]∣∣∣
Advc̃ca

Ẽ
(q, τ) = maxA

∣∣∣Pr
[
AẼk(·,·),Ẽ−1

k
(·,·) ⇒ 1

]
− Pr

[
Aπ̃(·,·),π̃−1(·,·) ⇒ 1

]∣∣∣ ,
where for ncpa and ñcpa (resp. cca and c̃ca) the max is taken over non-adaptive
(resp. adaptive) adversaries making at most q oracle queries and running in time
at most τ . The probabilities are over the random coins of A and the random
draw of k, π or π̃. In the following, we will refer to π̃ as a tweakable permutation
(though this object is syntactically equivalent to a blockcipher) since it takes the
tweak as first input rather than the key.
Definition 1. Let S be an arbitrary set. A family of functions H from S to
{0, 1}n is said to be ε-almost-2-XOR-universal (ε-AXU2) if for all distinct x, x′ ∈
S and all y ∈ {0, 1}n, one has Pr [h←$ H : h(x)⊕ h(x′) = y] ≤ ε.



Note that there exists very efficient and well-studied constructions of ε-AXU2
function families with ε ' 2−n [22], with short descriptions (i.e. keys). We will
stick to the convention of using a notation where the key is implicit in the
remaining of the paper.

2.2 Statistical Distance and Coupling

Given a finite event space Ω and two probability distributions µ and ν defined on
Ω, the statistical distance (or total variation distance) between µ and ν, denoted
‖µ− ν‖ is defined as:

‖µ− ν‖ = 1
2
∑
x∈Ω
|µ(x)− ν(x)| .

The following definitions can easily be seen equivalent:

‖µ− ν‖ = max
S⊂Ω

{µ(S)− ν(S)} = max
S⊂Ω

{ν(S)− µ(S)} = max
S⊂Ω

{|µ(S)− ν(S)|} .

A coupling of µ and ν is a distribution λ on Ω × Ω such that for all x ∈
Ω,
∑
y∈Ω λ(x, y) = µ(x) and for all y ∈ Ω,

∑
x∈Ω λ(x, y) = ν(y). In other

words, λ is a joint distribution whose marginal distributions are resp. µ and
ν. The fundamental result of the coupling technique is the following one. For
completeness, we provide the proof in Appendix A.

Lemma 1 (Coupling Lemma). Let µ and ν be probability distributions on
a finite event space Ω, let λ be a coupling of µ and ν, and let (X,Y ) ∼ λ
( i.e. (X,Y ) is a random variable sampled according to distribution λ). Then
‖µ− ν‖ ≤ Pr[X 6= Y ].

2.3 Description of the r-CLRW Construction

We use and adapt the notation of [11]. Let K be a set and E ∈ BC(K, n) a
blockcipher. Let T be a set and H a set of functions from T to {0, 1}n. We define
the tweakable blockcipher LRWE,H with domain {0, 1}n, key space K̃ = K ×H,
and tweak space T as follows. For any (k1, h1) ∈ K×H, t ∈ T , and x ∈ {0, 1}n,
let:

LRWE,H((k1, h1), t, x) = Ek1

(
x⊕ h1(t)

)
⊕ h1(t) .

We also denote LRWE,Hk1,h1
:= LRWE,H((k1, h1), ·, ·) the mapping taking as input

(t, x) ∈ T × {0, 1}n and returning y ∈ {0, 1}n.
This construction was called the LRW2 construction in [11], being the sec-

ond construction proposed by Liskov et al. in [12] to build a tweakable blockci-
pher. We simply call it the LRW construction in this paper. In [11], the authors
proposed to chain two LRW constructions to increase the security beyond the
birthday bound, and called the resulting construction CLRW2. In this paper,
we will consider chaining r LRW constructions with r > 2 to obtain security
asymptotically close to the information bound.



Let r be a positive integer. We define the tweakable blockcipher CLRWr,E,H

with domain {0, 1}n, key space K̃ = Kr×Hr, and tweak space T as follows. For
any k = (k1, . . . , kr) ∈ Kr, h = (h1, . . . , hr) ∈ Hr, t ∈ T , and x ∈ {0, 1}n, let
CLRWr,E,H((k, h), t, x) be defined as the value yr obtained recursively as:{

y0 = x
yi = LRWE,H((ki, hi), t, yi−1) for 1 ≤ i ≤ r .

We also denote CLRWr,E,Hk,h := CLRWr,E,H((k, h), ·, ·) the mapping taking as input
(t, x) ∈ T × {0, 1}n and returning y ∈ {0, 1}n. The construction is depicted on
Figure 1.

x Ek1

h1

t

Ekr

hr

t

y

Fig. 1. The CLRWr,E,H tweakable blockcipher construction.

Thereafter, we will need the more ideal construction where the blockcipher
E is replaced by the perfect cipher E∗ over {0, 1}n as defined in Section 2.1.
The resulting (inefficient) TBC will be denoted CLRWr,E

∗,H, and for every π =
(π1, . . . , πr) ∈ Perm(n)r and h = (h1, . . . , hr) ∈ Hr, we denote CLRWr,E

∗,H
π,h the

function defined as CLRWr,E,Hk,h above, where calls to Eki are replaced by calls to
πi.

3 Security Analysis for Non-Adaptive Adversaries

In this section, we first deal with non-adaptive chosen-plaintext (NCPA) adver-
saries. Using a coupling argument, we will prove the following theorem.

Theorem 1. Let K, T be sets, E ∈ BC(K, n) be a blockcipher, and H be an
ε-AXU2 family of functions from T to {0, 1}n. Then one has:

Advñcpa
CLRWr,E,H(q, τ) ≤ r ·Advncpa

E (q, τ + rqT ) + qr+1

r + 1(2ε)r ,

where T is the time to compute E or E−1.



Using an ε-AXU2 function family with ε ' 2−n, one can see that the construction
ensures security up to O(2rn/(r+1)) queries (assuming E is sufficiently secure
against NCPA adversaries). The remaining of the section is devoted to the proof
of Theorem 1.

3.1 An Hybrid Argument

As a first step in the proof, we replace the blockcipher E used in the CLRW
construction by the perfect cipher E∗, i.e. we replace calls to Eki for random and
independent keys ki by calls to uniformly random permutations πi. If we assume
that the blockcipher is a (strong) pseudorandom permutation, the construction
using E is only slightly less secure than the construction using E∗, as is captured
by the following lemma (we also treat the case of CCA adversaries).

Lemma 2. For any q, τ , one has:

Advñcpa
CLRWr,E,H(q, τ) ≤ r ·Advncpa

E (q, τ + rqT ) + Advñcpa
CLRWr,E∗,H(q, τ)

Advc̃ca
CLRWr,E,H(q, τ) ≤ r ·Advcca

E (q, τ + rqT ) + Advc̃ca
CLRWr,E∗,H(q, τ) ,

where T is the time to compute E or E−1.

Proof. This is a classical hybrid argument. We only prove the NCPA case, the
CCA case is similar. Let A be a NCPA adversary trying to distinguish CLRWr,E,H

from a random tweakable permutation. For each i ∈ [1; r], consider the following
adversary Ai trying to distinguish E from a random permutation. Ai runs A,
answering its queries as follows: it computes the r-CLRW construction where
the first i−1 permutations are uniformly random permutations, the i-th permu-
tation is computed by querying Ai’s own oracle, and the last r− i permutations
correspond to E with randomly drawn keys. Note that Ai is non-adaptive, makes
at most q queries to its own oracle, and runs in time at most τ +rqT . Denote Oi
the oracle defined as the r-CLRW construction where the first i permutations
are uniformly random, and the last r− i permutations are E with uniformly ran-
dom keys. Then, when Ai is interacting with a random permutation, it answers
A’s queries as Oi+1, whereas when it is interacting with Ek it implements Oi.
Moreover O0 = CLRWr,E,H and Or = CLRWr,E

∗,H. By the triangular inequality:∣∣∣Pr
[
ACLRWr,E,H ⇒ 1

]
− Pr

[
Aπ̃ ⇒ 1

]∣∣∣ ≤
r−1∑
i=0

∣∣Pr
[
AOi ⇒ 1

]
− Pr

[
AOi+1 ⇒ 1

]∣∣+∣∣∣Pr
[
ACLRWr,E

∗,H
⇒ 1

]
− Pr

[
Aπ̃ ⇒ 1

]∣∣∣ .
The lemma follows by noting that the r first terms are exactly the advantages
of adversaries Ai, which are all upper bounded by Advncpa

E (q, τ + rqT ). ut

Hence to study the security of CLRWr,E,H, we have to study the security of
CLRWr,E

∗,H. This is what we do in the remaining of the proof.



3.2 NCPA Advantage and Statistical Distance

A classical result states that the advantage of a (computationally unbounded)
NCPA adversary in distinguishing two systems S1 and S2 with at most q queries
is upper bounded by the max over any q inputs of the statistical distance between
the outputs of the two systems. The two systems we consider here are CLRWr,E

∗,H

and a random tweakable permutation π̃, and we want to upper bound the sta-
tistical distance between the outputs of CLRWr,E

∗,H and the outputs of a random
tweakable permutation for any q queries to these two systems.

Thereafter, we will consider a NCPA-distinguisher A which chooses all its
(plaintexts) queries in advance. We will denote the i-th query (ti, xi). We de-
note µq the distribution of the outputs when the distinguisher is accessing the
CLRWr,E

∗,H construction (the distribution is defined by the random draw of
π = (π1, . . . , πr) ∈ Perm(n)r and h = (h1, . . . , hr) ∈ Hr) and µ0 the distri-
bution of the outputs when the distinguisher is accessing a uniformly random
tweakable permutation π̃. Hence, for any τ (since this holds even for computa-
tionally unbounded adversaries):

Advñcpa
CLRWr,E∗,H(q, τ) ≤ ‖µq − µ0‖ .

In the following, we will denote τ = +∞ in the advantage when it applies to
computationally unbounded adversaries.

3.3 Dividing the Problem into q Simpler Problems

We now give another way to describe the distribution µ0. For any t ∈ T , we
do the following experiment: let It be the set of indexes i ∈ [1; q] such that
ti = t and let (ui)i∈It be uniformly random pairwise distinct elements. We
claim that the distribution of the outputs of (t1, u1), . . . , (tq, uq) by any (not
necessarily uniform) random tweakable permutation π̃′ whose distribution is
independent of the distribution of (ui) is µ0, i.e. the distribution of the outputs
of (ti, xi) by a uniformly random tweakable permutation π̃. Indeed, for every
t, the values (π̃(ti, xi))i∈It and (π̃′(ti, ui))i∈It are both uniformly random and
pairwise distinct.

Now that we gave this new description of µ0, we can split the computation of
‖µq−µ0‖ in q simpler computations. The idea is to construct a distribution µ` for
every ` ≤ q such that µ` is the distribution of the outputs of a random instance
of CLRWr,E

∗,H queried with (ti, xi) for i = 1, . . . , ` and the last q − ` queries
keep the same tweak ti as in adversarial queries, but their last coordinate is
uniformly random among unqueried values. More precisely, for each ` ∈ [0; q],
let ((t1, z1), . . . , (tq, zq)) be a tuple of queries such that zi = xi for i ≤ `, and zi
is uniformly random in {0, 1}n \ {zj | tj = ti, j < i} for i > `. This means that
the first ` queries are the adversary’s queries and the remaining zi are chosen
uniformly at random among the possible values (all queries have to be pairwise
distinct). Denoting µ` the distribution of the tuple of q outputs when a random



instance of CLRWr,E
∗,H receives inputs ((t1, z1), . . . , (tq, zq)), we have:

Advñcpa
CLRWr,E∗,H(q, τ = +∞) ≤ ‖µq − µ0‖ ≤

q−1∑
`=0
‖µ`+1 − µ`‖ . (1)

3.4 Coupling of µ`+1 and µ`

Restricting to the first `+ 1 queries
It remains to upper bound the statistical distance between µ`+1 and µ`, for
each ` ∈ [0; q − 1]. For this, we will construct a suitable coupling of the two
distributions. Note that we only have to consider the first `+ 1 elements of the
two tuples of outputs since for both distributions, the i-th inputs for i > ` + 1
are sampled uniformly at random. In other words,

‖µ`+1 − µ`‖ = ‖µ′`+1 − µ′`‖ , (2)

where µ′`+1 and µ′` are the respective distributions of the ` + 1 first outputs of
the r-CLRW construction.

Construction of µ′
` and µ′

`+1

To define the coupling of µ′`+1 and µ′`, we consider a random CLRWr,E
∗,H

π,h (i.e. π =
(π1, . . . , πr) and h = (h1, . . . , hr) are uniformly random in respectively Perm(n)r
and Hr) that receives inputs (tj , xj) for j = 1, . . . , `+ 1 so that the outputs are
distributed according to µ′`+1, and we consider another random CLRWr,E

∗,H
π′,h′ (i.e.

π′ = (π′1, . . . , π′r) and h′ = (h′1, . . . , h′r) are uniformly random in respectively
Perm(n)r and Hr) with inputs (tj , zj) for j = 1, . . . , `+ 1 with zj = xj for every
j ≤ ` and z`+1 being uniformly random in {0, 1}n \ {xj | tj = t`+1, j < `+ 1}, so
that the outputs are distributed according to µ′`.

Notation
For every j ≤ `+ 1 and every i ∈ [0; r], we note xij and zij the values defined by
induction: 

x0
j = xj , z

0
j = zj

xi+1
j = hi(tj)⊕ πi(xij ⊕ hi(tj))
zi+1
j = h′i(tj)⊕ π′i(zij ⊕ h′i(tj)) .

(3)

In order to apply the Coupling Lemma (Lemma 1), we have to find how to
correlate (π, h) and (π′, h′) so that the outputs of both systems (xr1, . . . , xr`+1)
and (zr1 , . . . , zr`+1) are equal with high probability. We choose (π, h) uniformly at
random and we construct (π′, h′) as a function of (π, h). We have to pay attention
that the distribution of (π′, h′) remains uniform in order for (zr1 , . . . , zr`+1) to be
distributed according to µ′`.



Coupling of the first ` queries
For every j ≤ `, the j-th queries x0

j and z0
j are equal by definition. Considering

the system (3), we set h′ = h and π′i(xij⊕hi(tj)) = πi(xij⊕hi(tj)) for every j ≤ `
and i ≤ r. This implies that the first ` outputs (xr1, . . . , xr`) and (zr1 , . . . , zr` ) are
equal.

Coupling of the (`+ 1)-th query
For every i ∈ [0; r − 1] we define the coupling for the `+ 1-th query as follows:

(1) if there exists j ≤ ` such that zi`+1 ⊕ hi(t`+1) = zij ⊕ hi(tj) then π′i(zi`+1 ⊕
hi(t`+1)) is already defined. Unless we have coupled zi`+1 and xi`+1 in a
previous round, we cannot couple zi+1

`+1 and xi+1
`+1 at this round.

(2) else, if zi`+1 ⊕ hi(t`+1) 6= zij ⊕ hi(tj) for all j ≤ `, then:
(a) if there exists j ≤ ` such that xi`+1⊕hi(t`+1) = xij⊕hi(tj) then we choose

π′i(zi`+1⊕hi(t`+1)) uniformly at random in {0, 1}n \{π′i(zij ⊕hi(tj)), j ≤
`}. We cannot couple zi+1

`+1 and xi+1
`+1 at this round.

(b) else, we define π′i(zi`+1 ⊕ hi(t`+1)) = πi(xi`+1 ⊕ hi(t`+1)). This implies
that zi+1

`+1 = xi+1
`+1.

Note that once zi+1
`+1 = xi+1

`+1, zi
′

`+1 = xi
′

`+1 for any subsequent round i′ ≥ i+ 1, in
particular for i′ = r, so that the coupling is successful.

Verification that (π′, h′) is uniformly random
We set h′ = h and h is uniformly random so h′ is uniformly random. During the
coupling of the first ` queries, we set π′i(xij ⊕ hi(tj)) = πi(xij ⊕ hi(tj)) for every
j ≤ ` and i ≤ r and πi(xij ⊕ hi(tj)) is uniformly random among possible values
so π′i(xij ⊕hi(tj)) is uniformly random among possible values. Rule (1) says that
if there is a collision with a previous input of π′i, we cannot choose the value of
π′i(zij ⊕ hi(tj)) so this does not change anything to the distribution of π′i. When
conditions of rule (2)(a) are met, we have for some j ≤ `:{

πi(xi`+1 ⊕ hi(t`+1)) = πi(xij ⊕ hi(tj)) = π′i(zij ⊕ hi(tj))
zi`+1 ⊕ hi(t`+1) 6= zij ⊕ hi(tj) ,

which implies that π′i(zi`+1 ⊕ hi(t`+1)) 6= πi(xij ⊕ hi(tj)). This means that the
coupling is impossible and we choose π′i(zi`+1 ⊕ hi(t`+1)) uniformly at random
among possible values to keep π′i uniformly distributed. Finally, when conditions
of rule (2)(b) are met, we have no problem to couple: πi(xi`+1 ⊕ hi(t`+1)) and
π′i(zi`+1 ⊕ hi(t`+1)) are both uniformly random among possible values. In con-
clusion, permutations π′i are uniformly random and independent as wanted, so
that (zr1 , . . . , zr`+1) is distributed according to µ′`.



Failure Probability of the Coupling
It remains to upper bound the probability that the coupling fails, i.e.

(zr1 , . . . , zr`+1) 6= (xr1, . . . , xr`+1) .

For every i ∈ [0; r − 1], we denote faili the event that it exists j ≤ ` such that
zi`+1 ⊕ hi(t`+1) = zij ⊕ hi(tj) or xi`+1 ⊕ hi(t`+1) = xij ⊕ hi(tj). This is the event
of failing to couple at round i. Then we have:

Pr
[
faili

]
≤
∑
j≤`

Pr
[
zi`+1 ⊕ hi(t`+1) = zij ⊕ hi(tj)

or xi`+1 ⊕ hi(t`+1) = xij ⊕ hi(tj)
]

=
∑
j≤`

Pr
[
hi(tj)⊕ hi(t`+1) = zij ⊕ zi`+1

or hi(tj)⊕ hi(t`+1) = xij ⊕ xi`+1

]
≤
∑
j≤`

2ε = 2`ε ,

where the second inequality comes from the ε-AXU2 property of H (note that
when t`+1 = tj , necessarily zi`+1 6= zij and xi`+1 6= xij since all queries must be
distinct, so that the probability is zero). Since the functions hi are independent,
we have:

Pr
[
r−1⋂
i=0

faili
]
≤ (2`ε)r . (4)

Using the Coupling Lemma and the fact that zrj = xrj for all j ≤ `, we have:

‖µ′`+1 − µ′`‖ ≤ Pr
[
(zr1 , . . . , zr`+1) 6= (xr1, . . . , xr`+1)

]
≤ Pr

[
zr`+1 6= xr`+1

]
. (5)

If we succeed to couple the last query at some round i ≤ r − 1, we know that
zi
′

`+1 and xi′`+1 remain equal in the subsequent rounds so that:

Pr
[
zr`+1 6= xr`+1

]
≤ Pr

[
r−1⋂
i=0

faili
]
. (6)

Using (4), (5) and (6), we have:

‖µ′`+1 − µ′`‖ ≤ (2`ε)r . (7)



Finally, using (1), (2) and (7), we obtain:

Advñcpa
CLRWr,E∗,H(q, τ = +∞) ≤

q−1∑
`=0
‖µ′`+1 − µ′`‖

≤
q−1∑
`=0

(2`ε)r

≤
∫ q

0
(2`ε)rdl

= qr+1

r + 1(2ε)r .

Theorem 1 then follows from the above inequality combined with Lemma 2.

4 Security Analysis for Adaptive Adversaries

In this section, we first prove a general composition theorem for tweakable block-
ciphers similar to the “two weak make one strong” theorem for the composition
of usual blockciphers. This theorem roughly states that composing two blockci-
phers secure against NCPA adversaries yields a blockcipher secure against CCA
adversaries [14,15]. We prove exactly the same result for TBCs, but we stress that
the exact way the tweak is used in composition is important: namely, the same
tweak must be used in both ciphers. We state this theorem in the information-
theoretic setting (i.e. for computationally unbounded adversaries) since we will
then apply it to the CLRWr,E

∗H construction which has information-theoretic se-
curity. Corresponding theorems in the computational setting are usually much
harder to obtain. Our proof technique is an extension of the “H Coefficients”
technique of Patarin [19] to tweakable blockciphers. One could probably use the
formalism of random systems [13] to obtain a tight bound in the computational
setting as in [15], however subtle problems have been recently found in this proof
technique [9] so that we prefer the more simple and straightforward statistical
approach. We then apply this result to prove the security of r-CLRW against
CCA adversaries up to O(2rn/(r+2)) queries.

4.1 Definitions ans Preliminary Results

Fix Ẽ ∈ TBC(K, T ,D). For any t = (t1, . . . , tq) ∈ T q, and any x = (x1, . . . , xq) ∈
Ωt, we denote ν(t,x) the distribution on Ωt induced by Ẽ and ν∗(t,x) the distribu-
tion induced by a random tweakable permutation on inputs (ti, xi), namely for
y = (y1, . . . , yq) ∈ Ωt:

ν(t,x)(y) = Pr
[
k ←$ K : Ẽk(ti, xi) = yi,∀i ≤ q

]
ν∗(t,x)(y) = Pr [π̃ ←$ BC(T ,D) : π̃(ti, xi) = yi,∀i ≤ q] .



Note that ν∗(t,x) is uniform over Ωt (the exact cardinality of Ωt depends on t).
For any α ∈ [0, 1], we note Sα,(t,x) the set of y ∈ Ωt satisfying ν(t,x)(y) ≥
(1− α)ν∗(t,x)(y).

We start by proving two lemmas which will be useful for our main result.
The first one says that if, for every t = (t1, . . . , tq), x = (x1, . . . , xq), and
y = (y1, . . . , yq), the probability that Ẽk maps (ti, xi) to yi for all i is close
to the corresponding probability for a random tweakable permutation, then the
advantage of any adversary in distinguishing Ẽ from a random tweakable per-
mutation with q queries is small.

Lemma 3. Fix Ẽ ∈ TBC(K, T ,D), and q ≤ |D|. If there exists α ∈ [0, 1] such
that, for all t ∈ T q and for all x ∈ Ωt, ν∗(t,x)(Sα,(t,x)) = 1, then

Advc̃ca
Ẽ

(q, τ = +∞) ≤ α .

Proof. Consider a computationally unbounded CCA attackerAmaking q queries
to an oracle O acting like Ẽ or like a random tweakable permutation π̃. We
assume wlog thatA is deterministic. We note δ = (δ1, . . . , δq) ∈ Dq the transcript
of the attack, defined as follows. If A makes a direct query (t1, x1) and receives
an answer y1, one has δ1 = y1 and then, the attacker continues his attack and
receives the next answers δ2, . . . , δq. If the attacker makes an inverse query (ti, yi)
then δi is the answer xi. For each transcript δ, we denote t(δ), x(δ) and y(δ) the
corresponding values of t1, . . . , tq, x1, . . . , xq, y1, . . . , yq. We denote Σ the set of
transcripts δ such that the attacker outputs 1. If the oracle is acting like Ẽ then
the probability that the attacker outputs 1 is exactly∑

δ∈Σ

νt(δ),x(δ)(y(δ)) .

If the oracle is acting like a random tweakable permutation π̃ then the probability
that the attacker outputs 1 is exactly∑

δ∈Σ

ν∗t(δ),x(δ)(y(δ)) .

We deduce that the advantage of A equals:∣∣∣∣∣∑
δ∈Σ

(
νt(δ),x(δ)(y(δ))− ν∗t(δ),x(δ)(y(δ))

)∣∣∣∣∣ . (8)

Since for every t ∈ T q, x ∈ Ωt, and y ∈ Ωt, one has ν(t,x)(y) ≥ (1− α)ν∗(t,x)(y),
it follows that: ∑

δ∈Σ

(
νt(δ),x(δ)(y(δ))− ν∗t(δ),x(δ)(y(δ))

)
≥ −α

and
∑
δ/∈Σ

(
νt(δ),x(δ)(y(δ))− ν∗t(δ),x(δ)(y(δ))

)
≥ −α .

(9)



Finally, it is easy to verify that∑
δ∈Σ

(
νt(δ),x(δ)(y(δ))− ν∗t(δ),x(δ)(y(δ))

)
=

−
∑
δ/∈Σ

(
νt(δ),x(δ)(y(δ))− ν∗t(δ),x(δ)(y(δ))

)
(10)

because ∑
δ

νt(δ),x(δ)(y(δ)) =
∑
δ

ν∗t(δ),x(δ)(y(δ)) = 1 .

Using (8), (9) and (10), we deduce that the advantage of A is upper bounded
by α. ut

The second lemma says that if the advantage of the best NCPA adversary
is small, then, for all t, x, almost all y are such that the probability of sending
(t, x) to y for a random Ẽk is close to the probability of sending (t, x) to y for a
random tweakable permutation.

Lemma 4. Fix Ẽ ∈ TBC(K, T ,D) and q ≤ |D|. If there exists β ∈ [0, 1] such
that

Advñcpa
Ẽ

(q, τ = +∞) ≤ β ,

then, for all t ∈ T q and x ∈ Ωt, one has:

ν∗(t,x)

(
S√

β,(t,x)

)
≥ 1−

√
β .

Proof. By contrapositive, suppose there exists t = (t1, . . . , tq) ∈ T q and x =
(x1, . . . , xq) ∈ Ωt such that

ν∗(t,x)

(
S√

β,(t,x)

)
< 1−

√
β .

Consider the adversary which queries (t1, x1), . . . , (tq, xq) and outputs 0 if the
answers y = (y1, . . . , yq) are such that y ∈ S√

β,(t,x) and 1 otherwise. His advan-
tage is exactly ∣∣∣∣∣∣∣

∑
y/∈S√

β,(t,x)

ν(t,x)(y)− ν∗(t,x)(y)

∣∣∣∣∣∣∣ ,
and y /∈ S√

β,(t,x) means, by definition, that ν(t,x)(y) < (1−
√
β)ν∗(t,x)(y), so that

the advantage of this adversary is strictly greater than:√
β ×

(
1− ν∗(t,x)

(
S√

β,(t,x)

))
> β ,

hence the result. ut



4.2 A Composition Theorem for Tweakable Blockciphers
Given two TBCs sharing the same set of tweaks and the same domain Ẽ1 ∈
TBC(K1, T ,D) and Ẽ2 ∈ TBC(K2, T ,D), we define the tweakable blockcipher
Ẽ2 ◦ Ẽ1 ∈ TBC(K1 ×K2, T ,D) as:

∀(t, x) ∈ D × T , (k1, k2) ∈ K1 ×K2,

Ẽ2 ◦ Ẽ1((k1, k2), t, x) := Ẽ2(k2, t, Ẽ1(k1, t, x)) .

Theorem 2. Let Ẽ1 ∈ TBC(K1, T ,D) and Ẽ2 ∈ TBC(K2, T ,D) be two TBCs
satisfying:

Advñcpa
Ẽ1

(q, τ = +∞) ≤ β1 and Advñcpa
Ẽ2

(q, τ = +∞) ≤ β2 .

Then:
Advc̃ca

Ẽ−1
2 ◦Ẽ1

(q, τ = +∞) ≤ 2(
√
β1 +

√
β2) .

Proof. We denote ν1, ν2, and ν3 the distributions associated respectively to
Ẽ1, Ẽ2 and Ẽ−1

2 ◦ Ẽ1. For every t ∈ T q, x ∈ Ωt, and α ∈ [0, 1], we denote SẼiα,(t,x)

the set Sα,(t,x) corresponding to Ẽi, i = 1, 2.
By Lemma 4, for all t ∈ T q, x ∈ Ωt, and y ∈ Ωt, we have:

ν∗(t,x)

(
SẼ1√

β1,(t,x)

)
≥ 1−

√
β1 and ν∗(t,y)

(
SẼ2√

β2,(t,y)

)
≥ 1−

√
β2 . (11)

Furthermore, for all (k1, k2) ∈ K1×K2, Ẽ−1
2 ◦ Ẽ1((k1, k2), ·, ·) maps (t, x) to y if

and only if for all i ≤ q, Ẽ1(k1, ti, xi) = Ẽ2(k2, ti, yi). Denoting S′ = SẼ1√
β1,(t,x)

∩

SẼ2√
β2,(t,y)

, one has, for any y ∈ Ωt:

ν3
(t,x)(y) =

∑
z∈Ωt

ν1
(t,x)(z) · ν2

(t,y)(z)

≥
∑
z∈S′

ν1
(t,x)(z) · ν2

(t,y)(z)

≥
∑
z∈S′

(
1−

√
β1

)
ν∗(t,x)(z) ·

(
1−

√
β2

)
ν∗(t,y)(z)

≥
(

1−
√
β1

)(
1−

√
β2

) |S′|
|Ωt|2

=
(

1−
√
β1

)(
1−

√
β2

)
ν∗(t,x)(S′)ν∗(t,x)(y) .

By definition of S′ and using Eq. 11, one has ν∗(t,x)(S′) ≥ (1−
√
β1−

√
β2) (note

that ν∗ in fact only depends on t), so that:

ν3
(t,x)(y) ≥ (1− 2(

√
β1 +

√
β2))ν∗(t,x)(y) .

Since this holds for any t, x, and y, the theorem follows by applying Lemma 3
with α = 2(

√
β1 +

√
β2). ut



4.3 Application to the r-CLRW Construction

Finally, we apply the previous result to prove the security of r-CLRW against
CCA adversaries.

Theorem 3. Let K, T be sets, E ∈ BC(K, n) be a blockcipher, and H be an
ε-AXU2 family of functions from T to {0, 1}n. Then for any even integer r, one
has:

Advc̃ca
CLRWr,E,H(q, τ) ≤ r ·Advcca

E (q, τ + rqT ) + 4
√

2√
r + 2

q(r+2)/4(2ε)r/4 ,

where T is the time to compute E or E−1.

Proof. Noting that the inverse of a r/2-CLRW construction is again a r/2-CLRW
construction, we can apply Theorem 2 to get:

Advc̃ca
CLRWr,E∗,H(q, τ = +∞) ≤ 4

√
α ,

where
α := Advñcpa

CLRWr/2,E∗,H(q, τ = +∞) ≤ qr/2+1

r/2 + 1(2ε)r/2

by the results of Section 3. The theorem then follows from Lemma 2. ut

Again, using an ε-AXU2 function family with ε ' 2−n, the construction achieves
security against CCA adversaries up to O(2rn/(r+2)) queries.
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A Proof of the Coupling Lemma

The original statement and proof of the Coupling Lemma is due to Aldous [1].
Here we follow closely a proof by Vigoda.5

Let λ be a coupling of µ and ν, and (X,Y ) ∼ λ. By definition, we have that
for any z ∈ ω, λ(z, z) ≤ min{µ(z), ν(z)}. Moreover, Pr[X = Y ] =

∑
z∈Ω λ(z, z).

Hence we have:
Pr[X = Y ] ≤

∑
z∈Ω

min{µ(z), ν(z)} .

Therefore:

Pr[X 6= Y ] ≥ 1−
∑
z∈Ω

min{µ(z), ν(z)}

=
∑
z∈Ω

(µ(z)−min{µ(z), ν(z)})

=
∑
z∈Ω

µ(z)≥ν(z)

(µ(z)− ν(z))

= max
S⊂Ω
{µ(S)− ν(S)}

= ‖µ− ν‖ .

5 Available from www.cc.gatech.edu/~vigoda/MCMC_Course/MC-basics.pdf.


