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Abstract. In this paper we present known-plaintext single-key and chosen-
key attacks on round-reduced LED-64 and LED-128. We show that with
an application of the recently proposed slidex attacks [5], one immedi-
ately improves the complexity of the previous single-key 4-step attack
on LED-128. Further, we explore the possibility of multicollisions and
show single-key attacks on 6 steps of LED-128. A generalization of our
multicollision attack leads to the statement that no 6-round cipher with
two subkeys that alternate, or 2-round cipher with linearly dependent
subkeys, is secure in the single-key model. Next, we exploit the possi-
bility of finding pairs of inputs that follow a certain differential rather
than a differential characteristic, and obtain chosen-key differential dis-
tinguishers for 5-step LED-64, as well as 8-step and 9-step LED-128. We
provide examples of inputs that follow the 8-step differential, i.e. we are
able to practically confirm our results on 2/3 of the steps of LED-128.
We introduce a new type of chosen-key differential distinguisher, called
random-difference distinguisher, and successfully penetrate 10 of the to-
tal 12 steps of LED-128. We show that this type of attack is generic in
the chosen-key model, and can be applied to any 10-round cipher with
two alternating subkeys.

Key words: LED, lightweight, multicollision, single-key attack, chosen-
key attack

1 Introduction

The lightweight block cipher LED was proposed by Guo et al. at CHES 2011 [10].
It is a hardware optimized 64-bit cipher, with two main instances LED-64 for
64-bit key support, and LED-128 for 128-bit keys. Based on the AES design,
LED uses modified, hardware-friendly operations and a trivial key schedule. As
the authors targeted compact design, but as well secure even against related-
key attacks, the number of rounds of LED is relatively large, i.e. LED-64 uses
32 rounds grouped in 8 steps of 4 rounds, while LED-128 has 48 rounds, or
equivalently 12 steps. A round of LED is similar to a round of AES, with one
exception: the addition of the round keys in AES is replaced with an addition
of constants in LED. The subkeys are added only after every fourth round, thus
one step of LED (which consists of 4 rounds), behaves as 4 rounds of single-key
AES – a construction with well analyzed differential and linear properties.



In the submission paper, the designers provide analysis of LED against various
attacks – we mention the attacks in the chosen-key model: 15 rounds for LED-64
and 27 rounds for LED-128. Isobe and Shibutani [11] show single-key attacks
on LED-64 reduced to 8 rounds, and LED-128 reduced to 16 rounds. Mendel et
al. [14] give a supplementary cryptanalysis in different single and related-key
models for both versions of the cipher. They are able to penetrate 16 rounds in
the related-key model for LED-64, and 24 rounds for LED-128, with an additional
single-key attack on 16 rounds of LED-128. An independent work proposed by
Bodganov et al. in [2] also introduced similar related-key attacks on the generic
structure of two-round SEM [5] with three identical keys.

We start our analysis with a brief overview of the previous results on the
scheme used in LED as well as of the techniques applied in the attacks on LED

(Section 2). The overview would help us to clearly describe our attacks in the
single-key model (Section 3), and in the chosen-key model (Section 4). Our first
result is an improvement of the single-key attack on 16-round LED-128 presented
in [14]. We show that instead of using Daemen’s attack [4] as a preliminary step,
one can use the recently proposed slidex attack [5], and end up with an imme-
diate twofold gain in terms of the data requirements: the attack from a chosen
plaintext as in [14] becomes a known plaintext, while the data complexity from
the whole codebook drops to 2d, where d can be any value chosen by the attacker.
Next, by exploiting the idea of multicollisions, we show a single-key attack on 24
rounds of LED-128. We eliminate one of the subkeys by guessing, and then we
are able to attack the remaining construction by creating a set of multicollisions
which allows to find the second subkey. It is important to note that our tech-
nique is applicable to LED for any step function, that is the number of rounds we
can attack depends strictly on the number of used subkeys. Moreover, using the
same approach one can mount attacks on any two-round construction with three
equal (or linearly dependent) subkeys, e.g. SEM [5] with an additional round.
The idea of using differentials instead of differential characteristic is examined
in our chosen-key attacks on 20-round LED-64, and 32-,36-round LED-128. We
show that two consecutive active steps in a differential path, can be threated as
a differential. This leads to a significant reduction of the complexity for finding
a pair that follows the path. We are able with a complexity of around 232 en-
cryptions to construct a pair that follows our defined path, and give an example
of such pair found on a computer for 32 rounds of LED-128, i.e. we can show
a practical chosen-key distinguisher for 2/3 of the cipher rounds. We propose a
new type of chosen-key distinguishers, called random-difference distinguishers,
where the attacker is supposed to find a pair of inputs that follow a certain
differential, for any input difference. We show that LED-128 is vulnerable to this
type of distinguishers for 40 rounds out of the total 48 rounds, i.e. 5/6 of the
rounds of LED-128 can be distinguished in the chosen-key model. Furthermore,
we show that this distinguisher is generic to all 10-round/step ciphers with two
subkeys that alternate. An overview of the results on LED is given in Tbl. 1.



Table 1. Attacks on LED

Cipher Framework Type Steps Time Data Memory Ideal Source

LED-64

single-key Key Recovery 2 256 28 211 264 [11]

chosen-key Distinguiher 3.75 216 − 216 232 [10]

related-key‡ Key Recovery 4 262.7 262.7 262.7 264 [14]

(8 steps) chosen-key Distinguisher 4 233.5 − 232 241.4 4.1

chosen-key Distinguisher 5 260.2 − 261.5 266.1 4.1

LED-128

single-key Key Recovery 4 2112 216 219 2128 [11]

single-key Key Recovery 4 296 264 232 2128 [14]

single-key Key Recovery 4 296 232 232 2128 3.1

related-key Key Recovery 6 296 264 232 2128 [14]

single-key Key Recovery 6 2124.4 259 259 2128 3.2

(12 steps) chosen-key Distinguisher 6.75 216 − 216 232 [10]

chosen-key Distinguisher 8 233.5 − 232 241.4 4.2

chosen-key Distinguisher 9 260.8 − 262 266.1 4.2

chosen-key Distinguisher 10 260.3 − 260 264 4.3

‡: Complexity is based on the 6 found pairs that follow the iterative characteristic.

2 Specification and Related Works

In this section we give a brief description of LED and present related analysis
relevant for understanding our attacks.

2.1 The Block Cipher LED [10]

LED uses a block size of 64 bits and a key size ranging from 64 bits to 128 bits.
The two primary instances, LED-64 and LED-128, use a 64-bit key and an 128-bit
key, respectively.

The key schedule is trivial and very efficient: LED-64 uses the 64-bit secret
key in each step as a subkey, while LED-128 divides the 128-bit secret key K into
halves K0||K1 and uses K0 and K1 alternatively as the subkeys, i.e. K0 is used
in the even steps, while K1 is used in the odd steps. LED follows the standard
iterative cipher structure and produces a ciphertext C from the plaintext P in t
iterations of a so-called step function Fi (see Fig. 1):

S0 ←− P
Si+1 ←− Fi(Si ⊕Ki), 0 ≤ i ≤ t− 1

C ←− St ⊕Kt

In LED-64 the number of steps t is 8, while in the other instances including
LED-128, t is defined as 12. The step function Fi is a 4-round AES-like permuta-
tion where the addition of the subkeys is replaced with an addition of constants.



Fig. 1. LED and its two primary instances LED-64 and LED-128

Thus, all the step functions Fi can be seen as public permutations and differ
only in the round constants they use. Since most of our attacks can be mounted
independently of the specification of the step functions, we omit their description
and refer the interested reader to [10, 9] for a full specification.

2.2 Related Attacks on the Even-Mansour Scheme

The Even-Mansour scheme [6] uses two secret keys (K0,K1) and a public permu-
tation F to construct a cipher EMK0,K1

(P ) = F (P ⊕K0)⊕K1 (see Fig. 2). This
scheme is very attractive due to its extremely simple design with a provable
security margin. Several papers on cryptanalysis of Even-Mansour have been
published. This section briefly describes the attacks relevant to our paper.

Daemen’s attack [4]. The chosen-plaintext attack of Daemen can be sketched
as:

1. Choose a non-zero difference ∆.
2. Choose 2d different random values as plaintexts P , query P and P ⊕∆ to

the Even-Mansour scheme to receive the corresponding ciphertexts C and
C ′ respectively, and compute and store ∆C = C ⊕ C ′.

3. Choose a random value X, compute ∆F (X) = F (X)⊕F (X⊕∆), and check
if ∆F (X) is among the stored ∆C computed at step 2. If a match is found,
then compute K0 = P ⊕ X and K1 = F (X) ⊕ C and confirm on another
pair of plaintext-ciphertext that the values are correct.

Fig. 2. Even-Mansour Scheme
Fig. 3. Single-Key Even-Mansour Scheme
(SEM)



After repeating the step 3 around 2n−d times, where n is the block size, the
secret keys are expected to be recovered. Thus the overall complexity is 2d chosen
plaintexts and 2n−d encryptions.

Slidex attack [5]. Dunkelman et al. were able to match the complexity of
Daemen’s attack with only known-plaintexts, using a so-called slidex attack.
Let us assume the attacker obtains 2d known plaintext-ciphertext pairs (Pi, Ci).
Then the slidex attack can be described as:

1. Choose a random non-zero difference ∆.

2. For all (Pi, Ci) compute a set of F (Pi ⊕∆) ⊕ Ci and look for a collision in
the set.

3. If a collision is found, e.g. F (P ⊕ ∆) ⊕ C = F (P ′ ⊕ ∆) ⊕ C ′, then K0 =
P ⊕ P ′ ⊕∆.

4. Otherwise, go to step 1.

After repeating the steps 1 − 4 around 2n−2d times, the correct value of K0 is
expected to be recovered. With the knowledge of K0, the value of K1 can be
trivially recovered using a single known pair (P,C). Thus the overall complexity
is 2d known plaintexts and 2n−d encryptions.

An attack on SEM [5]. Dunkelman et al. proposed a single-key variant of
the Even-Mansour scheme depicted in Fig. 3, which uses the same secret key as
both the pre- and the post-whitening keys, i.e. F (P ⊕ K) ⊕ K. Following the
notation from [5], we refer to this single-key variant as SEM. Dunkelman et al.
provided once more a known-plaintext attack on SEM based on the observation
that P ⊕C = X⊕Y . Again, we assume the attacker obtains 2d known plaintext-
cihertext pairs (Pi, Ci). The steps of the attack are as follows:

1. Compute a set of Pi ⊕ Ci for all 2d (Pi, Ci).

2. Choose a random value of X, compute Y = F (X) and match X ⊕ Y to the
values of P ⊕ C from the set computed at step 1.

3. If a match is found, K = P ⊕X.

4. Otherwise, go to to step 2.

After repeating the steps 2 − 4 around 2n−d times, the correct value of K is
expected to be recovered. Thus the complexity is 2d known plaintexts and 2d +
2n−d computations.

2.3 Key-Recovery Attacks on LED

Several chosen-plaintext key-recovery attacks on LED have been published. This
section briefly describes the attacks related to this paper.



Three-subset meet-in-the-middle attacks on LED [11]. Isobe and Shibu-
tani applied the attack framework formalized by Bogdanov and Rechberger [3]
to LED in a very original and non-trivial manner [11] and presented chosen-
plaintext attacks on 2-step LED-64 and 4-step LED-128. Their complexity on
4-step LED-128 is 216 chosen plaintexts and 2112 encryptions. We stress that the
time complexity of their attacks cannot be reduced when more data is available.

Guess-and-recover attacks on LED-128 [14]. Mendel et al. published key-
recovery attacks on 4-step and 6-step LED-128 in the single-key and the related-
key settings, respectively. The main strategy of their attacks is first to guess
the value of K0 in order to peel off the first and the last step functions, and
then to efficiently recover the value of K1 by attacking the shortened cipher.
In this paper we call such attack strategy guess-and-recover. The attack on 4-
step LED-128 (depicted in Fig. 4) starts by guessing the key K0, thus the 4-step
LED-128 is shortened to a cipher E, and moreover G (in Fig. 4) becomes now
a public permutation. As E follows the Even-Mansour scheme, Mendel et al.
adopted Daemen’s attack [4] sketched in Section 2.2 to recover the key K1. In
particular, for an input S1 to the cipher E, in order to get the value of E(S1),
the attacker computes P = F−10 (S1)⊕K0, then queries P to LED-128 to receive
the corresponding ciphertext C, and finally computes F−13 (C ⊕ K0) as E(S1).
Note, Mendel et al.’s attack is a known/chosen-plaintext attack and since the
Daemen’s attack procedure is executed for each guess of K0 (thus repeated 264

times), the data complexity of the attack equals the entire codebook while the
time complexity is 296 encryptions. The authors point out that the attacker is
able to reduce the data complexity below the entire codebook, however then he
has to sacrifice the time complexity, i.e. the time will increase proportionally. We
stress that the attack becomes a chosen-plaintext attack if the data complexity
is less than the entire codebook, otherwise it can be considered known-plaintext
attack (it requires the whole codebook, hence there is no difference between
chosen and known plaintext).

Mendel et al. were able to extended the above attack on 4 steps to 6 steps
of LED-128 in the related key settings. A pictorial view of the guess-and-recover

Fig. 4. Guess-and-recover strategy on 4-Step LED-128



strategy on 6-step LED-128 is given in Fig. 5. The attack uses a related key
K ′ = K0||K ′1, where K ′1 is K1 ⊕ ∆. Let E′ be the shortened cipher under the
related key K ′. For a random value S1, inside the computations of E(S1) and
E′(S1⊕∆), the difference ∆G1(S1) = G1(S1⊕K1)⊕G1(S1⊕∆⊕K ′1) is always
0. Hence the input difference of G2 is always ∆. Thus Daemen’s attack can be
applied to recover the value of K1 in a straightforward way with the same data
and time complexity.

Attacks on LED-64 exploiting differential characteristics for the step
functions [14]. Mendel et al. proposed as well attacks on 3-step and 4-step
LED-64 in the related-key setting, by investigating the differential properties
of the step functions of LED, in particular differential characteristics with high
height as well as iterative differential characteristics. For the public permutations
used in the step function, the authors found differential characteristics with a
probability of around 2−54, while theoretically it may go up to 2−50 (25 active
Sboxes and each with 2−2). In one part of our analysis, we use the results of [14],
and in order to provide conservative results, we assume the optimal differential
characteristic for the step functions to hold with probability 2−54. However, as
pointed out by Mendel et al., differential characteristics with a better probability
may exist and if such characteristic is found, our attack complexity will be
immediately improved.

2.4 Differential Multicollisions for Block Ciphers [1]

This concept was introduced by Biryukov et al. [1]. It can be defined as follows:

Definition 1. A differential q-multicollision for the block cipher EK(·) is de-
fined as a set of two differences ∆P and ∆K and q key-plaintext pairs (K1, P1),
(K2, P2), . . ., (Kq, Pq) that satisfy the relation:

EK1(P1)⊕ EK1⊕∆K(P1 ⊕∆P ) =

EK1(P2)⊕ EK2⊕∆K(P2 ⊕∆P ) =

· · · =
EKq (Pq)⊕ EKq⊕∆K(Pq ⊕∆P ),

Biryukov et al. have proven that it takes at least q · 2
q−2
q+2n queries to produce a

differential q-multicollision for an ideal n-bit block cipher. Thus if an attacker can
find a differential q-multicollision on a dedicated block cipher with a complexity

less than the lower bound q · 2
q−2
q+2n, he can distinguish the cipher from ideal in

the chosen-key model.



3 Key-Recovery Attacks on LED-128 in the Single-Key
Setting

In this section we present key recovery attacks on 4 steps and 6 steps of LED-128
in the single-key framework. The attacks are independent of the definition of the
step function, and the data is always known-plaintext.

3.1 Attack on 4 Steps

We can improve the previous key-recovery attacks on 4-step LED-128 in a rel-
atively straightforward way. Our attack follows the guess-and-recover strategy,
which is depicted in Fig. 4. First, note that the shortened cipher E is the SEM
scheme. Thus after guessing the value K0, to recover K1 instead of adopting
Daemen’s approach [4] as in the previous attack [14], we apply Dunkelman et
al.’s slidex attack or their attack approach on SEM [5] sketched in Section 2.2.
This immediately gives us the first advantage: our attack is a known-plaintext
attack. Moreover, based on the complexity evaluation given below, our approach
has a second advantage: the complexity also gets improved. Since we will extend
the below approach to attack 6-step LED-128 in Section 3.2, here we give a de-
tailed description of the complete attack approach. The notations below follow
the one from Fig. 4.

Attack procedure. Suppose the attacker obtains 2d known plaintext-ciphertext
pairs (P,C).

1. Guess the value of K0.

2. For all 2d pairs (P,C), compute S1 = F0(K0⊕P ) and E(S1) = F−13 (K0⊕C),
then compute S1 ⊕ E(S1), and store the pairs (S1, S1 ⊕ E(S1)).

3. Choose 264−d different random values denoted as X. For each X:

(a) Compute G(X)⊕X and match it to S1 ⊕ E(S1) stored at step 2.

(b) If a match is found, compute the value S1 ⊕ X as a candidate of K1.
Otherwise, go to step 3(a) with the next value of X.

(c) Verify the correctness of the candidate forK1 by using another (S′1, E(S′1)),
where S′1 is not equal to S1. In particular, compute the value for E(S′1)
using the current guessed K0 and the candidate K1, and check whether
it is equal to the value for E(S′1) computed at Step 2. If they are equal,
output the currently guessed K0 and the candidate K1 as the real key,
and terminate the procedure. Otherwise, go to step 3(a) with the next
value of X.

4. Change the value of K0, and repeat steps 1 − 3 until all possible values of
K0 are tested.



Complexity. The unit is one computation of the whole 4-step LED-128 consist-
ing of four step functions. The steps 1−3 are repeated 264 times. One execution of
step 2 requires 2d× 2

4 = 2d−1 computations. In one execution of step 3, step 3(a)
is repeated 264−d times, and therefore the total complexity is 264−d× 2

4 = 263−d.
At step 3(b), on average there is one match among all the 264−d repetitions.
Hence the complexity of steps 3(b) and 3(c) is 1. Thus the overall time complex-
ity is 264 · (2d−1 + 263−d + 1) ≈ 263+d + 2127−d, while the data complexity is 2d

known plaintext-ciphertext pairs, and 2d memory required in step 2.

Success probability. When the guessed value of K0 is correct, if one random
X at step 3 collides with S1 ⊕K1 for some S1 computed at step 2, the value of
K1 will be correctly recovered. The probability of a such collision is 1− 1

e ≈ 0.63.

Comparison to previous attacks. The optimal time complexity of our attack
is 296 by setting d to 32, while the data complexity is 232 known plaintexts.
Previous attacks either cannot reach such low time complexity (e.g. [11]) or
with a much higher data complexity, i.e. the entire codebook, for the same time
complexity (e.g. [14]).

3.2 Attack on 6 Steps

We can extend the above attack to 6-step LED-128 by using multicollisions. As
depicted in Fig. 5, the shortened cipher E after guessing K0 can be regarded
as a two-step SEM. The relation S1 ⊕ E(S1) = X ⊕ S5 holds. Suppose we have

a q-multicollision on E(S1) ⊕ S1. Namely, we find q values S
(1)
1 , S

(2)
1 , . . ., S

(q)
1

such that E(S
(1)
1 )⊕ S(1)

1 = E(S
(2)
1 )⊕ S(2)

1 = · · · = E(S
(q)
1 )⊕ S(q)

1 holds. Denote

the value of E(S
(i)
1 )⊕ S(i)

1 , 1 ≤ i ≤ q, by Y . Let us select a random value as X,
then set S5 as X ⊕ Y , and compute the value G1(X)⊕G−12 (S5) as a candidate
value of K1, which can be verified trivially. Note that if X is equal to any of

S
(i)
1 ⊕K1, 1 ≤ i ≤ q, the computed candidate is the correct value of K1. Thus

after testing 264/q random values as X, the real value of K1 is expected to be
recovered. Recall that such attack procedure needs to be repeated for each guess
of K0, i.e. in total 264 times. Hence the overall complexity is 2128/q. The details
of the attack procedure are given below - for q = 8 the attack has the lowest
complexity.

Attack procedure. The attacker obtains 259 known plaintext-ciphertext pairs
(P,C).

1. Guess the value of K0.

2. For all 259 (P,C), compute S1 = F0(P ⊕K0) and E(S1) = F−15 (C ⊕K0).
Then compute S1 ⊕ E(S1) and store (P, S1, S1 ⊕ E(S1)).



3. Find an 8-multicollision on S1 ⊕ E(S1), namely a set of (P (1), S
(1)
1 , S

(1)
1 ⊕

E(S
(1)
1 )), . . ., (P (8), S

(8)
1 , S

(8)
1 ⊕ E(S

(8)
1 )) such that S

(1)
1 ⊕ E(S

(1)
1 ) = S

(2)
1 ⊕

E(S
(2)
1 ) = · · · = S

(8)
1 ⊕E(S

(8)
1 ). Denote the value of S

(i)
1 ⊕E(S

(i)
1 ), 1 ≤ i ≤ 8,

as Y . If no such 8-multicollision exists, go to step 1 with another guess value
as K0.

4. Choose 261 random values as X. For each value of X:
(a) Compute X ⊕ Y as S5.
(b) Compute G1(X)⊕G−12 (S5) denoted as Z.

(c) Compute X ⊕ Z, and match it to {S(1)
1 , . . . , S

(8)
1 }. If it coincides with

some S
(i)
1 , then Z is regarded as a candidate value of K1. Otherwise, go

to step 4(a) with the next value of X.
(d) Verify the correctness of Z as K1 by using another relation (S1, E(S1))

with S1 6= S
(i)
1 . If it is correct, set K1 = Z, then output the current

guessed value of K0 and K1 as the real key, and terminate the attack
procedure. Otherwise, go to step 4(a) with the next value of X.

5. Change the value of K0, and repeat steps 1 − 4 until all possible values of
K0 are tested.

Complexity. The unit is one computation of the whole 6-step LED-128. The
steps 1−4 are repeated 264 times. One execution of step 2 has the complexity of
259× 2

6 ≈ 257.4. In one execution of step 4, steps 4(a), 4(b) and 4(c) are repeated
261 times, and the total complexity is 261 × 4

6 ≈ 260.4. On average, there is only
one match at step 4(d) among 262 random values. Thus the complexity of step
4(e) is 1. Therefore the overall time complexity is 264 · (259.4 +260.4 +1) ≈ 2124.4,
while data complexity is 259 known plaintexts. The memory requirement is 259

for step 2.

Success Probability. We focus on the success probability of recovering K1,
when the guessed value of K0 is correct. First we evaluate the probability of
8-multicollisions at step 2. It has been proven that a q-multicollision among
q
√
q!× 2

q−1
q n n-bit random values exists with a probability 0.5 [7, 16]. By setting

q = 8 and n = 64, q
√
q! × 2

q−1
q n is smaller than 258. Since we have in total

Fig. 5. Guess-and-recover attack on 6-step LED-128



259 values, the probability of an 8-multicollision is almost 1. Then we evaluate

the probability of a collision between a random value X and a S
(i)
1 ⊕K1. The

probability of such a collision is 1− 1
e ≈ 0.63. Thus the overall success probability

is 0.63.

Remark. We emphasize that our attack is not related to the specification of
step functions, and thus applicable to any 6-step Even-Mansour scheme with
the key schedule of alternating two keys. The advantage of our attack is related
to the block size n. A shown above for the case n = 64, q is chosen as 8, and
the complexity is 23.6 times faster than the brute-force attack. In particular, for
the common block size n = 128, q can be 16, and our attack becomes 24.6 times
faster than the brute-force attack.

As we can see from the above analysis, the 6-step attack is actually based
on a 2-step multicollision-type attack (the permutations G1, G2 with subkey
additions), that is applicable to any permutations G1, G2. Thus we can derive
the following interesting fact:

Observation 1 For any two-round n-bit cipher EK(P ) = G2(G1(P ⊕ K) ⊕
L1(K))⊕L2(K), where G1, G2 are arbitrary permutations, and L1, L2 are linear
bijective functions, exists a known-plaintext attack a with time complexity of less
than 2n encryption queries.

It is interesting to note that Observation 1 actually answers affirmatively
the open problem proposed in [2] if there exist a single-key attack on two-round
SEM structure with three identical keys and computational complexity below
2n.

4 Chosen Key Differential Distinguishers for LED-64 and
LED-128

The designers of LED pointed out in the specification document [10], that in
order to gain confidence in the cipher, one should study the security of the ci-
pher in the framework where the attacker knows or controls the key. Using the
rebound [13] and Super-Sbox [8, 12] techniques, they were able to penetrate 15
rounds (3.75 steps) of LED-64, and 27 rounds (6.75 steps) of LED-128. The design
strategy underlying LED, in particular the trivial key schedule and fact that the
best probability of a differential characteristic in an active step of LED cannot be
higher than 2−50, seem to confirm the findings of the designers. As LED-64 has
128-bit input (64-bit key and 64-bit state), it leads that a differential character-
istic cannot have more than 2 active steps, otherwise the probability (for 3 steps)
would be at most 2−150, and the freedom of the 128-bit input is insufficient to
satisfy the characteristic. Similarly, for LED-128, the best characteristic cannot
have more than 3 active steps, as the probability of a 4-step characteristic would
be at most 2−200, hence the 192-bit input (128-bit key and 64-bit plaintext) is
insufficient for this characteristic.



Fig. 6. Distinguisher on 5-step LED-64

The above reasoning however, applies to the case of differential character-
istics. Further we show that the situation changes when one investigates the
effects of differentials. To clarify our reasoning, let us examine the case of a
2-step differential where both steps are active and assume the input and the
output difference take some predefined values. The probability of a single dif-
ferential characteristic that composes the differential is at most 2−100. However,
the probability of the differential is much higher, i.e. 2−64 for any input-output
differences. Hence if we can efficiently find a pair of inputs that follow this dif-
ferential, then we would spend only 64-bits of freedom, instead of 100 bits as in
the case of characteristics.

The results presented in this section give solutions for finding such pairs, and
use the additional freedom to penetrate more steps of LED.

4.1 Differential Multicollision on 5-step LED-64

Our distinguisher is based on the differential path given in Fig. 6. The path
is built by fixing an optimal differential characteristic in the last step function
F4: ∆ → ∆∗, which determines the value of ∆ and ∆∗, and then the following
values are set as well: ∆P = ∆, ∆K = ∆ and ∆C = ∆ ⊕ ∆∗. Note, the
differential characteristic ∆ → ∆∗ holds with a probability of at least 2−54,
following Mendel et al.’s investigation [14] described in Section 2.3. After the
path is determined, we search for pairs (P,K) satisfying LED-64 K(P ) ⊕ LED-64

K⊕∆(P ⊕∆) = ∆⊕∆∗. The search procedure starts with launching a meet-in-
the-middle attack between step functions F1 and F2. Note that both the input
difference of F1 and the output difference of F2 are fixed as ∆. We select random
values X and Y , and independently compute ∆F1(X) = F1(X) ⊕ F1(X ⊕ ∆)
and ∆F−12 (Y ) = F−12 (Y )⊕ F−12 (Y ⊕∆). Then we match between ∆F1(X) and
∆F−12 (Y )⊕∆. For a match, by adaptively selecting two values F1(X)⊕F−12 (Y )
and F1(X)⊕F−12 (Y ⊕∆) as the key K and computing the corresponding values
of P from (K,X), we obtain two pairs (K,P ) which can satisfy the path on the
first four step functions in Fig. 6. Finally, the differential characteristic on the
last step function F4 is satisfied probabilistically.

Attack procedure.

1. Select 2s random values X, compute ∆F1(X) = F1(X) ⊕ F1(X ⊕ ∆), and
store (X,∆F1(X)). The value of s will be determined in the complexity
evaluation below.



2. Select 2s random values Y , compute ∆F−12 (Y ) = F−12 (Y )⊕F−12 (Y ⊕∆) and
match ∆F−12 (Y )⊕∆ to stored ∆F1 at step 1. On average, there are 22s−64

matches.
3. For each matched pair X and Y ,

(a) Compute two values as K: K = F1(X)⊕F−12 (Y ) and K = F1(X⊕∆)⊕
F−12 (Y ⊕∆).

(b) Compute C and C ′ for each pair (K,Y ) and (K⊕∆,Y ⊕∆) respectively.
(c) If ∆C is equal to ∆ ⊕ ∆∗, compute the corresponding value of P , and

store the values of (P,K). On average, there are 22s−117 values of (P,K)
stored.

Complexity of finding differential q-multicollision. The unit is one com-
putation of the whole 5-step LED-64. The dominant complexity comes from steps
1 and 2, each of them requires 2s× 1

5 units, hence the total complexity is approx-
imately 2s−1.3. To produce a differential q-multicollision, set 22s−117 = q, which
implies s = 58.5 + log2

√
q, and thus the complexity is

√
q · 257.2. For q = 26,

the overall complexity of our attack is 260.2, while the generic attack requires at
least 266.1 > 264 encryptions.

4.2 Differential Multicollision for 8-Step and 9-step LED-128

Our distinguisher on 8-step LED-128 is based on a differential path given in
Fig. 7, where ∆ can be any non-zero value. We set ∆P = ∆, ∆K = (∆K0 =
∆,∆K1 = 0) and ∆C = ∆. First we select a random value as K1, which makes
G1 and G2 to become two public permutations. Then we carry out a meet-in-the-
middle attack between G1 and G2. Note both the input differences of G1 and the
output differences of G2 are fixed as ∆. We adopt the same meet-in-the-middle
procedure as the one presented in Section 4.1, and adaptively choose the value of
K0. As the rest of the differential path holds with probability 1, the chosen K0

with previously fixed K1 and P , which can be computed trivially from X, is the
expected solution, namely it satisfy the whole differential path. Following the
complexity evaluation as in Section 4.1, our attack needs q · 230.5 computations
to produce a differential q-multicollision, hence for q = 8, the overall complexity
is 233.5, while the generic attack needs at least 241.4.

We would like to emphasize two aspects (freedoms) of our attack on 8 steps
of LED-128: first, the difference in K0 can be any, and second, the value of K1

can be arbitrary as well. Even with such relaxed requirements, we are still able
to find a pair that follows the differential path with a complexity of around 230.5

8-step encryptions. An example of such pair, found on a computer, is given in
Table 2. Note, in the example the difference in K0 is 1 and the value of K1 is 0.

Extension to 9 steps. The above path can be extended with an additional step
at the end, thus leading to a 9-step path. First, we find an optimal differential
characteristic for the last step function F9: ∆ → ∆∗, i.e. we use again the
same characteristic that holds with 2−54. Then the differential is defined as



Table 2. An example of pair of inputs following the 8-STEP (32 rounds) differential
for LED-128. The two rows of each step denote the input and output values/differences
of the steps.

Input 1 Input 2 XOR difference

K0 63686a8c6ed193f6 63686a8c6ed193f7 0000000000000001

K1 0000000000000000 0000000000000000 0000000000000000

plaintext 33960e4a40a0f740 33960e4a40a0f740 0000000000000001

step 0 50fe64c62e7164b6 50fe64c62e7164b6 0000000000000000

e82c1e07da3b4304 e82c1e07da3b4304 0000000000000000

step 1 e82c1e07da3b4304 e82c1e07da3b4304 0000000000000000

3bb5fd710efb3bba 3bb5fd710efb3bba 0000000000000000

step 2 58dd97fd602aa84c 58dd97fd602aa84d 0000000000000001

50fdeb1af852210e 56c051f2c88d007a 063dbae830df2174

step 3 50fdeb1af852210e 56c051f2c88d007a 063dbae830df2174

eb82dccf19e68610 fe5507900afd76ad 15d7db5f131bf0bd

step 4 88eab643773715e6 9d3d6d1c642ce55a 15d7db5f131bf0bc

c6dbdb083c8dfccb b688dc44effea528 7053074cd37359e3

step 5 c6dbdb083c8dfccb b688dc44effea528 7053074cd37359e3

ef7e6ce5ebb78007 ef7e6ce5ebb78006 0000000000000001

step 6 8c160669856613f1 8c160669856613f1 0000000000000000

5f2a1e2a6f01e9eb 5f2a1e2a6f01e9eb 0000000000000000

step 7 5f2a1e2a6f01e9eb 5f2a1e2a6f01e9eb 0000000000000000

337e6d7828ea8fec 337e6d7828ea8fec 0000000000000000

ciphertext 501607f4463b1c1a 501607f4463b1c1b 0000000000000001



Fig. 7. Distinguisher on 8-step LED-128

∆P = ∆, ∆K = (∆K0 = ∆,∆K1 = 0), and ∆C = ∆∗. The distinguisher uses a
differential path, which is a concatenation of the path on the first 8 step functions
from Fig. 7 and the characteristic ∆ → ∆∗ for the last step function F9. After
selecting a random value as K1, we apply exactly the same search procedure as
in Section 4.1. However, this time instead of producing q pairs that follow the
8-step differential, we produce q254 such pairs. Obviously, after the last step,
there would be around q pairs that satisfy the whole 9-step differential.

The complexity is dominated by the meet-in-the-middle attack and the gen-
eration of q254 pairs for the 8-step differential. To optimize the complexity, we
should create

√
q259 differences for each G1 and G2, hence there would be q2118

pairs in the middle and q2118−64 = q254 that follow the 8-step differential or q
pairs for the whole 9-step differential. Thus taking into account that the G1, G2

take 2
9 of the total number of rounds, the overall complexity for q = 26 is

2 ·23259 2
9 = 260.8 encryptions of 9-step LED-128. The generic case again requires

266.1 encryptions.

4.3 A Differential Distinguisher on 10-Step LED-128

In this section we introduce the concept of chosen-key random-difference distin-
guisher and present such distinguisher for 10 steps of LED-128.

In differential multicollisions, the attacker finds a set of two differences for
the key and the plaintext, such that all the differences in the ciphertext of q
pairs of keys/plaintexts, are the same. Thus the freedom is three differences:
in the key, in the plaintext, and in the ciphertext, and therefore, to prove the
distinguisher is not trivial, the attacker has to find many pairs of keys/plaintexts
that follow the same differential. Now assume, the freedom is only in one of the
input differences, and the other two depend on (or are equal to) this single
difference, i.e. the attacker wants to find a key/plaintext (K,P ) such that for
some given difference ∆, EK⊕∆(P ⊕∆) ⊕ EK(P ) = ∆ holds. Obviously, if the
difference ∆ is random, he cannot find the input pair with a complexity lower
than 2n (see below), where n is the block size. However, one might reasonably
argue, that if the attacker has to provide a single pair of key/plaintext, then
he can use the additional freedom of the difference and come up with his own
∆ in time complexity lower than 2n, and thus achieve such distinguisher. Our
distinguisher below thwarts such approach, since it requires the attacker to be
able to build the input pair for any random difference ∆. This type of problem
already has been analyzed in the work of Patarin [15] – he has shown that the



xor of two random permutations cannot be distinguished from a pseudo-random
function with less than 2n queries. In our case, the permutations are defined as
P1(X) = P1(K,P,∆) = EK⊕∆(P ⊕ ∆) and P2(X) = P2(K,P,∆) = EK(P ) ⊕
∆, i.e. they are keyed with both K and ∆, and for fixed values of these two
parameters they are two distinct permutations (as long as ∆ 6= 0). In the chosen-
key scenario discussed below, although the key can be chosen, the difference ∆ is
still arbitrary and unknown, hence Patarin’s proof again applies to the pseudo-
random function (PRF) P1(X)⊕ P2(X), which can be translated into finding a
preimage of 0 for the PRF, as from EK⊕∆(P ⊕∆) ⊕ EK(P ) = ∆ is follows we
are looking at the condition P1(X)⊕P2(X) = 0. The complexity of finding such
preimage for an n-bit PRF is 2n queries, and thus encryptions/decryptions. Now
we are ready to give a formal definition of this non-trivial distinguisher:

Definition 2. A random-difference distinguisher exists for the cipher EK(P ),
if for any randomly chosen ∆, the attacker with a complexity less than 2n en-
cryptions/decryptions can find a plaintext P and a key K, such that EK(P ) ⊕
EK⊕∆(P ⊕∆) = ∆.

Further, we show that this type of distinguisher can be found for 10-step
LED-128, i.e. we show that for a randomly chosen ∆, with less than 264 queries/
encryptions we can find the input P,K0,K1 such that EK0⊕∆||K1

(P ⊕ ∆) ⊕
EK0||K1

(P ) = ∆. Our analysis is based on a differential path given in Fig. 8,
where the step functions denoted in a black color are active, while the white
steps are non-active. In Fig. 8 we also sketch the attack procedure. We start
with a meet-in-the-middle (MITM) attack between F2 and F3. Note that both
the input difference of F2 and the output difference of F3 are fixed as ∆. We
carry out the same MITM procedure as the one in Section 4.1, and find pairs
(K1, X), where X is the output value of F3, satisfying the differential path on
the first four step functions. Similarly, we perform MITM on the other side,
between F6 and F7, and find pairs (K1, Y ) where Y is the input value of F6,
satisfying the differential path on the last four step functions. Next, we match
(K1, X) and (K1, Y ) on the value of K1, and store (K1, X, Y ) if the value of
K1 is matched. Then we search for a q-multicollision among (K1, X, Y ) on the

value of K1. Namely we find a set of (K
(1)
1 , X(1), Y (1)), (K

(2)
1 , X(2), Y (2)), . . .,

(K
(q)
1 , X(q), Y (q)) with K1 = K

(1)
1 = K

(2)
2 = · · · = K

(q)
1 . For this fixed K1, G

becomes a public permutation. The last step is to find a value of K0, which links
X(i) to Y (i) for some 1 ≤ i ≤ q, i.e. G(X(i) ⊕ K0) ⊕ K0 = Y (i). The search
procedure is similar to the attack on SEM [5], i.e. if we have q possible values

Fig. 8. Distinguisher on 10-step LED-128



for (X(i), Y (i)), we need only 2n/q values for the inputs/outputs of G in order
to find one match. A single match suggests immediately the value of K0, hence
we have fixed as well the second key K0, and thus finding the input plaintext is
trivial.

Attack procedure. Let ∆ be any non-zero value.

1. Choose 260 different random valuesA. Compute and store∆F2(A) = F2(A)⊕
F2(A⊕∆). Then choose 260 different random valuesX, compute∆F−13 (X) =
F−13 (X)⊕F−13 (X⊕∆), and match it to the stored ∆F2(A). For each matched
(∆F2(A), ∆F−13 (X)), compute F2(A)⊕ F−13 (X) and F2(A⊕∆)⊕ F−13 (X)
as K1, and store (K1, X). On average, there are 257 stored (K1, X) .

2. Launch the same procedure between F6 and F7 as in step 1, and store 257

(K1, Y ), where Y is the input value of F6.
3. Match (K1, X) and (K1, Y ) on the value of K1, and store (K1, X, Y ) if

(K1, X) and (K1, Y ) are matched. On average there are 250 (K1, X, Y ).
4. Find a 4-multicollision among (K1, X, Y ) on the value of K1. Namely, find

(K
(1)
1 , X

(1)
1 , Y

(1)
1 ), (K

(2)
1 , X

(2)
1 , Y

(2)
1 ), (K

(3)
1 , X

(3)
1 , Y

(3)
1 ) and (K

(4)
1 , X

(4)
1 , Y

(4)
1 )

with K
(1)
1 = K

(2)
1 = K

(3)
1 = K

(4)
1 . Compute X

(1)
1 ⊕ Y

(1)
1 , X

(2)
1 ⊕ Y

(2)
1 ,

X
(3)
1 ⊕ Y (3)

1 and X
(4)
1 ⊕ Y (4)

1 .

5. Choose 262 random value Z, and compute G(Z) ⊕ Z, where G uses K
(i)
1 ,

1 ≤ i ≤ 4 as K1. Match the value of G(Z)⊕ Z to X
(1)
1 ⊕ Y (1)

1 , X
(2)
1 ⊕ Y (2)

1 ,

X
(3)
1 ⊕ Y (3)

1 and X
(4)
1 ⊕ Y (4)

1 . If a match to (X(i), Y (i)) for some 1 ≤ i ≤ 4

is found, compute X(i) ⊕ Z as K0, and output it with K
(i)
1 as K1 and P ,

which can be trivially computed from X
(i)
1 .

Complexity. The unit is one computation of the whole 10-step LED-128. Steps
1 and 2 are both with a complexity 260× 2

10 ≈ 257.7 encryptions. Step 5 requires
262× 2

10 ≈ 259.7 encryptions. Thus the overall complexity is 257.7+257.7+259.7 ≈
260.3, hence lower than 264.

Remark. As shown from the analysis above, again our attack is not related
to the specification of the step functions, and can be applied to any 10-round
construction with subkeys that come one after another, in a form of a chosen-key
random-difference distinguisher. Thus we can conclude that:

Observation 2 For any ten-round n-bit cipher with arbitrary round functions
and alternating subkeys, exists a chosen-key distinguisher with time complexity
less than 2n queries.

5 Conclusion

In this paper, we have presented various attacks on LED in the single-key and
chosen-key models. We have improved the data complexity of the single-key



attack on 16 rounds of LED-128 in terms of lower and known-plaintext data.
We have also shown the first single-key attack on 24 rounds of LED-128. In the
chosen-key model, we have given practical results on 32 rounds, and have reached
as far as 40 rounds, using a novel chosen-key distinguisher.

The main contribution of this work is actually the idea of multicollisions
and their applications. The vast majority of our results/attacks, in particular
the attacks that penetrate through the largest number of rounds, are based
on creating multicollisions for some intermediate states inside the cipher, thus
obtaining a small set of independent values that are used further in meet-in-
the-middle attacks. As we have seen from our analysis, the primary advantage
of multicollisions is that they can be applied regardless of the specification of
the internal rounds/steps. Both Observations 1 and 2 are surprising to a large
extend as they state that the round transformation plays no role in the security
against 2-round single-key and 10-round chosen-key attacks. This result is indeed
due to the multicollisions and their property given above. Another condition for
applying the observations is simplicity of the key schedule. Although it seems
very compelling to use a trivial key schedule, especially in lightweight primitives,
its application leads to a huge reduction of the security margin at least in the
chosen-key model.

The two primary instances of LED apply 8, and 12 steps, respectively. How-
ever, when K1 in LED-128 is fixed, then this cipher has only 6 steps, i.e. 2 steps
less than LED-64. Although the steps now contain 8 rounds, the security mar-
gin of the cipher against attacks (such as most of our attacks presented here)
independent of the step function, is less than the one of LED-64. Hence, it seems
that an attack on 6-step LED-64, that does not use the structural properties of
the step functions, might result in an attack on full-round LED-128. We were
not able to trivially extend our 5-round chosen-key attack on LED-64, to 10-step
chosen-key attack on LED-128, only because it uses a differential characteristic
in the last step. We leave as an open research topic the problem of finding a
6-step attack on LED-64, independent of the step function.
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