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Abstract. We analyze the internal permutations of Keccak, one of the
NIST SHA-3 competition finalists, in regard to differential properties. By
carefully studying the elements composing those permutations, we are
able to derive most of the best known differential paths for up to 5 rounds.
We use these differential paths in a rebound attack setting and adapt this
powerful freedom degrees utilization in order to derive distinguishers for
up to 8 rounds of the internal permutations of the submitted version
of Keccak. The complexity of the 8 round distinguisher is 2491.47. Our
results have been implemented and verified experimentally on a small
version of Keccak.
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1 Introduction

Cryptographic hash functions are used in many applications such as digital sig-
natures, authentication schemes or message integrity and they are among the
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most important primitives in cryptography. Even if hash functions are tradi-
tionally used to simulate the behavior of a random oracle [3], classical security
requirements are collision resistance and (second)-preimage resistance.

Like any construction that builds a hash function from a subcomponent, the
cryptographic quality of this internal permutation is very important for a sponge
construction. Therefore, this permutation P should not present any structural
flaw, or should not be distinguishable from a randomly chosen permutation. Zero-
sum distinguishers [2] can reach an important number of rounds, but generally
with a very high complexity. For example, the latest results [9] provide zero-sum
partitions distinguishers for the full 24-round 1600-bit internal permutation with
a complexity of 21575. When looking at smaller number of rounds the complexity
would decrease, but it is unclear how one can describe the partition of a 1600-
bit internal state without using the Keccak round inside the definition of the
partition. Moreover, such zero-sum properties seem very hard to exploit when
the attacker aims at the whole hash function. On the other side, more classical
preimage attack on 3 rounds using SAT-solvers have been demonstrated [18].
Finally, Bernstein published [4] a 2511.5 computations (second)-preimage attack
on 8 rounds that allows a workload reduction of only half a bit over the generic
complexity with an important memory cost of 2508.

Our contributions. In this article, we analyze the differential cryptanalysis
resistance of the Keccak internal permutation. More precisely, we first intro-
duce a new and generic method that looks for good differential paths for all the
Keccak internal permutations, and we obtain the currently best known differ-
ential paths. We then describe a simple method to utilize the available freedom
degrees which allows us to derive distinguishers for reduced variants of the Kec-

cak internal permutations with low complexity. Finally, we apply the idea of
rebound attack [17] to Keccak. This application is far from being trivial and
requires a careful analysis of many technical details in order to model the be-
havior of the attack. This technique is in particular much more complicated to
apply to Keccak than to AES or to other 4-bit Sbox hash functions [21, 13].
One reason for that is that Keccak has weak alignment [6]. This is why we call
our attack “unaligned rebound attack”. The model introduced has been verified
experimentally on a small version of Keccak and we eventually obtained dif-
ferential distinguishers for up to 8 rounds of the submitted version of Keccak

to the SHA-3 competition. In order to demonstrate why differential analysis is
in general more relevant than zero-sum ones in regards to the full hash function,
we applied our techniques to the recent Keccak challenges [23] and managed to
obtain the currently best known practical collision attack for up to two rounds.

2 The Keccak Hash Function Family

Keccak [7, 8] is a family of variable length output hash functions based on the
sponge construction [5]. In Keccak family, the underlying function is a permu-
tation chosen from a set of seven Keccak-f permutations, denoted as Keccak-



f [b] where b ∈ {1600, 800, 400, 200, 100, 50, 25} is the permutation width as
well as the internal state size of the hash function. The Keccak family is
parametrized by an r-bit bitrate and c-bit capacity with b = r + c.

2.1 The Keccak-f permutations

The internal state of the Keccak family can be viewed as a bit array of 5 × 5
lanes, each of length w = 2ℓ where ℓ ∈ {0, 1, 2, 3, 4, 5, 6} and b = 25w. The state
can also be described as a three dimensional array of bits defined by a[5][5][w]. A
bit position (x, y, z) in the state is given by a[x][y][z] where x and y coordinates
are taken over modulo 5 and the z coordinate is taken over modulo w. A lane
of the internal state at column x and row y is represented by a[x][y][·], while a
slice of the internal state at width z is represented by a[·][·][z].

Keccak-f [b] is an iterated permutation consisting of a sequence of nr rounds
indexed from 0 to nr − 1 and the number of rounds are given by nr = 12 + 2ℓ.
A round R consists of a transformation of five step mappings and is defined by:
R = ι ◦ χ ◦ π ◦ ρ ◦ θ. These step mappings are discussed below.

θ mapping. This linear mapping intends to provide diffusion for the state and is
defined for every x, y and z by: θ : a[x][y][z]← a[x][y][z]+

⊕4
y′=0 a[x−1][y′][z]+

⊕4
y′=0 a[x+ 1][y′][z − 1].

ρ mapping. This linear mapping intends to provide diffusion between the
slices of the state through intra-lane bit translations. For every x, y and z:
ρ : a[x][y][z]← a[x][y][z + T (x, y)], where T (x, y) is a translation constant.

π mapping. This linear mapping intends to provide diffusion in the state
through transposition of the lanes.

χ mapping. This is the only non-linear mapping of Keccak-f and is defined
for every x, y and z by: χ : a[x][y][z]← a[x][y][z]+((¬a[x+1][y][z])∧a[x+2][y][z]).
This mapping is similar to an Sbox applied independently to each 5-bit row of
the state and can be computed in parallel to all rows. We represent by s = 5w
the number of Sboxes/rows in Keccak internal state. Here ¬ denotes bit-wise
complement, and ∧ the bit-wise AND.

ι mapping. This mapping adds constants derived from an LFSR to the lane
a[0][0][·]. These constants are different in every round i. This mapping aims at
destroying the symmetry introduced by the identical nature of the remaining
mappings in a round.

3 Finding Differential Paths for Keccak-f

We first study how to find “good” differential paths for all Keccak variants. In
this section, we describe our differential finding algorithms.



3.1 Special properties of θ and χ

It is noted by the Keccak designers [7, Section 2.4.3] that when every column
of the state sums to 0, θ acts as identity. The set of such states is called column
parity kernel (CPK ). Since θ is linear, this property applies not only to the state
values, but also to differentials. While θ expands a single bit difference into at
most 11 bits (2 columns and the bit itself), it acts as identity on differences
in the CPK. This property will be intensively used in finding low Hamming
weight bitwise differentials. Another interesting property is that θ−1 diffuses
much faster than θ, i.e., a single bit difference can be propagated to about half
state bits through θ−1 [7, Section 2.3.2]. However, the output of θ−1 is extremely
regular when the Hamming weight of the input is low.

The χ layer updates is a row-wise operation and can also be viewed as a 5-bit
Sbox. Similar to the analysis of other Sboxes, we build its differential distribution
table (DDT). We remark that when a single difference is present, χ acts as
identity with best probability 2−2, while input differences with more active bits
tend to lead to more possible output differences, but with lower probability. It
is also interesting to note that given an input difference to χ, all possible output
differences occur with same probability (however this is not the case for χ−1).

3.2 First tools

Our goal is to derive “good” bitwise differential paths by maintaining the bit
difference Hamming weight as low as possible. The ι permutation adds predefined
constants to the first lane, and hence has no essential influences when such
differentials are considered. For the rest of the paper, we will ignore this layer.
We note that θ, ρ and π are all linear mappings, while χ acts as a non-linear Sbox.
Furthermore, ρ and π do not change the number of active bits in a differential
path, but only bit positions. Hence, θ and χ are critical when looking for a
“good” differential path. Since χ is followed by θ in the next round (ignoring ι),
we consider these two mappings together by treating a slice of the state as a
unit, and try to find the potential best mapping of the slice through χ with the
following two rules.

1. Given an input difference of the slice, i.e., 5 row differences, find all possible
output differences by looking into the DDT table. Then among all com-
binations of solutions of the 5 rows, choose the output combinations with
minimum number of columns with odd parity.

2. In case of a draw, we select the state with the minimum number of active
bits.

Rule 1 aims at reducing the amount of active bits after applying θ by choosing
each slice of the output of the χ closest to the CPK (i.e., with even parity for
most columns), and rule 2 further reduces the amount of active bits within the
columns. Although this strategy may not lead to the minimum number of active
bits after θ in the entire state , it finds the best slice-wise mappings with help
of a table of size 225.



3.3 Algorithm for differential path search

Denote λ = π ◦ ρ ◦ θ (all linear mappings), and the state at round i before (resp.
after) applying the linear layer λ as ai (resp. bi). We start our search from a1,
i.e., the input state to the second round, and compute backwards for one round,
and few rounds forwards.
The forward part is longer than the backward part because the diffusion of θ−1 is
much better than for θ, thus, it will be easier for us to control the bit differences
Hamming weight for several forward rounds (instead of backward rounds).

We choose a1 from the CPK. Since it is impossible to enumerate all combi-
nations, we further restrict to a subset of the CPK with at most 8 active bits
and each column having exactly 0 or 2 active bits. Note also that any bitwise
differential path is invariant through position rotation along the z axis, so we
have to run through a set of size about 236. An example of 4 round path is given
in the full version of the paper [10]. We provide also in Table 1 some of the best
differential path probabilities found for all Keccak internal permutation sizes.

Table 1. Best differential path results for each version of Keccak internal permu-
tations, for 1 up to 5 rounds. The detailed differential paths for Keccak-f[1600] are
shown in the full version of the paper. Paths in bold are new results we found with the
method presented in this paper.

b
best differential path probability (differential complexity of the rounds)

3 rds 4 rds 5 rds

400 2−24 (8 - 8 - 8) 2
−84 (16 - 14 - 12 - 42) 2−216 (16 - 32 - 40 - 32 - 96)

800 2
−32 (4 - 4 - 24) 2

−109 (12 - 12 - 12 - 73) 2−432 (32 - 64 - 80 - 64 - 192)

1600 2
−32 (4 - 4 - 24) 2

−142 (12 - 12 - 12 - 106) 2
−709 (16 - 16 - 16 - 114 - 547)

A better path (2−510) was found
independently [20]

4 Simple Distinguishers for Reduced Keccak-f

Once the differential paths obtained, we can concentrate our efforts on how to
use at best the freedom degrees available in order to reduce the complexity
required to find a valid pair for the differential trails or to increase the amount
of rounds attacked. We present in this section a very simple method that allows
to obtain low complexity distinguishers on a few rounds of the Keccak internal
permutations.

4.1 A very simple freedom degrees fixing method

We first describe an extremely simple way of using the available freedom degrees,
which are exactly the b-bit value of the internal state (since we already fixed the



differential path). For all the best differential paths found from Table 1, we can
extend them by one round to the left or to the right by simply picking some
valid Sboxes differential transitions. We can use our available freedom degrees
specifically for this round so that its cost is null. One simply handles each of the
active Sboxes differential transitions for this round one by one, independently,
by fixing a valid value for the active Sboxes. In terms of freedom degrees con-
sumption for this extra round, in the worst case we have all s Sboxes active and
a differential transition probability of 2−4 for each of them. Thus, we are ensured
to have at least 25s−4s = 2s freedom degrees remaining after handling this extra
round.

Note that some more involved freedom degree methods (such as message
modification [24]) might even allow to also control some of the conditions of the
original differential path, thus further reducing the complexity.

4.2 Getting More Rounds

At the present time, we are able to find valid pairs of internal state values for
some differential paths on a few rounds with a rather low complexity. Said in
other words, we are able to compute internal state value pairs with a prede-
termined input/output difference. A direct application from this is to derive
distinguishers. For a randomly chosen permutation of b bits, finding a pair of
inputs with a predetermined difference that maps to a predetermined output dif-
ference costs 2b computations. Indeed, since the input and the output differences
are fixed, the attacker can not apply any birthday-paradox technique. Those dis-
tinguishers are called “limited-birthday distinguishers” and can be generalized in
the following way (we refer to [11] for more details): for a randomly chosen b-bit
permutation, the problem of mapping an input difference from a subset of size I
to an output difference from a subset of size J requires max{

√

2b/J, 2b/(I · J)}
calls to permutation (while assuming without loss of generality since we are
dealing with a permutation that I ≤ J).

Using the freedom degrees technique from the previous section and reading
Table 1, we are for example able to obtain a distinguisher for 5 rounds of the
Keccak-f [1600] internal permutation with complexity 2142 (while the generic
case is 21600).

5 The Rebound Attack on Keccak

The rebound attack is a freedom degrees utilization technique that was first
proposed by Mendel et al. in [17] as an analysis of round-reduced Grøstl and
Whirlpool. It was then improved in [16, 15, 11, 22] to analyze AES and AES-like
permutations and also ARX ciphers [14].

With the help of rebound techniques, we show in this section how to extend
the number of attacked rounds significantly, but for a higher complexity. We will
see that the application of the rebound attack for Keccak seems quite difficult.
Indeed, the situation for Keccak is not as pleasant as the AES-like permutations



case where the utilization of truncated differential paths (i.e. path for which one
only checks if one cell is active or inactive, without caring about the actual
difference value) makes the application of rebound attacks very easy to handle.

5.1 The original rebound attack

Let P denote a permutation, which can be divided into 3 sub-permutations, i.e.,
P = EF ◦ EI ◦ EB . The rebound attack works in two phases.

– Inbound phase or controlled rounds: this phase usually starts with
several chosen input/output differences of EI that are propagated through
linear layers forward and backward. Then, one can carry out meet-in-the-
middle (MITM) match for differences through a single Sbox layer in EI and
generate all possible value pairs validating the matches.

– Output phase or uncontrolled rounds: With all solutions provided in
the inbound phase, check if any pair validates as well the differential paths
for both the backward part pB and the forward part pF .

The SuperSbox technique [15, 11] extends the EI from one Sbox layer to two
Sbox layers for an AES-like permutation, by considering two consecutive AES-like
rounds as one with column-wise SuperSboxes. This technique is possible due to
the fact that one can swap few linear operations with the Sbox in AES, so that the
two layers of Sboxes in two rounds become close enough to form one SuperSbox
layer. However, in the case of Keccak, it seems very hard to form any partition
into independent SuperSboxes. For the same reason, using truncated differential
paths seems very difficult for Keccak, as it has recently been shown in [6].

5.2 Applying the rebound attack for Keccak internal permutations

Assume that we know a set of nB differential trails (called backward trails) on
nrB Keccak rounds and whose DP is higher or equal to pB . For the moment,
we want all these backward paths to share the same input difference mask ∆in

B

and we denote by ∆out

B [i] the output difference mask of the i-th trail of the set.
Similarly, we consider that we also know a set of nF differential trails (called
forward trails) on nrF Keccak rounds and whose DP is higher or equal to pF .
We want all those forward paths to share the same output difference mask ∆out

F

and we denote by ∆in

F [i] the input difference mask of the i-th trail of the set.
Our goal here is to build a differential path on nrB+nrF +1 Keccak rounds

(thus one Sbox layer of inbound), by connecting a forward and a backward trail
with the rebound technique, and eventually to find the corresponding solution
values for the controlled round. We represent by pmatch the probability that a
match is possible from a given element of the backward set and a given element
of the forward set, and we denote by Nmatch the number of solution values that
can be generated once a match has been obtained.

For this connection to be possible, we need the inbound phase to be a valid
differential path, that is we need to find a valid differential path from a ∆out∗

B to a
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nrB-round backward part Inbound nrF -round forward part

Fig. 1. Rebound attack on Keccak

∆in

F . By using random ∆out∗
B and ∆in

F this will happen in general with very small
probability, because we need the very same set of Sboxes to be active/inactive
in both forward and backward difference masks to have a chance to get a match.
Even if the set of active Sboxes matches, we still require the differential transi-
tions through all the active Sboxes to be possible.

We can generalize a bit this approach by allowing a fixed set of differences
∆in

B (resp. ∆out

F ) instead of just one. We call Γ in

B (resp. Γ out

B ) the size of the set
of possible ∆in

B (resp. ∆out

B ) values for the backward paths. Similarly, we call Γ in

F

(resp. Γ out

F ) the size of the set of possible ∆in

F (resp. ∆out

F ) values for the forward
paths. In fact, the number of possible differences in the backward or forward parts
will form a butterfly shape. We call Γmid

B (resp. Γmid

F ) the minimum number of
differences in the backward (resp. forward) part.

The total complexity C to find one valid internal state pair for the (nrB +
nrF + 1)-round path is

C = nF + nB +
1

pmatch

·

⌈

1

pF · pB ·Nmatch

⌉

+
1

pB · pF
, (1)

with

Γ out

B · Γ in

F =
1

pmatch

·

⌈

1

pF · pB ·Nmatch

⌉

. (2)

The first two terms are the costs to generate the backward and forward paths.
The term ⌈ 1

pF ·pB ·Nmatch

⌉ denotes the number of time we will need to perform

the inbound and each inbound costs 1/pmatch. The last term is the cost for
actually performing the outbound phase. The condition (2) is needed since we
need enough differences to perform the inbound phase.

5.3 An Ordered Buckets and Balls Problem

We model the active/inactive Sboxes match as a limited capacity ordered

buckets and balls problem: the s = 5w ordered buckets (s = 320 for Keccak-
f [1600]) limited to capacity 5 will represent the s 5-bit Sboxes and the xB (resp.
xF ) balls will stand for the Hamming weight of the difference in ∆out∗

B (resp. in
∆in

F ). Given a set B of s buckets in which we randomly throw xB balls and a
set F of s buckets in which we randomly throw xF balls, we call the result a



pattern-match when the set of empty buckets in B and F after the experiment
are the same.Before computing the probability of having a pattern-match, we
need the following lemma.

Lemma 1. The number of possible combinations bbucket(n, s) to place n balls
into s buckets of capacity 5 such that no bucket is empty is

bbucket(n, s) :=

s
∑

i=⌈n/5⌉

(−1)s−i

(

s

i

)(

5i

n

)

if s ≤ n ≤ 5s (3)

and 0 otherwise.

The proof of this lemma is given in the full version of the paper.

Using (3), we can derive the probability pbucket(n, s) that every bucket con-
tains at least one ball when n balls are thrown into s buckets with capacity 5 and
the expected number of active buckets when n balls are thrown into s buckets.
We can now relate this lemma to the more general pattern-match problem. This
model tells us that when the number of balls (i.e., active bits) is not too small
on both sides, most of the matches happen when (almost) all the Sboxes are
active. We analyze this behavior in more details in the full version of the paper.

A More General Problem. We can also look into a more general problem,
i.e., we characterize more precisely how the bits are distributed into the Sboxes.

Lemma 2. The probability pdist of distributing randomly n active bits into s
5-bit Sboxes such that exactly Ai Sboxes contain i bits, for i ∈ [1, 5] is

pdist(A1, . . . , A5) :=
s!
(

5
1

)A1
(

5
2

)A2
(

5
3

)A3
(

5
4

)A4
(

5
5

)A5

(s−A1 −A2 −A3 −A4 −A5)!A1!A2!A3!A4!A5!
(

5s
n

) , (4)

with n = A1 + 2A2 + 3A3 + 4A4 + 5A5.

Important Remark. Since most matches happen when all the Sboxes are
active, in order to simplify the analysis, we will use from now on only forward
and backward paths such that all Sboxes are active in the χ layer of the inbound
phase.

5.4 The differential paths sets

In this section, we explain how we generate the forward and backward paths,
since this will have an impact on the derivation of pmatch and Nmatch (this will
be handled in the next two sections).
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Fig. 2. The forward trails we are using. The distance between the two lines reflects the
number of differences.

The forward paths. For the forward paths set (see Fig. 2), we start by choosing
a differential trail computed from the previous section and we derive a set from
it by exhausting all the possible Sbox differential transitions for the inverse of
the χ layer in its first round (all the paths will be the same except the differences
on their input and on the input of the χ layer in the first round). For example,
we can use the 2 first rounds of the 4-round differential path we found (see full
version) which have a total success probability 2−24 and present 6 active Sboxes
during the χ layer of the first round. We randomize the χ−1 layer differential
transitions for the 6 active Sboxes of the first round, and we obtain about 219

distinct trails in total. We analyzed that all the trails of this set have a success
probability of at least 2−24 · 2−2·6 = 2−36 (this is easily obtained with the χ−1

DDT). Moreover, note that they will all have the same output difference mask
(at the third round), but distinct input masks (at the first round). Since we
previously forced the requirement that all Sboxes must be active for the inbound
match, we check experimentally that 217.3 of the 219 members of the set fulfill
this condition.4 We call τF the ratio of paths that verify this condition over
the total number of paths, i.e., τF = 2−1.7. Overall, we built a set of 217.3

forward differential paths on nrF = 2 Keccak-f [1600] rounds, all with DP
higher or equal to pF = 2−36. We can actually generate 64 times more paths by
observing that they are equivalent by translation along the Keccak lane (the z
axis). However, these paths will have distinct output difference masks (the same
difference mask rotated along the z axis), and we have Γmid

F = 26. The total
amount of input differences is Γ in

F := Γmid

F ·217.3 = 223.3 and we have to generate
in total nF = τF ·Γ

in

F = 225 forward differential paths. We discuss the amount of
output differences in Section 5.8, since we extend there the path with two free
additional rounds.

The backward paths. Applying the same technique to the backward case
does not generate a sufficient amount of output differences Γ out

B , crucial for a

4The small amount of filtered forward paths (a factor 21.7) is due to the regularity
of the output of θ inverse. Thus, most of the paths have all Sboxes active when the
Hamming weight of the input is low.
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(
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2k

∑5
i=1 Ai

n

−2A1 − 3A2

−4(A3 + A4 + A5)

Γmid
B (X) ·

(

2X
k

)

2kGB(n) · τ full
B

1st round 2nd round 3rd round

In
b
o
u
n
d

Fig. 3. The backward trails we are using. The distance between the two arrows reflects
the number of differences.

rebound-like attack. Thus, concerning the backward paths set, we build another
type of 2-round trails. We need first to ensure that we have enough differential
paths to be able to find a match in the inbound phase, i.e., we want Γ out

B · Γ in

F =
1/pmatch · ⌈

1
pF ·pB ·Nmatch

⌉ following (2). Moreover, we will require these paths to
verify two conditions:

1. First, we need to filter paths that have not all Sboxes active in the χ
layer of the inbound phase. This happens with a probability about τ fullB :=
bbucket(800, 320)/

(

5·320
n

)

= 2−15.9 if we assume that about half of the bits
are active. This assumption will be verified in our case (and was verified in
practice) since our control on the diffusion of the active bits will be reduced
greatly.

2. Moreover, all the paths we collect should have a DP of at least pB such
that the number of solutions Nmatch generated in the inbound phase is suffi-
cient. Indeed, we must have Nmatch ≥ 1/(pF · pB) in order to have a good
success probability to find one solution for the entire path. We call τDP

B the
probability that a path verifies this property. Hence, we need pB ≥ pmin

B =
1/(pF · Nmatch). We will show in Section 5.7 that Nmatch = 2486 and we
previously showed that pF = 2−36. Hence, pmin

B = 236−486 = 2−450.

These two filters induce a ratio τB := τ fullB · τDP

B of “good” paths. We have
nB · τB = Γ out

B , where nB is the number of paths we need to generate. Thus,
we need to generate nmin

B := 1/(pmatch · ⌈
1

pF ·pB ·Nmatch

⌉ · Γ in

F · τB) trails to per-

form the rebound. We will show in Section 5.7 that pmatch = 2−491.47, that
⌈ 1
pF ·pB ·Nmatch

⌉ = 1 and that τB = 2−15.9. We also know that Γ in

F = 223.3. Hence,

nmin
B = 2491.47+15.9−23.3 = 2484.07.

We show now how we generated these paths. Fig. 3 can help the reading.
We start at the beginning of the second round by forcing X columns of the
internal state to be active and each active column will contain only 2 active bits

(thus a total of 2X active bits). Therefore, we can generate
(

5
2

)X
·
(

s
X

)

distinct
starting differences and each of them will lead to a distinct input difference of
the backward path. Note also that all active columns are in the CPK and thus



applying the θ function on this internal state will leave all bit-differences at the
same place. Then, applying the ρ and π layers will move the 2X active bits to
random locations before the Sbox layer of the second round. If X is not too
large, we can assume that for a good fraction of the paths, all active bits are
mapped to distinct Sboxes and thus we obtain 2X active Sboxes, each with one
active bit on its input. We call ǫ this fraction of paths which is given by

ǫ := pdist(2X, 0, 0, 0, 0) , (5)

where pdist is given by Lemma 2.5 We will need to take ǫ into account when we
count the total number of paths we can generate. This position in the paths, i.e.,
after the linear layer of the second round, is the part with the lowest amount
of distinct differences. Hence, we call the number of differences at this point

Γmid

B (X) :=
(

5
2

)X
·
(

s
X

)

· ǫ.
Looking at the DDT from χ, one can check that with one active input bit in

an Sbox, there always exists:

– two distinct transitions with probability 2−2 for the Keccak Sbox such that
we observe 2 active bits on its output (we call it a 1 7→ 2 transition)

– one single transition with probability 2−2 and one single active bit on its
output (a 1 7→ 1 transition). This transition is in fact the identity.

We need to define how many 1 7→ 1 and 1 7→ 2 transitions we have to use, since
there is a tradeoff between the number of paths obtained and the DP of these
paths. Whatever choices we make, we always have that the success probability
of this χ transition (in the second round) is 2−4X . Let k be the number of 1 7→ 2
transitions among the 2X possible ones. We will observe 2X + k active bits
after χ. Before the χ transition, we have Γmid

B (X) different paths from the initial
choice. For each of these paths, we can now select

(

2X
k

)

distinct sets of 1 7→ 2
transitions each of which can generate 2k different paths. These 2X + k bits are
expanded through θ to at most 11 · (2X + k) = 22X + 11k bits. However, this
expansion factor (every active bit produces 11 one) is smaller when the number
of bits increases. Let n be the number of obtained active bits at the input of the
Sboxes in the third round. At the beginning of the third round, we have 2X + k
active bits. For Keccak-f [1600], given 2X + k active bits at the input of θ, we
get n ≈ u − (u · (u − 1))/1600 bits at the output, with u := 11(2X + k) for
X small enough. Indeed, the 2X + k bits are first multiplied by 11 due to the
property of θ. We suppose now that these u active bits are thrown randomly
and we check for collisions. Given u bits, we can form u · (u − 1)/2 different
pairs of bits. The probability that a pair collides is 2−1600, hence, we have about
u · (u − 1)/(2 · 1600) collisions of two bits. In a 2-collision, two active bits are
wasted (they become inactive). Hence, we can remove u · (u− 1)/1600 from the
overall number of active bits. For small X, we can neglect collisions between
three, four and five active bits, since the bits before θ are most likely separated

5Simulations verified this behavior in practice for the parameters we use in our
attack.



and will not collide. Hence, we verify the equation for n. This model has been
verified in simulations for the values we are using.

We need now to evaluate the number of active Sboxes in the χ layer of the
third round. However, in order to precisely evaluate the DP of this layer (that
we want to be higher than pmin

B ) and the expansion factor we get on the amount
of distinct differential paths, we also need to look at how the bits are distributed
into the input of the Sboxes. The probability pdist of distributing randomly n
active bits into s 5-bit Sboxes such that exactly Ai Sboxes contain i bits, for
i ∈ [1, 5] is given by Lemma 2.

Lemma 3. Suppose that we have n active bits before χ in the third round. Then,
if n ≤ s, the expected number of useful (i.e., which have DP ≥ pmin

B ) paths GB(n)
we can generate verifies

GB(n) ≥

⌊n
5 ⌋
∑

A5=0

N4
∑

A4=0

N3
∑

A3=0

N2
∑

A2=0

F (X,A1, . . . , A5)·2
2A1+3A2+3.58A3+4(A4+A5) , (6)

where N4 := ⌊(n− 5A5)/4⌋, N3 := ⌊(n− 5A5 − 4A4)/3⌋,
N2 := ⌊(n− 5A5 − 4A4 − 3A3)/2⌋, A1 := n− 5A5 − 4A4 − 3A3 − 2A2, and

F (X,A1, . . . , A5) :=

{

pdist(A1, . . . , A5) if 2−4X−2A1−3A2−4(A3+A4+A5) ≥ pmin
B

0 else.

(7)
Note that we use F (. . . ) to filter the paths that have a too low DP.

The proof is given is the full version of the paper.
In practice, we compute GB(n) by summing over all possible values of A1, . . . ,

A5, such that n = A1 + 2A2 + 3A3 + 4A4 + 5A5.
We have now reached the inbound round and we discard all the paths that

do not have all Sboxes active. Hence, we keep only a fraction of τ fullB = 2−15.9

paths.
It is now easy to see that

τDP

B :=

⌊n/5⌋
∑

A5=0

⌊(n−5A5)/4⌋
∑

A4=0

⌊(n−5A5−4A4)/3⌋
∑

A3=0

⌊(n−5A5−4A4−3A3)/2⌋
∑

A2=0

F (X,A1, A2, A3, A4, A5) (8)

with F (. . . ) defined in (7) since this is exactly the fraction of path we keep.
To summarize, we have now reached the inbound round and we are able to

generate

Γ out

B = ǫ ·

(

5

2

)X

·

(

s

X

)

·

(

2X

k

)

· 2k ·GB(n) · τ
full

B (9)

differences that have a good DP and all Sboxes active and the total number of
paths we have to generate is nB = Γ out

B /τB = Γ out

B /(τ fullB · τDP

B ).
By playing with the filter bound, we noticed the following behavior. The

stronger the filter is (i.e., the higher we set the bound on the DP), the higher



the expected value of the Hamming weight at the input of the Sboxes of the
inbound phase will be. This behavior will allow us to reduce the complexity of
our attack in Section 5.7, where we discuss the numerical application. Hence,
instead of filtering at pmin

B , we will filter at a higher value to get better results.

5.5 The inbound phase

Now that we have our forward and backward sets of differential paths, we need to
estimate the average probability pmatch that two trails can match during the in-
bound phase of the rebound attack. We recall that we already enforced all Sboxes
to be active during this match, so pmatch only takes into account the probability
that the differential transitions through all the s Sboxes of the internal state are
possible.

A trivial method to estimate pmatch would be to simply consider an aver-
age case on the Keccak Sbox. More precisely, the average probability that a
differential transition is possible through the Keccak Sbox, given two random
non-zero 5-bit input/output differences is equal to 2−1.605. Thus, one is tempted
to derive pmatch = 2−1.605·s. However, we observed experimentally that the event
of a match greatly depends on the Hamming weight of the input of the

Sboxes. Note that this effect is only strong regarding the input of the Sbox, but
there is no strong bias on the differential matching probability concerning the
output Hamming weight.

Therefore, in order to model more accurately the input Hamming weight
effect on the matching event, we first divide the backward paths depending on
their Hamming weight and treat each class separately. More precisely, we look at
each possible input Hamming weight division among the s Sboxes. To represent
this division, we only need to look at the number of Sboxes having a specific input
Hamming weight (their relative position do not matter). We denote by ci the
number of Sboxes having an input Hamming weight i and we need the following
equations to hold

∑5
i=1 ci = s since we forced that all Sboxes are active during

a match. Moreover, for a Hamming weight value w, we have
∑5

i=1 i · ci = w. The
set of divisions ci verifying the above mentioned equations is denoted by Cw.
The number of possible 5s-bit vectors satisfying (c1, . . . , c5) (i.e., c1 Sboxes with
1 active bit, c2 with 2 etc.) is denoted bc(c1, . . . , c5) and

bc(c1, . . . , c5) =
s!

c1!c2! . . . c5!
· 5c1+c4 · 10c2+c3 . (10)

We can now compute the probability of having a match pmatch depending on the
input Hamming weight divisions:

Theorem 1. The probability pmatch of having a match is

5s
∑

w=s

Pr[Hwtot = w|full]
∑

(c1,...,c5)∈Cw

bc(c1, . . . , c5)

bbucket(w, s)

5
∏

i=1

(

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y)1DDT[v][y]
(

5
i

)

)ci

(11)



where Pout(y) is the measured probability distribution of having y at the output
of an Sbox when we enforce all Sboxes to be active, Pr[Hwtot = w|full] is the mea-
sured probability distribution of the Hamming weight of the input of the Sboxes
when all Sboxes are active, bc(. . . ) is given by (10), bbucket(w, s) by Lemma 1 and
1DDT[v][y] is set to one if the entry [v][y] is non-zero in the DDT of the χ layer
and zero otherwise.6

We leave the proof to the complete version of the paper. However, we define the
following intermediate result: pmatch(w) := Pr[match|Hwtot = w, full] which can
be written as
∑

(c1,...,c5)∈Cw

Pr[match|(c1, . . . , c5),Hwtot = w, full] · Pr[(c1, . . . , c5)|Hwtot = w, full] . (12)

The measured distributions along with some intermediate values will be given
in the extended version of the paper.

We require to test 1/pmatch backward/forward paths combinations in order to
have a good chance for a match. Note that in the next section, we will actually
put an extra condition on the match in order to be able to generate enough
values in the worst case during the outbound phase.

5.6 The outbound phase

Now that we managed to obtain a match with complexity 1/pmatch, we need to
estimate how many solutions can be generated from this match. Again, one is
tempted to consider an average case on the Keccak Sbox: the average number
of Sbox values verifying a non-zero random input/output difference such that the
transition is possible is equal to 21.65. The overall number of solutions would then
be 21.65·s. However, as for pmatch, this number highly depends on the Hamming
weight of the input of the Sboxes and this can be easily observed from the DDT
of the χ layer (for example with an input Hamming weight of one the average
number of solutions is 23, while for an input Hamming weight of four the average
number of solutions is 21).

In order to obtain the expected number of values Nmatch we can get from a
match, we proceed like in the previous section and divide according to the input
Hamming weight.

Theorem 2. Let N be a random variable denoting the number of values we can
generate. Let also full be the event denoting that all the Sboxes are active for the
inbound phase. Given a Hamming weight of w at the input of the Sboxes, we can
get Nw := E[N |match,Hwtot = w, full] values from a match, with

Nw =
1

pmatch(w)

∑

(c1,...,c5)∈Cw

5
∏

i=1

Zci ·
bc(c1, . . . , c5)

bbucket(w, s)
, (13)

6Note that Pr[Hwtot = w|full] greatly depends on the backward paths we choose and
that these paths depends on pmatch. We explain how to solve this cyclic dependency in
Section 5.7.



with

Z :=
1
(

5
i

)2

(

∑

v∈{0,1}5:
Hw(v)=i

DDT[v]

)

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y] ,

where DDT[v] is the value of the non-zero entries in line v of the DDT, Pout(y)
is the measured probability distribution of having y at the output of an Sbox when
we enforce all Sboxes to be active, pmatch(w) is given by (12), bc(. . . ) is given
by (10), bbucket(w, s) is given by Lemma 1 and 1DDT[v][y] is set to one if the entry
[v][y] is non-zero in the DDT of the χ layer and zero otherwise.

The proof is given in the complete version of the paper.
One would be tempted to take the expected value of all the Nw and compute

Nmatch as

∑

w

E[N |match,Hwtot = w, full] · Pr[Hwtot = w|match, full] .

This expectancy would be fine if we were expecting a high number of matches.
This is however not necessarily our case. Hence, we need to ensure that the
number of values we can generate from the inbound is sufficient. To do this, first
note that Nw decreases exponentially while w increases. Similarly, pmatch(w)
increases exponentially while w increases. Thus, we are more likely to obtain a
match at a high Hamming weight which will lead to an insufficient Nmatch.

To solve this issue, we proceed as follows. First, we compute Nw for every w.
We look then for the maximum Hamming weight wmax we can afford, i.e., such
that Nwmax

≥ 1/(pB · pF ). This way, we are ensured to obtain enough solutions
from the match. However, we need to update our definition of a match: a match
occurs only when the Hamming weight of the input is lower than wmax. Hence,
instead of summing over all possible values of w, we sum only up to wmax and
need to update (11). The number of values we can then obtain from the inbound
is Nmatch ≥ Nwmax

.
We can now apply this model to the Keccak-f [1600] internal permuta-

tion. Some useful intermediate results and relevant Nwmax
(with their associated

pmatch) will be given in the extended version of the paper.

5.7 Finalizing the Attack and Improvements

In Section 5.4, we showed how to choose the backward paths given the probability
of having a match in the inbound phase (pmatch) and the number of solution
we can generate from this match (Nmatch). In Sections 5.5 and 5.6, we showed
how to compute pmatch and Nmatch. However, in these computations, we needed
the probability distribution of the Hamming weight of the input of the Sbox,
Pr[Hwtot = w|full]. This probability depends greatly on the paths we select in
Section 5.4.



To solve this circular dependency, we performed several iterations of the
following algorithm until we found some parameters that verify all equations.
First, we estimated roughly Pr[Hwtot = w|full] by taking some random backward
paths with limited complexity. Using the worst case cost of these paths, we were
able to select wmax such that the number of values generated from the inbound
is sufficient. Then, we computed pmatch and Nmatch. With this first guess, we
searched for an X and a k such that the we can find a match with a good
probability and such that we can generate enough values from the inbound.
Then, we computed Pr[Hwtot = w|full] using these new paths generated by X, k
and pB and started our algorithm again with this new distribution. After some
iterations, we found a set of filtered backwards paths that provided a sufficient
pmatch and Nmatch.

When (X, k) = (8, 8), we have ǫ = 0.736 and Γmid

B =
(

5
2

)X
·
(

s
X

)

· ǫ = 277.26.
If we filter all paths that have a DP smaller than 2−450, i.e., we set pB = 2−450,

we get for (X, k) = (8, 8) at least ǫ ·
(

5
2

)X
·
(

s
X

)

·
(

2X
k

)

· 2k · GB(n) · τ
full

B =
2493.88−15.9 = 2477.98 distinct differences using (9) for the inbound (for these
parameters, the difference Hamming weight at the input of the χ layer in the
third round is n = 227.9). With these parameters, since we remove the paths
with a DP lower than pB , we keep τDP

B ≈ 1− 10−10 of the paths, following (8),
i.e., we have almost no filtering on the DP. Hence, we filter the backward paths
with a ratio τB = τ fullB · τDP

B ≈ 2−15.9 · (1 − 10−10) = 2−15.9. We have also
pB = 2−450 and pF = 2−36. Therefore, we need Nmatch ≥ 2486. Computations
show that we have to set wmax = 1000. This leads to pmatch = 2−491.47. This
implies that the minimum total number of backward paths we need to generate
is nmin

B = 1/(pmatch · Γ
in

F · τB) = 1/(pmatch · Γ
in

F · τ
full

B ) = 2484.07. All these paths
apply on nrB = 2 Keccak-f [1600] rounds, all with DP higher or equal to
pmin
B = 236−486 = 2−450.

To summarize, we have that the number of backward output differences is
Γ out

B = nmin
B · τB = 2484.07−15.9 = 2468.17 and that the number of forward input

differences is Γ in

F = 223.3. Hence, there is a total of 2491.47 couples of (∆out

B , ∆in

F )
for the inbound phase, which is enough since it is equal to 1/pmatch. Once a
match is found, the worst case complexity of the connected path is 1/(pB ·pF ) ≤
2450+48 = 2486 which is lower or equal to Nmatch. Hence, we can generate enough
values from the inbound phase to find with a good probability values verifying
the differential path.

The overall complexity for the rebound attack given by (1) is C = 2491.47.

This model was verified on the Keccak-f [100] internal permutation. By
applying this attack on it, we found a 4-round result together with solution
pairs. This gives a 6-round distinguisher with complexity 228.76.

5.8 The distinguisher

We will use exactly the same type of limited-birthday distinguishers as in Sec-
tion 4.



Relaxing the Forward Paths. We analyze now the impact of this two additional
paths on Γ out

F , the set of reachable output differences. At the entrance of the
third round, every Sbox has one single active bit. Hence, according to the DDT,
there are only 4 different possibilities at the output of the Sboxes. Since we
have 6 active Sboxes in the third round, the number of possible differences at
the output of the third round is multiplied by 46 = 212. Thus, the number of
differences at the output of the third round is Γmid

F · 212 = 26 · 212 = 218.
We need now to look at the fourth round to obtain Γ out

F and compute the
generic complexity of the distinguisher. In the third round, every active Sbox
can produce at most 3 active bits at its output, since each active Sbox has only
one single active bit at its input. Hence, the maximum Hamming weight at the
output is 3 · 6 = 18. Each of these active bits can be expanded to at most 11
bits through θ and hence, we have at most 11 · 18 = 198 active bits at the input
of the Sboxes of the fourth round. In the worst case, each of these bits will be
in a different Sbox and will produce four possible differences. Hence, we have
Γ out

F ≤ Γmid

F · 212 · 4198 = 218 · 2396 = 2414.

Relaxing the Backward Paths. Each Sbox with one single active bit at its output
can have 9 possible input differences and the maximum possible of input dif-
ferences that can occur for a given input difference is 12 (see χ−1 DDT). Since
we have 2X active Sboxes, the number of possible input differences is increased
by a factor of at most 92X . Therefore, Γ in

B ≤ Γmid

B · 92X/ǫ and we reduced the
complexity by a factor 24X .

We have Γ in

B ≤ Γmid

B (8) · 92·8/ǫ = 277.7+50.7 = 2128.4 and Γ out

F ≤ 2414. The
generic complexity of the distinguisher is, hence, greater than 21057.6. This is
much greater than the complexity of the rebound attack C = 2491.47.

6 Results and Conclusion

Table 2. Best differential distinguishers complexities for each version of Keccak in-
ternal permutations, for 1 up to 8 rounds. Note that due to its technical complexity
when applied on Keccak, the rebound attack has only been applied to Keccak-f [100]
and Keccak-f [1600].

b
best differential distinguishers complexity

1 rd 2 rds 3 rds 4 rds 5 rds 6 rds 7 rds 8 rds

400 1 1 1 22 28 224 284 -

800 1 1 1 22 28 232 2109 -

1600 1 1 1 22 28 232 2142 2491.47

In this article, we analysed the internal permutations used in the Keccak

family of hash functions in regards to differential cryptanalysis. We first proposed



a generic method that looks for the best differential paths using CPK consid-
erations and better χ mapping. This new method provides some of the best
known differential paths for the Keccak internal permutations and we derived
distinguishers with rather low complexity exploiting these trails. In particular we
were able to obtain a practical distinguisher for 6 rounds of the Keccak-f [1600]
permutation. Then, aiming for attacks reaching more rounds, we adapted the
rebound attack to the Keccak case. This adaptation is far from trivial and
contains many technical details. Our model was verified by applying the attack
on the reduced version Keccak-f [100]. The main final result is a 8-round dis-
tinguisher for the Keccak-f [1600] internal permutation with a complexity of
2491.47. Our distinguisher results are summarized in Table 2. Note that our attack
does not endanger the security of the full Keccak. We believe that this work
will also help to apply the rebound attack on a much larger set of primitives.

This work might be extended in many ways, in particular by further refining
the differential path search or by improving the inbound phase of the rebound
attack such that the overall cost is reduced. Moreover, another research direction
would be to analyse how the differential paths derived in this article can lead to
collision attacks against reduced versions of the Keccak hash functions. Using
the techniques presented in [19] could help reducing the complexity of it.
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