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Abstract. Due to their fast performance in software, an increasing num-
ber of cryptographic primitives are constructed using the operations ad-
dition modulo 2n, bit rotation and XOR (ARX). However, the resistance
of ARX-based ciphers against differential cryptanalysis is not well under-
stood. In this paper, we propose a new tool for evaluating more accu-
rately the probabilities of additive differentials over multiple rounds of a
cryptographic primitive. First, we introduce a special set of additive dif-
ferences, called UNAF (unsigned non-adjacent form) differences. Then,
we show how to apply them to find good differential trails using an al-
gorithm for the automatic search for differentials. Finally, we describe
a key-recovery attack on stream cipher Salsa20 reduced to five rounds,
based on UNAF differences.
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1 Introduction

Differential cryptanalysis [4] and linear cryptanalysis [14] have shown to be two
of the most powerful techniques in the cryptanalysis of symmetric-key crypto-
graphic primitives. Security against linear and differential cryptanalysis is there-
fore typically a major design criterion for modern ciphers. An example of this is
the wide-trail design strategy, used to provide provable resistance against linear
and differential cryptanalysis for the AES block cipher [6].
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In order to achieve a fast performance in software, an increasing number
of cryptographic primitives are built using the operations addition modulo 2n,
rotation and XOR (ARX). Examples include the block cipher FEAL [17], the
Salsa20 stream cipher family [3], as well as the SHA-3 finalists BLAKE [2] and
Skein [9]. Although ARX-based algorithms are very popular, their resistance to
differential cryptanalysis [4] is not well understood.

The probability with which differences propagate through a sequence of op-
erations must be calculated efficiently and accurately, in order to correctly assess
the security of a cipher against differential cryptanalysis. Lipmaa et al. studied
the xor-differential probability of addition (xdp+) in [12], and the additive dif-
ferential probability of XOR (adp⊕) in [13]. These results were generalized using
the S-functions framework, introduced by Mouha et al. [15].

As shown by Velichkov et al. [18], the additive differential probability of ARX
(adpARX) can differ significantly from the multiplication of the differential prob-
ability of the separate components – addition, rotation and XOR. Although an
algorithm was proposed in [18] for the exact calculation of adpARX, unfortunately
their method does not scale to analyze larger components. The accurate calcu-
lation of the probability of a differential characteristic therefore still remains an
open problem for ARX constructions.

In this paper we take a different approach. Namely, we do not calculate the
exact differential probability of a component consisting of more than one ARX

operations. Instead, we multiply the differential probabilities of several ARX op-
erations in order to estimate the total probability. As we want to avoid that
this calculation differs significantly from the actual probability (e.g. due to de-
pendencies between the inputs as noted in [18]), we propose to use a new type
of difference: the UNAF difference, which represents a set of specially chosen
additive differences.

We apply UNAF differences to the cryptanalysis of the ARX-based stream
cipher Salsa20. A general algorithm for automatic search of differentials is briefly
discussed. We apply it to find several differentials for three rounds of Salsa20.
By multiplying the probabilities adpARX of separate ARX components, we estimate
that the best differential has a probability of 2−10. Using UNAF differences, the
same probability is evaluated as 2−4. Experimentally, we estimate the probability
of this differential to be 2−3.39. We observe that the probability obtained using
UNAF differences is much closer to the experimental value.

Finally, we apply UNAF differences to mount key-recovery attack on a version
of Salsa20 reduced to 5 rounds. Note that this is not the best known attack on
Salsa20. It is therefore provided only as a demonstration of a practical application
of UNAF differences. Furthermore, we expect that our attack can be extended
to more rounds.

The outline of the paper is as follows. In Sect. 2, we describe the UNAF
framework. It is applied to the differential analysis of stream cipher Salsa20 in
Sect. 3. Sect. 4 concludes the paper. Notation is defined in Table 1.
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Table 1. Notation.

Symbol Meaning

n Number of bits in a word
x n-bit word
x[i] Select the (i mod n)-th bit (or element) of the n-bit word x,

x[0] is the least-significant bit (or element)
|x| The absolute value of x
x The negation of x i.e. x = −x (e.g. 1 = −1)

#A Number of elements in the set A
+, - Addition modulo 2n, subtraction modulo 2n

⊕ Exclusive-OR (XOR)
≪ t Left bit rotation by t positions
α→ β Input difference α propagates to output difference β
wr

i 32-bit word i from the input state to round r + 1 of Salsa20
∆r

i Additive difference in word i of the input to round r + 1 of Salsa20
0ri Zero difference in word i of the input to round r + 1 of Salsa20

{∆U}ri UNAF difference in word i of the input to round r + 1 of Salsa20
ARX The sequence of the operations: +,≪,⊕ as a single operation

HW(x) Hamming weight of x (number of non-zero bits in x)

2 The UNAF Framework

In this section, we describe the UNAF framework. We define UNAF differences
and state the main UNAF theorem. The UNAF differential probability of ARX
(udpARX) is defined and a general algorithm for the automatic search for high-
probability differentials is briefly discussed.

2.1 Preliminaries

Before we give the formal definition of UNAF differences, we first recall a few
related concepts: the binary-signed digit (BSD) difference and the non-adjacent
form (NAF) difference.

Definition 1. (BSD difference) A BSD difference is a difference whose bits are
signed and take values in the set {1, 0, 1}:

∆±a : ∆±a[i] = (a2[i]− a1[i]) ∈ {1, 0, 1}, 0 ≤ i < n . (1)

An additive difference ∆+a can be composed of more than one BSD difference
∆±a. From any BSD difference, the corresponding additive difference can be
computed as: ∆+a =

∑n−1
i=0 ∆±a[i] · 2i.

All BSD differences corresponding to ∆+a can be obtained by replacing 01
with 11̄ and vice versa and by replacing 01̄ with 1̄1 and vice versa [7, 16]. Note
also that the number of pairs (a1, a2) that satisfy the n-bit difference ∆+a is

3



2n, while the number of pairs that satisfy any of its BSD differences ∆±a is
2k, where k is the number of zeros in the word ∆±a. Therefore, the following
inequality holds: 2k ≤ 2n, k = n−HW(∆±a).

The non-adjacent form (NAF) difference is a special BSD difference and is
defined as follows:

Definition 2. (NAF) A NAF (non-adjacent form) difference is a BSD differ-
ence in which no two adjacent bits are non-zero:

∆Na : ∄i : (∆Na[i] 6= 0) ∧ (∆Na[i+ 1] 6= 0), 0 ≤ i < n− 1 . (2)

For every additive difference ∆+a, there is exactly one NAF difference ∆Na
(ignoring the sign of the MSB). No other BSD difference has a lower Hamming
weight than ∆Na [16]. We illustrate this with the following example:

Example 1. Let n = 4 and ∆+a = 3. Then all possible BSD differences cor-
responding to ∆+a are 0011, 0101̄, 011̄1, 11̄1̄1, 1̄1̄1̄1, 11̄01̄ and 1̄1̄01̄. Of them,
only 0101̄ is in non-adjacent form (NAF). It also has the lowest Hamming weight
among all BSD differences, namely 2.

By enumerating all possible combinations of signs of the non-zero bits of ∆Na,
we can construct a special set of additive differences. What is special about this
set, is that all of its elements correspond to the same unsigned NAF difference.
This set is a UNAF difference and is denoted by ∆Ua. More formally:

Definition 3. (UNAF) A UNAF difference is a set of additive differences that
correspond to the same unsigned NAF difference (i.e. a NAF difference with the
signs ignored):

∆Ua = {∆+x : |∆Nx| = |∆Na|} . (3)

It is easy to see that the size of the UNAF set ∆Ua is 2k, where k is the Hamming
weight of the n-bit word∆Na, excluding the MSB. We further clarify the concept
of a UNAF difference with the following example:

Example 2. Consider again an example where n = 4. Let ∆+a = 3, thus ∆Na =
0101̄. Then, ∆Ua = {∆+x1 = 3, ∆+x2 = −3, ∆+x3 = 5, ∆+x4 = −5}. This
follows from |∆Nx1| = |∆

Nx2| = |∆
Nx3| = |∆

Nx4| = |∆
Na|, because |0101̄| =

|01̄01| = |0101| = |01̄01̄| = 0101.

2.2 Main UNAF Theorem

The main UNAF theorem provides the motivation for applying UNAF differences
to the differential analysis of ARX. Before we state it, we define the additive
differential probability of XOR (adp⊕).

The differential probability of the operation XOR, when differences are ex-
pressed using addition modulo 2n, is denoted by adp⊕. For fixed additive dif-
ferences α, β and γ, adp⊕ is equal to the number of pairs (a1, b1) for which the
equality ((a1 +α)⊕ (b1 +β))− (a1⊕ b1) = γ holds, divided by the total number
of such pairs. More formally, adp⊕(α, β → γ) is defined as:
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Definition 4. (adp⊕)

adp⊕(α, β → γ) =
#{(a1, b1) : c2 − c1 = γ}

#{(a1, b1)}

= 2−2n ·#{(a1, b1) : c2 − c1 = γ} , (4)

where c1 = a1⊕ b1, c2 = (a1 +α)⊕ (b1 + β) and 22n is the total number of pairs
(a1, b1).

Efficient algorithms for the computation of adp⊕ were studied in [13, 15].
Next we state the main UNAF theorem. Its proof is given in Appendix A.

Theorem 1. (Main UNAF theorem) If the probability with which input additive
differences ∆+a and ∆+b propagate to output difference ∆+c through XOR is
non-zero, then the probability with which any of the input additive differences
belonging to the corresponding UNAF sets resp. ∆Ua and ∆Ub propagate to any
of the output additive differences belonging to the UNAF set ∆Uc is also non-
zero:

adp⊕(∆+a,∆+b→ ∆+c) > 0 =⇒ adp⊕(∆+ai, ∆
+bj → ∆+ck) > 0 ,

∀i, j, k : ∆+ai ∈ ∆Ua,∆+bj ∈ ∆Ub,∆+ck ∈ ∆Uc . (5)

Theorem 1 states that if a given additive differential is possible w.r.t. the
XOR operation, then all additive differentials whose inputs and outputs belong
to the same UNAF sets, are also possible. This is illustrated with the following
example.

Example 3. Let n = 4 and ∆+a = 5, ∆+b = 1, ∆+c = 6. Because adp⊕(5, 1 →
6) = 0.15625 > 0, we can use Theorem 1 to show that adp⊕(∆+ai, ∆

+bj →
∆+ck) > 0 for any ∆+ai ∈ ∆Ua = {3,−3, 5,−5}, ∆+bj ∈ ∆Ub = {1,−1} and
∆+ck ∈ ∆Uc = {6,−6}.

In the next section we investigate the probability with which UNAF differences
propagate through the ARX operation.

2.3 The UNAF Differential Probability of ARX

The UNAF differential probability of ARX represents the probability with which
the sets of input additive differences ∆Ua, ∆Ub and ∆Ud propagate to the set
of output additive differences ∆Ue. It is defined as:

Definition 5. (udpARX)

udpARX(∆Ua,∆Ub,∆Ud
t
−→ ∆Ue) =

#{(a1, b1, d1) : ∆
+a ∈ ∆Ua,∆+b ∈ ∆Ub,∆+d ∈ ∆Ud,∆+e ∈ ∆Ue}

#{(a1, b1, d1) : ∆+a ∈ ∆Ua,∆+b ∈ ∆Ub,∆+d ∈ ∆Ud}
, (6)

where

∆+e = e2 − e1 = ARX(a1 +∆+a, b1 +∆+b, d1 +∆+d, t)− ARX(a1, b1, d1, t),

and ARX(x, y, z, t) = ((x+ y) ≪ t)⊕ z.
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The probability udpARX is computed using a method conceptually similar to
the one proposed for the computation of adpARX in [18]. The main difference is
that in this case we are dealing with sets of input and output additive differences.
Details on this computation are provided in Appendix B.

2.4 An Algorithm for Finding the Best Output Difference

To demonstrate how the UNAF framework can be used to construct high-
probability differential characteristics, we have developed a general algorithm
for the automatic search of differentials. It is capable of computing the highest
probability output difference from a given operation. The proposed algorithm
is applicable to any type of difference and any operation. The only condition is
that the propagation of the difference through the operation can be represented
as an S-function. The method to find the best output difference is based on the
A* search algorithm [11].

Space constraints do not allow us to present the algorithm here in detail.
However, a full description of the algorithm accompanied by pseudo-code can
be found in Appendix C. Furthermore, a software toolkit that implements this
algorithm is available.3

In the following sections we describe an application of the algorithm and of
UNAF differences to the differential analysis of stream cipher Salsa20.

3 Applications

We describe several applications of the UNAF framework to the differential
analysis of stream cipher Salsa20. UNAF differences can be used to obtain more
accurate estimations of the probabilities of differentials through multiple rounds
of ARX operations. We describe a key-recovery attack using UNAF differentials
on a version of Salsa20, reduced to 5 rounds.

3.1 Description of Salsa20

Salsa20 is a stream cipher proposed by Bernstein in [3]. It is one of the finalists
of the eSTREAM competition [8]. Salsa20 operates on 32-bit words. The inputs
are a 256-bit key (k0, k1, . . . , k7), a 64-bit nonce (v0, v1), a 64-bit counter (t0, t1)
and four predefined 32-bit constants c0, c1, c2, c3. These inputs are mapped to a
two-dimensional square matrix as follows:









c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3









→









w0
0 w0

1 w0
2 w0

3

w0
4 w0

5 w0
6 w0

7

w0
8 w0

9 w0
10 w0

11

w0
12 w0

13 w0
14 w0

15









. (7)

3 http://www.ecrypt.eu.org/tools/s-function-toolkit
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Fig. 1. Round s = r + 1 of Salsa20.

The basic operation of Salsa20 is the quarterround. One quarterround transforms
four of the input words to round r + 1: wr

0, w
r
1, w

r
2, w

r
3 into four output words:

wr+1
0 , wr+1

1 , wr+1
2 , wr+1

3 by the means of four consecutive ARX operations:

wr+1
1 = wr

1 ⊕ ((wr
0 + wr

3) ≪ 7) = ARX(wr
0, w

r
3, w

r
1, 7) , (8)

wr+1
2 = wr

2 ⊕ ((wr+1
1 + wr

0) ≪ 9) = ARX(wr+1
1 , wr

0, w
r
2, 9) , (9)

wr+1
3 = wr

3 ⊕ ((wr+1
2 + wr+1

1 ) ≪ 13) = ARX(wr+1
2 , wr+1

1 , wr
3, 13) , (10)

wr+1
0 = wr

0 ⊕ ((wr+1
3 + wr+1

2 ) ≪ 18) = ARX(wr+1
3 , wr+1

2 , wr
0, 18) . (11)

One round of Salsa20 consists of four parallel applications of the quarterround
transformation. Each transformation is applied to the elements (in permuted
order) of one of the four columns of the input state matrix, followed by a per-
mutation of the words, as shown on Fig. 1.

Salsa20 has a total of 20 rounds, although versions with eight and twelve
rounds have been proposed, resp. Salsa20/8 and Salsa20/12. The output state
after the last round is added to the initial input state by means of a feed-forward
operation. This produces sixteen 32-bit words (512 bits) of key stream.

3.2 Estimating the Probability of Differentials Using UNAF
Differences

We apply the algorithm of Sect. 2.4 to search for high probability differential
characteristics in Salsa20. We use a greedy strategy in which at every ARX oper-
ation we select the output UNAF difference with the highest probability, before
proceeding with the next ARX operation. In this way we find the following trun-
cated differential for three rounds:

∆0
8 = 0x80000000→ ∆3

9 = 0x80000000 . (12)
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∆1
0 014 0112 0110 ∆1

2 016

quarterround quarterround quarterround quarterround

0211 ∆2
8

025 ∆2
9 ∆2

1

quarterround quarterround quarterround quarterround

∆3
9

Fig. 2. Three round differential characteristic satisfying the differential ∆0
8 → ∆3

9.

The expression (12) implies that all words of the input state have zero differ-
ence, except for the word at position 8, which has difference 0x80000000. A
three round differential characteristic that satisfies (12) is shown on Fig. 2. The
probability with which the differential (12) holds, obtained experimentally over
220 chosen plaintexts, is pexper = 2−3.39.

We compute two theoretical estimations of pexper. The first estimation is
based on single additive differences and is denoted p̂add. It is computed as a
multiplication of adpARX probabilities:

p̂add =
∏

adpARX = 2−10 . (13)

The second estimation of pexper is based on UNAF differences and is denoted
p̂unaf . It is computed as a multiplication of udpARX probabilities:

p̂unaf =
∏

udpARX = 2−4 . (14)

The computations (13) and (14) are shown in Table 2 and Table 3 respectively.
Clearly p̂unaf is a better estimation of pexper than p̂add. The reason is that

multiple differential characteristics connect the input and output differences of
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Table 2. The estimated probability p̂add (13) of the differential (12); adpARX refers to

adpARX((∆+a+∆+b), ∆+d
t
−→ ∆+e).

∆ ∆+a ∆+b ∆+d t ∆+e = ∆ adpARX

∆1
2 0 0 80000000 9 80000000 1

∆1
3 80000000 0 0 13 fffff000 2−1

∆1
0 fffff000 80000000 0 18 40020000 2−2.41

∆2
1 40020000 0 0 7 01000020 2−2.99

∆2
8 0 0 80000000 9 80000000 1

∆2
9 80000000 0 0 13 fffff000 2−1

∆3
9 0 01000020 fffff000 7 80000000 2−2.58

p̂add = 2−10

Table 3. The estimated probability p̂unaf (14) of the differential (12); udpARX refers to

udpARX(∆Ua,∆Ub,∆Ud
t
−→ ∆Ue).

∆U ∆Ua ∆Ub ∆Ud t ∆Ue = ∆U udpARX

{∆U}12 0 0 80000000 9 80000000 1
{∆U}13 80000000 0 0 13 00001000 1
{∆U}10 00001000 80000000 0 18 40020000 2−0.41

{∆U}21 40020000 0 0 7 01000020 2−0.99

{∆U}28 0 0 80000000 9 80000000 1
{∆U}29 80000000 0 0 13 00001000 1
{∆U}39 0 01000020 00001000 7 80000000 2−2.58

p̂unaf = 2−4

the differential (12). The estimation p̂add is based upon a single one among all
possible characteristics, while the estimation p̂unaf takes into account several
characteristics at once. This effect is illustrated in Fig. 3. Note that the input
{∆U}08 and output {∆U}39 UNAF sets contain a single element – the additive dif-
ference 80000000. Because of that {∆U}08 = ∆0

8 and {∆U}39 = ∆3
9 and therefore

the estimations (13) and (14) can be compared to each other.

In the case where the output UNAF set contains more than one element (i.e.
{∆U}39 6= ∆3

9), we propose to divide the resulting probability by the size of the
output UNAF set #∆U :

p̂unaf =

∏

udpARX

#∆U
. (15)

The estimation (15) is based on the assumption that all additive differences from
the output UNAF set ∆U hold with approximately the same (or very close)
probabilities. For the case of Salsa20, our experiments confirm this assumption.

We use (15) to estimate the probabilities with which several differences from
the output state after Salsa20/3 hold, given input UNAF difference {∆U}08 =
0x80000000. The results are shown in Table 4 and in Fig. 4.
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{∆U}08 = ∆0
8

80000000

80000000 {∆U}12

00001000 fffff000 {∆U}13

40020000 3ffe0000 c0020000 bffe0000 {∆U}10 80000000 {∆U}28

01000020 00ffffe0 ff000020 feffffe0 {∆U}2
1 00001000 fffff000 {∆U}2

9

80000000

{∆U}39 = ∆3
9

1

2−1
1

2−2.41

1

2−2.99 2−1

2−2.58

Fig. 3. A single UNAF characteristic, satisfying the differential ∆0
8 → ∆3

9. It is com-
posed of multiple additive characteristics.

The results presented in Table 4 and Fig. 4 show that although the probability
estimations p̂unaf/#∆U computed using UNAF differences with (15) deviate
from the values obtained experimentally pexper, they are still more accurate
than the estimations p̂add based on single additive differences and computed
with (13).

3.3 Key-recovery Attack on Salsa20/5

In this section, we apply UNAF differences to mount a key-recovery attack on
a version of stream cipher Salsa20 reduced to 5 rounds, denoted as Salsa20/5.
Although its complexity is lower than exhaustive key search, the attack does not
improve the best known attack on the cipher. Therefore it is described only as
a demonstration of a practical application of UNAF differences.
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Table 4. Estimating the probabilities of differentials for three rounds of Salsa20 using
UNAF differences.

i ∆3
i {∆U}3i p̂add p̂unaf/#∆U pexper

9 80000000 80000000 2−10.00 2−4.00 2−3.38

13 ffe00100 00200100 2−15.75 2−7.75 2−4.93

14 ff00001c 01000024 2−16.29 2−8.31 2−6.35

1 00e00fe4 01201024 2−23.01 2−13.04 2−10.18

2 00000800 00000800 2−35.59 2−16.62 2−11.08

3 fff000a0 001000a0 2−41.48 2−20.04 2−14.68

6 01038020 01048020 2−41.76 2−21.91 2−15.68

7 ffefc000 00104000 2−44.65 2−22.15 2−17.42

Using the best-first search algorithm from Sect. 2.4 we find the following
UNAF differential for 3 rounds of Salsa20:

{∆U}08 = 0x80000000→ {∆U}311 = 0x01000024 . (16)

The input UNAF set {∆U}08 = 0x80000000 consists of one element: the additive
difference 0x80000000. The output UNAF set {∆U}311 = 0x01000024 contains
the following 23 additive differences: 0x01000024, 0x0100001c, 0x00ffffe4,
0x00ffffdc, 0xff000024, 0xff00001c, 0xfeffffe4, 0xfeffffdc. The prob-
ability that an additive difference ∆3

11 falls into the set {∆U}311 was determined
experimentally to be pexper = 2−3.38.

In our attack, we first invert the feed-forward operation to compute the dif-
ferences ∆5

5, ∆
5
6, . . ., ∆

5
10 of the state after round 5. Next, we guess 5 of the 8

words of the secret key, in order to compute the differences ∆5
1,∆

5
2,∆

5
3,∆

5
4,∆

5
11.

Therefore, we do not only know the differences ∆5
1,∆

5
2,. . .,∆

5
11, but also the cor-

responding values of the word pairs. This allows us to compute the differences
∆4

12,∆
4
13,∆

4
14 from the state after round 4. Using the latter, we can finally com-

pute the UNAF difference {∆U}311. If it is equal to 0x01000024, then our guess
of the key words was correct with some probability. This process is illustrated
in Appendix D.

Since the probability of the differential (16) is 2−3.38 ≥ 2−4, from M = 26

chosen plaintext pairs we expect that 2−4 · 26 = 22 = 4 pairs will follow the
differential (i.e. will satisfy the output difference {∆U}311).

We assume that a pair encrypted under a wrong key results in a uniformly
random difference. The probability that this difference falls into the set {∆U}311
is Prand = 23/232 = 2−29. Therefore the probability that at least 4 plaintext
pairs turn out to be all false positives (i.e. they satisfy the differential, but are
encrypted under a wrong key) can be calculated using the binomial distribution:

64
∑

i=4

(

64

i

)

(2−29)i(1− 2−29)64−i ≈ 2−96.72 . (17)

As explained, because we guess 160 bits (5 words) of the secret key, in the
attack we have to make 2160 guesses. For each guess, we encrypt 26 chosen plain-
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based on UNAF differences and (3) based on single additive differences.

text pairs and we partially decrypt the resulting ciphertext pairs for 2 rounds in
order to compute the output difference. From 2160 guesses, the expected num-
ber of wrong keys that result in at least 4 pairs with the right difference is
2−96.72 · 2160 ≈ 263. For each of those keys, we guess the remaining 96 bits (3
words) i.e. we make 296 guesses per candidate key. For each guess we encrypt
one plaintext pair (i.e. two encryptions are performed) under the full key and
check if the encryption matches the corresponding ciphertext pair. This results
in 2 · 263 · 296 = 2160 additional operations. Thus we estimate the total number
of encryptions of our attack to be:

2 · 26 · 2160 + 2 · 263 · 296 = 2167 + 2160 ≈ 2167 . (18)

Therefore the presented attack on Salsa20/5 has data complexity 27 chosen
plaintexts and time complexity 2167 encryptions. As shown in Table 5, it is
comparable to the attack proposed by Crowley [5].

4 Conclusion

In this paper, we introduced UNAF differences. These are sets of specially chosen
additive differences used to estimate the probabilities of differentials through
sequences of ARX operations more accurately.
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Table 5. Overview of key-recovery attacks on Salsa20.

Rounds Reference Time Data Type of Differences

Salsa20/5 Our result 2167 27 Additive
Salsa20/5 Crowley [5] 2165 26 XOR

Salsa20/6 Fischer et al. [10] 2177 216 XOR

Salsa20/7 Aumasson et al. [1] 2151 226 XOR

Salsa20/8 Aumasson et al. [1] 2251 231 XOR

We presented the main UNAF theorem, which shows how a UNAF difference
groups several possible additive differences together. Further, we investigated
the propagation of UNAF differences through the ARX operation. We defined
the UNAF differential probability of ARX and noted that it can be computed
efficiently using the S-functions framework proposed by Mouha et al.

UNAF differences were applied to the cryptanalysis of the stream cipher
Salsa20. We found that for three rounds of Salsa20, the probability of the best
differential based on additive differences is estimated as 2−10. Evaluating the
same probability using UNAF differences leads to the value 2−4. The latter
is closer to the the probability of the differential 2−3.39 that was determined
experimentally.

A general algorithm for the automatic search for differentials was briefly dis-
cussed. It was used to find high-probability UNAF differentials for three rounds
of Salsa20. One of them was used to mount a key-recovery attack on Salsa20
reduced to five rounds. The attack has a time complexity of 27 and a data
complexity of 2167. It therefore does not improve the best-known attack on the
cipher. Nevertheless, to the best of our knowledge, this is the first cryptanalysis
result on Salsa20 that is based on additive differences. Furthermore, we expect
that the attack can be extended to more rounds. One possibility in this direction
is to group two or more ARX operations and consider them as a single operation.
Another is to improve the method for finding differential characteristics for mul-
tiple rounds.

The results in this paper were obtained for the Salsa20 stream cipher. We
see the application of UNAF differences to other ARX-based ciphers as another
interesting topic for future research.
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A Proof of Theorem 1

The following Lemma provides the condition under which the probability adp⊕

is non-zero.

Lemma 1 (Theorem 2 of [13]). All differences ∆+a, ∆+b and ∆+c for which
adp⊕(∆+a,∆+b→ ∆+c) > 0, are ∆+a = ∆+b = ∆+c = 0, and

∆+a = ∆+a[n− 1 . . . q + 1] ‖ ∆+a[q] ‖ 0∗ , (19)

∆+b = ∆+b[n− 1 . . . q + 1] ‖ ∆+b[q] ‖ 0∗ , (20)

∆+c = ∆+c[n− 1 . . . q + 1] ‖ ∆+c[q] ‖ 0∗ , (21)

where ¬(∆+a[q] = ∆+b[q] = ∆+c[q] = 0) and ∆+a[q] ⊕ ∆+b[q] = ∆+c[q].
Each of the sub-word differences ∆+a[n − 1 . . . q + 1], ∆+b[n − 1 . . . q + 1] and
∆+c[n − 1 . . . q + 1] can take any arbitrary value. The symbol ∗ represents the
Kleene star.

We proceed next with the proof of Theorem 1.

Proof. From Reitwiesner’s algorithm for the construction of the NAF [16], it
follows that if the first non-zero bit (starting from the LSB) of∆+ai is at position
q, then the first non-zero bit of its NAF representation ∆Nai is also at position
q. Since all ∆+ai in (5) belong to the same UNAF set ∆Ua, the first non-zero
bit for all of them is in the same position q. The same observation holds for
∆+bj and ∆+ck. From adp⊕(∆+a,∆+b → ∆+c) > 0 and Lemma 1, it follows
that ∆+a[q]⊕∆+b[q] = ∆+c[q]. Therefore ∆+ai[q]⊕∆+bj [q] = ∆+ck[q], ∀i, j, k.
Again by Lemma 1, it follows that if ∆+a is replaced by any ∆+ai belonging to
the same UNAF set ∆Ua, the resulting probability adp⊕ is still non-zero. The
same observation can be made for ∆+b and ∆+c, which completes the proof. ⊓⊔

B Computation of udpARX

The probability udpARX can be efficiently computed using the S-function frame-
work [15, 18]. We briefly describe this computation below. It is also a part of a
toolkit that will be made publicly available.

The propagation of input UNAF differences ∆Ua, ∆Ub and ∆Ud to output
UNAF difference ∆Ue is represented as an S-function. The latter is used to
compute 16 adjacency matrices. Each of them corresponds to a given value of
the i-th bit of each of the four UNAF differences and connects a set of possible
input states to a set of possible output states.

The differential (∆Ua[i], ∆Ub[i], ∆Ud[i+ t]
t
−→ ∆Ue[i+ t]) at bit position i is

written as the bit string w[i] ← (∆Ua[i] ‖ ∆Ub[i] ‖ ∆Ud[i+ t] ‖ ∆Ue[i+ t]). At
each bit position 0 ≤ i < n, the index w[i] ∈ {0, . . . , 15} selects one of the 16
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adjacency matrices Aw[i]. The probability udpARX is computed as follows:

udpARX(∆Ua,∆Ub,∆Ud
t
−→ ∆Ue) =

14
∑

j=0

Lj

(

n−1
∏

i=n−t

Aw[i]

)

R

(

n−t−1
∏

i=0

Aw[i]

)

Cj . (22)

In (22), the summation is performed over each of the 14 possible initial states.
The reason for having multiple initial states is the bit rotation by t positions, as
explained in [18]. The multiplication by the projection matrix R at bit position
t is necessary because of the rotation operation. The column vectors Cj , 0 ≤
j < 15 represent the 15 possible initial states. The row vectors Lj , 0 < j < 15
represent their corresponding final states. For further details, we refer to [18].

Note that the matrices Aw[i] are of dimension 540 × 540, but these can be
minimized to 60× 60 by combining equivalent states using the algorithm of [15,
§3.5] .

C An Algorithm for Finding the Best Output Difference

Let� be an operation that takes a finite number of n-bit input words a1, b1, d1, . . .
and computes an n-bit output word c1 = �(a1, b1, d1, . . .). Let • be a type of
difference. Let α,β,ζ,. . . and γ be differences of type • such that a1 • a2 = α,
b1 • b2 = β, d1 • d2 = ζ, . . . and c1 • c2 = γ for some a2,b2,d2,. . . and some
c2. The differential probability with which input differences α, β, ζ, . . . prop-
agate to output difference γ with respect to the operation � is denoted as
•dp�(α, β, ζ, . . . → γ). Finally, let the difference • be such that it is possible
to express its propagation through the operation � as an S-function consist-
ing of N states. Therefore, there exist adjacency matrices Aw[i] such that the

probability •dp� can be efficiently computed as LAw[n−1] . . . Aw[1]Aw[0]C, where

L = [1 1 · · · 1 ] is a 1 × N matrix and C = [1 0 · · · 0 ]T is an N × 1 matrix (as
in [15]). The problem is to find an output difference γ such that its probability
pγ over all possible output differences is maximal:

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j
• dp�(α, β, ζ, . . .→ γj) . (23)

We represent (23) as a problem of finding the shortest path in an node-
weighted binary tree. We define the binary tree T = (N,E), where N is the set
of nodes and E is the set of edges. The height of T is n + 1 with a dummy
start node positioned at level −1 and the leaves positioned at level n− 1. Each
node at level i : 0 ≤ i < n contains a value of γ[i], where i = 0 is the LSB and
i = n− 1 is the MSB. Every node on level i has two children at level i+1. Since
the input differences α, β, ζ, . . . are fixed, at every bit position i we can choose
between two matrices Aw[i], corresponding to the two possibilities for the output
difference γ[i].
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To find the output difference with the highest probability, we use the A*
search algorithm [11]. In this algorithm, an evaluation function f can be com-
puted for every node in the search tree. The f -function represents the weight of
a node, and is based on the cost of the path from the start node, and a heuris-
tic that estimates the distance to the goal node. The algorithm always expands
the node with the highest f -value (corresponding to the highest probability).
The A* search algorithm guarantees that the optimal solution will be found,
provided that the evaluation function f never underestimates the probability of
the best output difference. After introducing some definitions, we will define an
evaluation function f and prove in Theorem 2 that this f satisfies the required
condition.

Let vector Xi = [xi,0 xi,1 · · · xi,N−1 ] be a transition probability vector, i.e.

xi,r ≥ 0 for 0 ≤ r < N and
∑N−1

r=0 xi,r ≤ 1. We define Hr as a column vec-
tor of length N , of which the r-th element (counting from 0) is 1 and all other
elements are 0. The cost of a node at level i is then denoted by ‖Xi‖ (the
1-norm of Xi) and is calculated as ‖Aw[i]Aw[i−1] · · ·Aw[0]C‖. Let us define a

sequence of row vectors Ĝi,r, 0 ≤ r < N and 0 ≤ i < n. Each Ĝi,r is a prod-
uct of matrices LAw[n−1]Aw[n−2] . . . Aw[i+1], where each of the A-matrices are

chosen such that Ĝi,rHr is maximized. The choice of the A-matrices may differ
for different values of r. We define row vector Gi as the product of matrices
LAw[n−1]Aw[n−2] . . . Aw[i+1], where the A-matrices are chosen such that GiXi is
maximized. For a node at level i with cost ‖Xi‖, the evaluation function f is

defined as
∑N−1

r=0 Ĝi,rHrxi,r.

Theorem 2. The evaluation function f =
∑N−1

r=0 Ĝi,rHrxi,r never underesti-
mates the probability of the best output difference.

Proof. The following inequality holds: Ĝi,rHr ≥ GiHr for 0 ≤ r < N . The

latter can be proven by contradiction: if Ĝi,rHr < GiHr for some r, then Ĝi,r

is not the product of A-matrices that maximizes Ĝi,rHr, which contradicts its
definition. Because probabilities are non-negative, we can multiply both sides of
the inequality by the state probability xi,r, to obtain Ĝi,rHrxi,r ≥ GiHrxi,r,
0 ≤ r < N . By summing the left and the right sides of the N inequalities, we
obtain

∑N−1
r=0 Ĝi,rHrxi,r ≥

∑N−1
r=0 GiHrxi,r = GiXi. By definition, GiXi is the

best choice of A-matrices, starting from transition probability Xi. This proves
that the left-hand side of the inequality never underestimates the probability,
which proves the theorem. ⊓⊔

Before we can apply the A* algorithm to compute the best output difference,
we must determine the values of Ĝi,rHr for 0 ≤ i < n and 0 ≤ r < N . This is
done by again running the A* algorithm for the most significant bit, then for
the two most significant bits, and so on until we process the entire word. For
the MSB, we define Ĝn−1,r = L for 0 ≤ r < N . For the two MSBs, we run
the A* algorithm for every 0 ≤ r < N , setting the transition probability vector
Xn−2 to Hr. This allows us to compute Ĝn−2,rHr. This process is continued

until Ĝ0,rHr for 0 ≤ r < N is calculated. Having calculated all values of Ĝi,rHr,
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we then use the A* algorithm to search for the best output difference by setting
the state transition probability vector X−1 = C. Pseudo-code of the entire A*
search algorithm is provided in Algorithm 1.

D Attack on Salsa20/5 using UNAF Differences

Fig. 5 illustrates the attack presented in Sect. 3.3. Gray boxes denote guessed
words and white boxes denote words that are either known or can be computed.
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Algorithm 1 Find the Best Output Diff. of Type • w.r.t. Operation �.

Input: Matrices Aw[i] for •dp
�; input diffs. α, β, ζ, . . .,; num. states N .

Output: Output difference γ and probability pγ such that

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j
• dp�(α, β, ζ, . . .→ γj) .

1: Define struct node = {index, γ, findex−1, Ĥindex−1}
2: Init priority queue of nodes ordered by f : Q = ∅
3: Init output difference: γ ← ∅
4: for i = n− 1 downto 0 do
5: if i = n− 1 then
6: Ĝi ← L = [1 1 · · · 1 ]
7: else
8: Ĝi ← [ Ĝi,0 Ĝi,1 . . . Ĝi,N−1 ]
9: end if
10: if i = 0 then
11: N = 1
12: end if
13: for r = 0 to N − 1 do
14: Reset priority queue: Q = ∅
15: Init the total probability of node vi−1: fi−1 ← 1
16: Init the transition probability vector vi: Ĥi−1 ← Ĥi−1,r

17: Init node vi ← {i, γ, fi−1, Ĥi−1}
18: Add new node to the queue: Q.push(vi)
19: vbest ← Q.top(); {j, γ, fj−1, Ĥj−1} ← vbest
20: while j 6= n do
21: Remove vbest from the queue: Q.pop()
22: for q = 0 to 1 do
23: Set the j-th bit of γ: γ[j]← q
24: Estimate the total probability: fj ← ĜjA

q

w[j]Ĥj−1

25: Compute the transition probability vector: Ĥj ← Aq

w[j] Ĥj−1

26: Init child of vbest: node vqj+1 ← {j + 1, γ, fj , Ĥj}
27: Add the child to the queue: Q.push(vqj+1)
28: end for
29: Extract the node with the lowest total cost: vbest ← Q.top()
30: {j, γ, fj−1, Ĥj−1} ← vbest
31: end while
32: vbest ← Q.top(); fbest ← get cost(vbest)
33: Set the r-th element of Ĝi: Ĝi,r ← fbest
34: end for
35: end for
36: Extract the node with highest total probability: vbest ← Q.top()
37: Get the output difference associated to vbest: γ, pγ ← get gamma(vbest)
38: return γ, pγ
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Fig. 5. Key-recovery attack on Salsa20/5 using the 3-round UNAF differential
{∆U}08 → {∆

U}311. Gray boxes denote guessed words; white boxes denote words that
are either known or can be computed.
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