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Abstract. In this paper, we present a new technique to construct a
collision attack from a particular preimage attack which is called a par-
tial target preimage attack. Since most of the recent meet-in-the-middle
preimage attacks can be regarded as the partial target preimage attack,
a collision attack is derived from the meet-in-the-middle preimage at-
tack. By using our technique, pseudo collisions of the 43-step reduced
SHA-256 and the 46-step reduced SHA-512 can be obtained with com-
plexities of 2126 and 2254.5, respectively. As far as we know, our results
are the best pseudo collision attacks on both SHA-256 and SHA-512 in
literature. Moreover, we show that our pseudo collision attacks can be
extended to 52 and 57 steps of SHA-256 and SHA-512, respectively, by
combined with the recent preimage attacks on SHA-2 by bicliques. Fur-
thermore, since the proposed technique is quite simple, it can be directly
applied to other hash functions. We apply our algorithm to several hash
functions including Skein and BLAKE, which are the SHA-3 finalists.
We present not only the best pseudo collision attacks on SHA-2 family,
but also a new insight of relation between a meet-in-the-middle preimage
attack and a pseudo collision attack.
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1 Introduction

Cryptographic hash functions play a central role in the modern cryptography. A
secure hash function, which produces a fixed length hash value from an arbitrary
length message, is required to satisfy at least three security properties: preimage
resistance, second preimage resistance and collision resistance.

While there has not been a generic method to convert a collision attack into
a preimage attack, it has been known that the preimage attack that can find at
least two distinct preimages from the same target can be directly converted into
a collision attack. However, the converted collision attack is often not efficient
due to that the birthday bound of a collision attack (2n/2) is far lower than



the generic bound of the preimage attack (2n), where n is the bit size of the
hash value. Thus, it is left as open question that how to convert an efficient
preimage attack into an efficient collision attack. In the case of the reduced
SHA-256 regarding the number of attacked rounds, a preimage attack, covering
43 steps [4], is much better than the best known collision attack, with only 27
steps [17]. Moreover, basically, a collision attack and a preimage attack require
quite different techniques. In other words, in general, the techniques used for the
collision attack do not work well for a preimage attack, and vice versa. In fact,
most of the recent collision attacks are based on a differential attack [32, 31], in
contrast to that most of the recent preimage attacks are based on a meet-in-the-
middle (MITM) attack [2]. Though converting the differential collision attack
to a (pseudo) preimage attack was discussed in [8], there is no generic way to
construct a collision attack from a MITM preimage attack.

In this paper, we give a generic method to convert a particular preimage at-
tack into a collision attack. By using our technique, an efficient collision attack
which works faster than a generic collision attack can be constructed from a
partial target preimage attack even if the complexity of the preimage attack is
more than the birthday bound (2n/2). Our method is especially fit for convert-
ing a MITM preimage attack into a pseudo collision attack, since most of the
recent MITM preimage attacks can be considered as the partial target preimage
attack as long as its matching point is located in the end of the compression
function. We first apply our algorithm to SHA-256 and SHA-512 and show the
best pseudo collision attacks on them in literature. Specifically, pseudo collisions
of the 43-step (out of 64-step) reduced SHA-256 and the 46-step (out of 80-step)
reduced SHA-512 can be derived faster than a generic attack. Combined with
the recent preimage attacks on SHA-2 [14], these attacks are extended to the
52-step and 57-step reduced SHA-256 and SHA-512, respectively. Then we show
some other applications of our conversion techniques including a pseudo collision
attack on the 37-round reduced Skein-512 and pseudo collision attacks on the
4-round reduced BLAKE-256/512 without the initialization function. While it
seems hard to extend our pseudo collision attacks to collision attacks, the pro-
posed conversion technique is a generic, and thus it is expected to be widely
used for security evaluations of hash functions.

This paper is organized as follows. Some security notions and a meet-in-the-
middle preimage attack are introduced in Section 2. Section 3 introduces our
approach for constructing a pseudo collision attack. Then, applications of our
technique to SHA-256 and SHA-512 are presented in Section 4. The result on
Skein is described in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we first give security notions used throughout this paper, then
briefly refer a meet-in-the-middle (MITM) preimage attack.

2



2.1 Security Notions

Let f be a compression function which outputs an n-bit chaining variable hi from
an n-bit input chaining variable hi−1 and a k-bit input message mi, i.e., hi =
f(hi−1,mi). Similarly, let H be an iterated hash function consisting of f , which
produces an n-bit hash value d from an initial value IV (= h0) and an arbitrary
length message M , i.e., d = H(IV,M) = f(· · · f(f(IV,m1),m2), · · · ,mt), where
pad(M) = (m1|m2| · · · |mt) and pad denotes a padding function. This type of
hash function, in which the size of an intermediate chaining variable is the same
as that of a hash value, is called a narrow-pipe hash function. On the other
hand, a hash function having a larger internal state size is called a wide-pipe
hash function, i.e., the size of a final hash value is smaller than that of a chaining
variable. We use the terminology introduced in [15] for a collision attack and a
pseudo (or free-start) collision attack on hash functions as follows.

Definition 1 (Collision attack). Given IV , find (M,M ′) such that M 6= M ′

and H(IV,M) = H(IV,M ′).

Definition 2 (Free-start or pseudo collision attack). Find (IV , IV ′, M ,
M ′) such that H(IV,M) = H(IV ′,M ′) and (IV,M) 6= (IV ′,M ′).

Additionally, we give several definitions for (pseudo) preimage attacks on hash
functions and (pseudo) preimage attacks on compression functions.

Definition 3 (Preimage attack). Given IV and d(= H(IV,M)), find M ′

such that H(IV, M ′) = d.

Definition 4 (Pseudo preimage attack). Given d(= H(IV,M)), find (IV ′,
M ′) such that H(IV ′,M ′) = d.

Definition 5 ((t-bit) partial target preimage attack). Given IV and t-bit
partial target of d(= H(IV,M)), find M ′ such that t-bit of d′(= H(IV,M ′))
is the same as the t-bit of d at the same position, and the other part of d′ is
randomly obtained.

Definition 6 (Preimage attack on compression function). Given hi−1

and hi(= f(hi−1, mi)), find m′i such that f(hi−1,m
′
i) = hi.

Definition 7 (Pseudo preimage attack on compression function). Given
hi(= f(hi−1, mi)), find (h′i−1,m

′
i) such that f(h′i−1,m

′
i) = hi.

Definition 8 ((t-bit) partial target preimage attack on compression
function). Given hi−1 and t-bit partial target of hi(= f(hi−1,mi)), find m′i
such that t-bit of h′i(= f(hi−1,m

′
i)) is the same as the t-bit of hi at the same

position, and the other part of h′i is randomly obtained.

Definition 9 ((t-bit) pseudo partial target preimage attack on com-
pression function). Given t-bit partial target of hi(= f(hi−1,mi)), find (h′i−1,
m′i) such that t-bit of h′i(= f(h′i−1,m

′
i)) is the same as the t-bit of hi at the same

position, and the other part of h′i is randomly obtained.
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Fig. 1. Meet-in-the-middle preimage attack

2.2 Meet-in-the-Middle Preimage Attack

The basic concept of the MITM preimage attack was introduced in [22, 16]. Since
then, the MITM preimage attacks have been drastically improved and applied to
several hash functions [2, 28, 27, 3, 13, 4, 10]. Also, the techniques for the MITM
preimage attacks on hash functions have been extended to the attacks on several
block ciphers [7, 12].

As shown in Fig. 1,3 in the MITM preimage attack on a compression function,
the compression function f is assumed to be divided into two sub-functions: f1
(forward process) and f2 (backward process) so that the w-bit matching point z
calculated by f1 does not depend on m2 which is some message bits of m, and z
calculated by f2 does not depend on m1 which is other message bits of m. Such
m1 and m2 are called neutral bits of f2 and f1, respectively. Then, the MITM
preimage attack finds a preimage m′ such that f(x,m′) = y from a given x and
y(= f(x,m)) as follows.

Step 1. Choose a random m except for m1 and m2.
Step 2. For all possible m1, calculate w-bit z1(= f1(x,m1)), and add a pair of

(z(i)
1 ,m

(i)
1 ) to a list, where (1 ≤ i ≤ 2|m1|), and | ∗ | denotes the bit size of ∗.

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (x ⊕ y,m2)), and add a

pair of (z(j)
2 ,m

(j)
2 ) to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying z
(p)
1 = z

(q)
2 . If such pair is

found, then check if the other bits of the matching point derived from m
(p)
1

and m
(q)
2 are the same value.

Step 5. If the other parts are also the same, then outputs such m including
m

(p)
1 and m

(q)
2 . Otherwise, go back to Step 1 and repeat the computation.

From Steps 2 and 3, we have 2|m1| and 2|m2| values of w-bit z1 and z2, i.e.,
we have 2|m1|+|m2| values of (z1 ⊕ z2). Since the probability of (z1 ⊕ z2 = 0)
is 2−w, we have 2|m1|+|m2| · 2−w pairs such that z1 = z2 in Step 4. Thus, by
repeating this algorithm about 2n−w · 2−(|m1|+|m2|) · 2w times, we expect to
obtain a desired preimage. The required computation for the one process from
Step 1 to 4 is at most max(2|m1|, 2|m2|) calls of the compression function. Thus,
the total computation to find a preimage of the compression function is about
2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).4

3 Here, we show the MITM preimage attack on Davies-Meyer mode as an example.
MITM preimage attacks on other modes like Matyas-Meyer-Oseas mode can be
performed in a similar way.

4 The estimated complexity does not depend on the size of the matching point w.
However, as discussed in [10], if w is extremely small like w = 1, the total complexity
is dominated by the recomputations in Step 4 which is ignored in our estimation.
Thus, in our evaluation, we assume that w is sufficiently large.
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For a narrow-pipe hash function, by replacing x and y by IV and d, this
MITM preimage attack on a compression function can be directly converted
into a preimage attack on a hash function. However, for an attack on a hash
function, some of the message bits related to the padding bits are required to be
controlled by the attacker to set appropriate padding data.

3 Method to Convert Preimage Attack into Collision
Attack

In this section, we present how to efficiently convert a particular preimage at-
tack into a pseudo collision attack. First, we introduce a generic technique to
construct a pseudo collision attack from a partial target preimage attack. Then,
we introduce the MITM preimage attack whose matching point is located at the
end of the compression function. We show that such class of the MITM preimage
attack is regarded as the partial target preimage attack. Finally, we show that a
pseudo collision attack can be efficiently constructed from the MITM preimage
attack whose matching point is at the end by showing how to efficiently obtain
many partial target preimages.

3.1 Generic Conversion of Partial Target Preimage Attack into
Collision Attack

We consider the oracle A that can find a t-bit partial target preimage with
a complexity of 2s. Also, A is assumed to return different M ′ for each call.
Obviously, we can construct a collision attack with a complexity of 2s · 2(n−t)/2

by iteratively calling A as follows.

– Set t-bit random data as d′

– Call A with the parameter IV and d′ in 2(n−t)/2 times

After this procedure, we have 2(n−t)/2 of (n − t)-bit random data, and thus
there exists a colliding data with a high probability. Once the colliding data are
found, we have a collision of the hash function since the rest of the hash value
d′ is fixed. The total complexity is 2(n−t)/2 · 2s. The memory requirement can
be reduced to the memory requirement of finding a partial target preimage by
using memory free birthday attack [29, 21]. This conversion itself can be applied
to not only a narrow-pipe hash function but also a wide-pipe hash function,
since the required complexity depends only on the size of the digest. The basic
concept of this attack that fixes t-bit of the target with the complexity of 2s

has been used to find a collision of (new) FORK-256 in [22] and a collision and
a second preimage of LUX in [33]. However, the method does not work if the
partial target preimage attack is not efficient, i.e., (s ≥ t/2). In this case, the
required complexity in total will be higher than 2n/2.
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Fig. 2. MITM preimage attack with the matching point in the last step

3.2 Meet-in-the-Middle Attack with Matching Point in Last Step

We consider a similar model explained in Section 2.2. The difference from the
model shown in Fig. 1 is that the matching point is restricted to be in the last
step as shown in Fig. 2. In this scenario, the MITM pseudo preimage attack on a
compression function finds a preimage m′ and a random x′ such that f(x′,m′) =
y from a given y(= f(x,m)) as follows.

Step 1. Choose a random m except for m1 and m2, and a random starting state
S.

Step 2. For all possible m1, calculate w-bit z1(= f1(S,m1)), and add a pair of
(z(i)

1 ,m
(i)
1 ) to a list, where (1 ≤ i ≤ 2|m1|).

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (S,m2)), and add a pair

of (z(j)
2 ,m

(j)
2 ) to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying that z(p)
1 ⊕ z(q)

2 equals the
t-bit of y. If such pair is found, then check if the XORed other bits of the
matching point derived from m

(p)
1 and m

(q)
2 is the same as the rest of y.

Step 5. If the XORed other bits are also the same as y, then output such m

including m
(p)
1 and m

(q)
2 , and x′ calculated from the data of the matching

point. Otherwise, go back to Step 1 and repeat the computation.

Note that, this attack basically cannot obtain a preimage from the given x unlike
the attack described in Section 2.2, since x′ will be randomly derived. Thus, this
attack is considered as a pseudo preimage attack on a compression function.
However, for a narrow-pipe hash, it has been known that a pseudo preimage
attack on a compression function can be converted into a preimage attack on
a hash function assuming that the attacker can set valid padding bits [19, 10].
The estimated complexity to find a desired pseudo preimage is the same as that
presented in Section 2.2, i.e., 2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).

3.3 Conversion of MITM Preimage Attack into Pseudo Collision
Attack

If we can construct the MITM pseudo preimage attack whose matching point is
located at the end of the compression function, we can control part of the output
variables as explained in the previous subsection. In other words, the MITM
pseudo preimage attack described in the previous subsection can be regarded
as the pseudo partial target preimage attack on a compression function. For
the MITM preimage attack, at least 2t/2 computations are required to derive a
preimage of an t-bit partial target. Thus, the directly converted pseudo collision
attack will at least have the complexity of 2(n−t)/2+t/2 = 2n/2, that is not an
efficient pseudo collision attack.
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Fig. 3. Multi-block pseudo collision

In order to overcome this problem, we exploit extra freedom of a neutral
word after finding a partial target preimage. For example, in the case of t = 10
and |m1| = |m2| = 8 (> t/2), we can find 26(= 28+8/210) 10-bit partial target
preimages with the complexity of 28. It essentially means that a 10-bit partial
target preimage is found with the complexity of 22(= 28/26) < 25(= 210/2).
When t ≤ w, the required complexity to find a partial target preimage from a
given t-bit partial target is estimated as

2t−(|m1|+|m2|) ·max(2|m1|, 2|m2|),

where recall that w denotes the bit size of the matching point. In particular,
s < t/2, which is the condition for a successful attack as mentioned in Section 3.1,
holds when min(|m1|, |m2|) > t/2, where recall that 2s represents the required
complexity to find a t-bit partial target preimage. Therefore, if we can move the
matching point of the MITM attack to the end of the compression function and
there is enough freedom in neutral words, we can construct an efficient pseudo
collision attack on a compression function.

Moreover, for a narrow-pipe hash function, it has been known that a (pseudo)
collision attack on a compression function can be directly converted to a (pseudo)
collision attack on a hash function by appending another message block il-
lustrated in Fig. 3, which is called multi-block message technique. By using
the multi-block message technique, an attacker can append arbitrary messages.
Thus, unlike the conversion to a (pseudo) preimage attack on a hash function, for
the conversion to a pseudo collision attack on a hash function, there is no restric-
tion on controllability of message bits for a MITM pseudo preimage attack on a
compression function. This will relax conditions on the position of the matching
point for the MITM pseudo preimage attack on a compression function, and thus
may allow us to attack larger number of steps. Note that, for a wide-pipe hash
function, even though a (pseudo) collision attack on a compression function can
not be directly converted to a (pseudo) collision attack on a hash function by
using multi-block message, we still can convert a MITM pseudo preimage attack
on a hash function to a pseudo collision attack on a hash function since the
conversion of a partial target preimage attack into a collision attack is generic.
Furthermore, in our attack, t-bit of the colliding digest can be determined by
the attacker unlike the usual collision attack that derives a completely random
digest. This is another feature of our approach. On the other hand, the required
complexity of our converted (pseudo) collision attack is likely to be high due to
a few gains from the MITM procedure, though it is still more efficient than the
generic attack. This is considered as one of the limitations of our approach.

4 Pseudo Collision Attacks on SHA-2

In this section, we apply our conversion technique to SHA-2. At first, we briefly
describe the algorithm of SHA-2. Then, we review the previous collision attacks
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on SHA-2. After that, we introduce the known MITM preimage attack on the
43-step SHA-256 presented in [4]. After we modify these results in order to fit
our conversion technique, i.e., moving the matching point to the end of the com-
pression function, we show the pseudo collision attack on the 43-step SHA-256.
Moreover, we present the pseudo collision attack on the 46-step SHA-512 based
on the MITM preimage attack on the 46-step SHA-512 [4]. Furthermore, pseudo
collision attacks on the 40-step reduced SHA-224 and SHA-384 are demonstrated
as well. Finally, we discuss pseudo collision attacks based on the recent MITM
preimage attacks [14], which significantly improve the results of [4] in terms of
the number of attacked steps by using bicliques. These results on SHA-2 are
summarized in Table 1.

Table 1. Summary of collision attacks on the reduced SHA-2

algorithm type of attack steps complexity based attack paper

SHA-256

collision 24 228.5 - [11]
collision 27 (practical) - [17]

semi-free-start-collision∗1 24 217 - [11]
semi-free-start-collision∗1 32 (practical) - [17]

pseudo-near-collision 31 232 - [11]
pseudo collision 42 2123 [4] Our (Section 4.7)
pseudo collision 43 2126 [4] Our (Section 4.4)
pseudo collision 45 2126.5 [14] Our (Section 4.9)
pseudo collision 52 2127.5 [14] Our (Section 4.9)

SHA-224 pseudo collision 40 2110 [4] Our (Section 4.8)

SHA-512

collision 24 228.5 - [11]
pseudo collision 42 2244 [4] Our (Section 4.7)
pseudo collision 46 2254.5 [4] Our (Section 4.6)
pseudo collision 50 2254.5 [14] Our (Section 4.9)
pseudo collision 57 2255.5 [14] Our (Section 4.9)

SHA-384 pseudo collision 40 2183 [4] Our (Section 4.8)

∗1: semi-free-start-collision attack finds (IV ′,M,M ′) such that H(IV ′,M) =
H(IV ′,M ′) and M 6= M ′.

4.1 Description of SHA-2

While our target is both SHA-256 and SHA-512, we only explain the structure
of SHA-256, since SHA-512 is structurally equivalent to SHA-256 except for the
number of steps, the amount of rotations and the word size. The compression
function of SHA-256 consists of a message expansion function and a state update
function. The message expansion function expands a 512-bit message block into
64 32-bit message words (W0, · · · ,W63) as follows:

Wi =
{
Mi (0 ≤ i < 16),
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 (16 ≤ i < 64),
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where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X � 3),
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X � 10).

The state update function updates eight 32-bit chaining variables, A, B, · · · , G,
H in 64 steps as follows:

T1 = Hi +Σ1(Ei) + Ch(Ei, Fi, Gi) +Ki +Wi,

T2 = Σ0(Ai) +Maj(Ai, Bi, Ci),
Ai+1 = T1 + T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant and the functions Ch, Maj, Σ0 and Σ1 are
given as follows:

Ch(X,Y, Z) = XY ⊕XZ,
Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),
Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 steps, a feed-forward process is executed with initial state variables by
using word-wise addition modulo 232.

4.2 Known Collision Attacks on SHA-2

The first collision attack on reduced SHA-256 was presented in [18] which is a
19-step near collision attack. Since then, the collision attacks on SHA-2 have
been improved [20, 23, 25, 24, 26, 11, 17]. The previously published best collision
attacks in terms of the number of attacked steps are the 27 steps on SHA-256 [17]
and the 24 steps on SHA-512 [11, 25]. A non-random property, which is a second-
order differential collision, of the 47-step reduced SHA-256 compression function
was reported in [6].

4.3 Known MITM Preimage Attack on 43-step SHA-256 [4]

The MITM preimage attack on the 43-step SHA-256 presented in [4] uses the
33-step two chunks Wj , . . . ,Wj+32 including the 4-step initial structure (IS),
the 2-step partial fixing (PF), the 7-step partial matching (PM) and the 1-step
indirect partial matching (IPM). In the following, we review the details of these
techniques.
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33-step Two Chunks with the 4-step IS. The message words of length 33 is
divided into two chunks as {Wj , . . . ,Wj+14,Wj+18} and {Wj+15, Wj+16, Wj+17,
Wj+19, . . . ,Wj+32}. Using message compensation technique [4], the first chunk
and the second chunk are independent from Wj+15 and Wj+18, respectively.
In particular, the following constraints ensure the above message words to be
neutral words with respect to each chunk;

Wj+17 = σ1(Wj+15), Wj+19 = σ2
1(Wj+15), Wj+21 = σ3

1(Wj+15),
Wj+22 = Wz+5, Wj+23 = σ4

1(Wj+15), Wj+24 = 2σ1(Wj+15),
Wj+25 = σ5

1(Wj+15),
(1)

where σ2
1(X) means σ1 ◦ σ1(X).

These two chunks include the 4-step IS, which essentially exchanges the order
of the words Wi and Wi+3 by exploiting the absorption property of the function
Ch. After the swapping, the final output after the step (i + 3) still keeps un-
changed. Here, Wj+18 is moved to the first chunk and Wj+15, Wj+16 and Wj+17

are moved to the second chunk.
In the forward direction, a state value of pj+33 = Aj+33|| . . . ||Hj+33 can be

computed independently of the first chunk. In the backward direction, a state
value of pj = Aj || . . . ||Hj can be computed independently of the second chunk.
Note that the 33-step two-chunk is valid regardless of the choice of j for j > 0.

7-step PM. In the backward computation, Aj can be computed from pj+7

without knowing {Wj , · · · ,Wj+6} for any j as used in [13].

2-step PF. PF is a technique to enhance PM by fixing a part of a neutral word.
The equation for Hj−1 is as follows:Hj−1 = Aj −Σ0(Bj)−Maj(Bj , Cj , Dj)−Σ1(Fj)

−Ch(Fj , Gj , Hj)−Kj−1 −Wj−1,
Wj−1 = Wj+15 − σ1(Wj+13)−Wj+8 + σ0(Wj).

If we fix the lower ` bits of Wj+15, which is assumed to be a neutral word for
the other chunk, the lower ` bits of Hj−1 can be computed without using the
value of the higher (32 − `) bits of Wj+15. Furthermore, the equation for Hj−2

is expressed as follows:Hj−2 = Aj−1 −Σ0(Bj−1)−Maj(Bj−1, Cj−1, Dj−1)−Σ1(Fj−1)
−Ch(Fj−1, Gj−1, Hj−1)−Kj−2 −Wj−2,

Wj−2 = Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1).

The lower (` − 18) bits of Hj−2 can be computed if we can obtain the lower
` bits of Ch(Fj−1, Gj−1, Hj−1) and the lower (` − 18) bits of σ0(Wj−1). Note
that these values can be computed by using only the lower ` bits of Wj+15.
Thus, when we fix the lower ` bits of Wj+15, the lower (` − 18) bits of Hj−2

can be computed without knowing the higher (32− `) bits of Wj+15. Therefore,
by combining the 7-step PM with the 2-step PF, 9 steps can be skipped in the
backward computation.
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1-step IPM. For the forward computation, Aj+34 can be expressed as a sum
of two independent functions ψF , ξF of each neutral word as follows;

Aj+34 = Σ0(Aj+33) +Maj(Aj+33, Bj+33, Cj+33) +Hj+33 +Σ1(Aj+33)
+Ch(Aj+33, Bj+33, Cj+33) +Kj+33 +Wj+33,

Wj+33 = σ1(Wj+31) +Wj+26 + σ0(Wj+18) +Wj+17,

⇒ Aj+34 = ψF (Wj+15) + ξF (Wj+18).

Then, we can compute ψF (Wj+15) and ξF (Wj+18) independently. It is equivalent
to move the computation of ξF (Wj+18) to the backward chunk. In this case,
ξF (Wj+18) = σ0(Wj+18).

Attack Overview. These techniques enable us to construct the 43 (= 33 + 7
+ 2 + 1)-step attack on SHA-256. Here, we have the freedom of choice of j as
long as 36 steps (Wj−2 to Wj+34) is located sequentially.

For the actual attack in [4], j is chosen as j = 3, because W13, W14 and
W15 can be freely chosen to satisfy the message padding rule. The matching
state is the lower 4 bits of A37. In addition, the number of fixed bits ` for PF
is chosen as ` = 23. Then, neutral words of W18 and W21 have 5- and 4-bit
freedom degrees, respectively. As a result, a pseudo preimage is found with the
complexity of 2251.9. After that, pseudo preimages are converted into a preimage
with the complexity of 2254.9. See [4] for more details about this attack.

4.4 Pseudo Collision Attack on 43-step SHA-256

As discussed in Section 3.3, to convert a MITM preimage attack into a pseudo
collision attack, the matching point is located into the end of the compression
function, i.e., the addition of the feed-forward. As mentioned in section 4.3, the
matching point of the 43-step MITM preimage attack is selected at the state
after the step 37 (j = 3) due to the padding bits.

However, for a (pseudo) collision attack, we do not need to control message
words for satisfying the padding rules, since we can generate correct padding by
simply adding another message block as discussed in Section 3.3. It means that
the last block of a compression function is used only for satisfying the padding
condition in the collision attack when pseudo collision can be found before the
last compression function as shown in Fig. 3. As a result, for a (pseudo) collision
attack, we can move the matching point to the state after the step 43 (j = 9)
that is the end of the compression function. 5

Let a 256-bit output of the compression function be CV = {ZA|| · · · ||ZH},
where each word is 32 bits. For j = 9, W24 and W27 are neutral words, and the
matching point is the lower 4 bits of A43(= A0 ⊕ ZA).

5 It is also pointed out in [10] as the matching point can be rotated to the end of the
compression function
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Fig. 4. 43-step pseudo collision attack on SHA-256

In order to construct the pseudo collision attack, we give the efficient method
to obtain 4-bit partial target preimages by using the MITM technique [4]. Fig-
ure 4 shows the overview of the 43-step pseudo collision attack.

Attack Procedure.

1. Choose the lower 4 bits of ZA, which are target values.
2. Randomly choose the value of p25 and message W25. Randomly fix the lower

23 bits of W24. Then we can find 25 values of W24 on average from 9 free
bits that correctly construct the 4-step initial structure and store them in
the table TW .

3. Randomly choose message words not related to the initial structure and the
neutral words, i.e., W19, W20, W21, W22, W23 and W29 (called an initial
configuration).

4. For all 25 possible W24 in TW , compute W26, W28, W30, W31, W32, W33 and
W34 following Eq. (1). Compute forward and find ψF (W24). Then, store the
pairs (W24, ψF (W24)) in a list LF .

5. For all 24 possible values (the lower 4 bits) of W27, compute backward and
find ξF (W27) and the lower 4 bits of A0. Then, store the pairs (W27, ZA ⊕
A0 − σ0(W27)) in a list LB .

6. If a match is found, i.e., ψF (W24) = ZA ⊕A0 − σ0(W27), then compute two
group of states A43, B43, · · · , H43 and A0, B0, · · · , H0 with corresponding
W24 and W27, respectively. Then obtain 25 (= 29/24) CV whose 4-bit are
fixed, i.e., the lower 4 bits of ZA, and store these in a List L1.

7. Repeat (3)-(6) 2121 times with different values of the initial configuration.

After the above procedures, we obtain 2126 (= 25 × 2121) pairs whose 4 bits are
fixed.6 Thus, there exists a colliding pair with a high probability, because of the
equation of (2126 = 2(256−4)/2).

Evaluation. We assume that the complexity for the 1-step function and the
1-step message expansion is 1/43 compression function operation of the 43-step
SHA-256. As estimated in [10], the complexity of Step 2 in the presented attack
is 29, and that of Steps 3-6 is 24.878, which is the complexity for finding 25 4-bit
partial target preimages. Thus, whole complexity of the pseudo collision attack
on the 43-step SHA-256 is estimated as 2126 ≈ 29 + (2121 × 24.878).

6 It is noted that we need a slightly more than 2121 times repeated experiments to get
2126 pairs that will achieve a probability higher than 2−1. However the difference is
so small that we ignore it here.
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4.5 Known MITM Preimage Attack on 46-step SHA-512 [4]

The MITM preimage attack on the 46-step SHA-512 presented in [4] uses the
31-step two chunks Wj , . . . ,Wj+30 including the 2-step IS, the 8-step PF for
Wj−1, . . . ,Wj−6 and Wj+31,Wj+32 and the 7-step PM. In this attack, we can
choose j as long as 39 step (Wj−6 to Wj+32) are located sequentially. For the
actual attack in [10], j is chosen as j = 6 to satisfy the padding rule. Then, the
neutral words W21 and W22 have 4 and 3-bit freedom degrees, respectively, and
the bit size of the matching point is 3. Thus, a preimage of the 46-step SHA-512
is found with the complexity of 2511.5. See [4] for more details about this attack.

4.6 Pseudo Collision Attack on 46-step SHA-512

Similarly to the attack on the reduced SHA-256, we can move the matching
point to the end of the compression function, because the padding issue can be
avoided by using multi-block message technique in the pseudo collision attack.
In the case of SHA-512, since the bit size of the matching point is 3, we utilize
the 3-bit partial target preimages for the attack. Then, the complexity of the
attack is estimated as 2254.5 = (2(512−3)/2).

4.7 Pseudo Collision Attacks on 42-step SHA-256 and 42-step
SHA-512

We consider pseudo collision attacks on smaller number of rounds of SHA-2 in
order to save the time complexity. For the 42-step reduced SHA-256, we can use
10 bits of freedom in both directions to find a 10-bit partial target preimage as
discussed in Section 5.4 of [4]. This implies that a 10-bit partial target preimage
is obtained with the complexity 1 (< 25). Thus, a pseudo collision is found with
the complexity of 2123(= 2(256−10)/2×210/210). Similarly to this, for the 42-step
reduced SHA-512, we can use 24 bits of freedom in both directions to find a
24-bit partial target preimage as discussed in Section 6.5 of [4]. Therefore, a
pseudo collision of the 42-step reduced SHA-512 is found with the complexity of
2244(= 2(512−24)/2 × 224/224).

4.8 Pseudo Collision Attacks on Reduced SHA-224 and SHA-384

The pseudo collision attack on the 43-step SHA-256 described in Section 4.4 is
applicable to the 43-step SHA-224 in the similar manner. However, we can not
use the multi-block message technique straightforwardly, because the pseudo
collision attack on SHA-224 needs to be done in the last compression function
whose output ZH is disregarded. Thus, due to the padding issue, we can mount
only pseudo collision attack on a compression function of 43-step, not a hash
function. The estimated complexity is 2110 for this attack.

However, the smaller number of rounds of SHA-224 hash function can be
attacked by using another MITM attack. The 40-step SHA-224 hash function
can be attacked by using the same two chunks for the 43-step preimage attack on

13



SHA-256 in [4], i.e., the case of j = 3. The 7-step partial matching for backward
computation are replaced by the 4-step one. Then the message words W13, W14

and W15 are left as free message words to satisfy the padding rule. Instead of
the lower 4 bits of ZA, we use the lower 4 bits of ZD as the target value. Here,
we need additional one step: when finding matches at the lower 4 bits of A37,
we compute forward from the matching point to the end of the compression
function (40-th step) by using these values that are computed forward from the
starting point. Since A37 = D40 = D0 ⊕ ZD for the 40-step SHA-224, the lower
4 bits of ZD will keep unaffected by the additional step. Thus, we can still get a
partial target preimage. It can be converted into a pseudo collision attack on a
hash function, because we can set W13, W14 and W15 to follow the padding rule.

The detail of the attack procedure is as follows.

1. Choose the lower 4 bits of ZD, which are target values.
2. Randomly choose the value of p19 and message W19. Randomly fix the lower

23 bits of W18. Then we can find 25 values of W18 on average from 9 free
bits that correctly construct the 4-step initial structure and store them in
the table TW .

3. Randomly choose message words not related to the initial structure and
the neutral words, i.e., W13, W14, W15, W16, W17, W23 (called an initial
configuration [4]).

4. For all 25 possible W18 in TW , compute W20, W22, W24, W25, W26, W27,
W28 following Eq, (1). Compute forward and find ψF (W18). Store the pairs
(W18, ψF (W18)) in a list LF .

5. For all 24 possible values (the lower 4 bits) of W21, compute backward and
find ξF (W21) and the lower 4 bits of A37 (= D40 = ZD ⊕ D0). Store the
pairs (W21, ZD ⊕D0 − σ0(W27)) in a list LB .

6. If a match is found, i.e., ψF (W24) = ZD ⊕ D0 − σ0(W27), then compute
forward to get the states A40, B40, · · · , H40 with corresponding W24 and W27,
respectively. D40 will keep unaffected in this step. Then obtain 25 (= 29/24)
CV whose 4 bits are fixed, i.e., the lower 4 bits of ZD, and store these in a
List.

7. Repeat (3)-(6) 2105 times with different values of the initial configuration.

The complexity of the attack is estimated as 2110.
Similarly, the pseudo collision attack on the 46-step SHA-512 hash function

described in 4.6 can also be applied to the 46-step SHA-384 compression function
with the complexity of 2190.5 = (2(384−3)/2). For a pseudo collision attack on the
reduced SHA-384 hash function, we use the 43-step preimage attack on SHA-
384 [4]. Combining the result in [4] with our conversion technique, a pseudo
collision attack on the 40-step SHA-384 hash function can be constructed. The
matching bit is 18 when chosen parameter of partial matching as ` = 27. The
complexity of the pseudo collision attack on the 40-step SHA-384 is estimated
as 2(384−18)/2 = 2183. These 40-step pseudo collision attacks give examples that
the matching point is not at but near the end of compression function. That is
compatible to solve padding problem.
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4.9 Application to Other Results of SHA-2

Recently, the MITM preimage attacks on the reduced SHA-2 are improved by us-
ing “bicliques” technique which is considered as generalized initial structure [14].
This technique enables us to construct longer initial structures than those of the
attacks [4]. In the following, let us consider pseudo collision attacks based on [14].

For SHA-256, the 36-step two independent chunks including the 6-step IS
based on bicliques are constructed. Combining the 2-step PM with the 7-step
PM and the 1-step IPM, the MITM preimage attack on the 45-step SHA-2 is
derived. In this attack, both neutral words have 3-bit freedom degrees, and the
matching point is 4-bit. Since our conversion technique does not need to consider
the padding issue, the matching point can be moved to the end of the compression
function similar to the 43-step attack. Then, we can convert it into the 45-step
pseudo collision attack on SHA-256 with the complexity of 2126.5 (= 2(256−3)/2)
7. Similarly, we can construct the 50-step pseudo collision attack on SHA-512
based on the 50-step MITM preimage attack [14]. In this attack, both neutral
words have 3-bit freedom degrees, and the bit size of the matching point is 3.
Thus, the complexity of the attack is estimated as 2254.5 (= 2(512−3)/2).

In addition, [14] showed pseudo preimage attacks on the 52-step SHA-256
and the 57-step SHA-512. For the setting of a pseudo preimage attack, the cost
of converting a pseudo preimage to a preimage is omitted. Thus, larger number
of rounds can be attacked. Note that in these attacks, the amount of freedom
degrees for both neutral words are only 1-bit, and the bit size of the matching
point is 1. In order to construct a pseudo collision attack by using our conversion
technique, it is sufficient to obtain a pseudo preimage on a compression function,
i.e., a preimage on a hash function is not needed. Therefore, the above explained
pseudo preimage attacks can also be converted into pseudo collision attacks in
a similar way. The complexities of the pseudo collision attacks on the 52-step
SHA-256 and the 57-step SHA-512 are estimated as 2127.5 (= 2(256−1)/2) and
2255.5 (= 2(512−1)/2), respectively.

5 Application to Skein

In this section, we show pseudo collision attacks on the reduced Skein-512 [9]
based on the preimage attacks presented in [14].

5.1 Description of Skein

Skein is built from the tweakable block cipher Threefish EK,T (P ), where K, T
and P denote a key, a tweak and a plaintext message, respectively. The com-
pression function F (CV, T,M) of Skein outputs the next chaining variable as
F (CV, T,M) = ECV,T (M)⊕M , where CV is the previous chaining variable and
M is an input message block.
7 Our attack uses only 3 bits for the matching and find 3-bit partial target preimages,

because this setting is optimal with respect to the time complexity.
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Threefish-512 supports a 512-bit block and a 512-bit key, and operates on
64-bit words. The subkey Ks = (Ks

0 ,K
s
1 , . . . ,K

s
7) injected every four rounds is

generated from the secret key K = K[0], K[1], . . . ,K[7] as follows:

Ks
j = K[(s+ j) mod 9], (0 ≤ j ≤ 4); Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];
Ks

6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks
7 = K[(s+ 7) mod 9] + s,

where s denotes a round counter, T [0] and T [1] denote tweak words, T [2] =
T [0]+T [1], and K[8] = C240⊕

⊕7
j=0K[j] with a constant C240. Each Threefish-

512 round consists of four MIX functions followed by a permutation of the eight
64-bit words. The 128-bit function MIX processes the pairs of eight words of
internal state I0, I1, . . . , I7 after key addition.

5.2 Known Pseudo Preimage Attacks on Skein [14].

We briefly review two MITM preimage attacks on Skein-512 presented in [14]: one
is a preimage attack on the 22-round reduced Skein-512 hash function starting
from the 3rd round, and the other is a preimage attack on the 37-round reduced
Skein-512 compression function starting from the 2nd round.

For the 22-round attack, the 3-dimension biclique at rounds 12-15 is obtained
with the complexity of 2200. Since many bicliques can be produced out of one,
the cost of constructing the bicliques is negligible in the total complexity of the
attack. In this attack, we can obtain 23 pairs matched in 3 bits by 22.3 calls
of the 22-round Skein-512 compression function. As a result, a preimage of the
22-round reduced Skein is found with the complexity of 2511.2.

Table 2. Parameters of the (pseudo) preimage attacks on the reduced Skein-512 [14]

Parameters of the preimage attack on the 22-round Skein-512 hash function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-11 16-19 12-15 20→ 24 = 3← 7 I1
30,31,53 23 22.3

Parameters of the pseudo preimage attack on the 37-round Skein-512 compression function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-15 24-31 16-23 32→ 38 = 2← 7 I3
25 2 21.2

Considering a pseudo preimage attack on the compression function, it is
natural to assume that tweak bits T can also be controlled by the attacker.
Due to additional freedom, the pseudo preimage attack on the 37-round reduced
Skein-512 is feasible by using the 1-dimension biclique at rounds 16-23. In this
attack, we can obtain 2 pairs matched in 1 bit by 21.2 calls of the 37-round
Skein-512 compression function. Consequently, a pseudo preimage of the 37-
round reduced Skein is found with the complexity of 2511.2.
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The parameters for the preimage attacks on the 22-round and the 37-round
reduced Skein-512 hash function and compression function are summarized in
Table 2. See [14] for more details about this attack.

5.3 Pseudo Collision Attacks on Skein.

Since the matching point used in the MITM preimage attack on the 22-round
reduced Skein-512 hash function [14] is located in the end of the compression
function, our conversion technique can directly convert it to the pseudo collision
attack on the 22-round reduced Skein-512. In this attack, the neutral words have
3-bit freedom degrees, and the bit size of the matching point is 3. As reported
in [14], a 3-bit matching candidate can be found with the complexity of 22.3/23.
Thus, the complexity of the pseudo collision attack on the 22-round reduced
Skein-512 hash function is estimated as 2253.8 (= 2(512−3)/2 × 22.3/23).

The pseudo preimage attack on the 37-round reduced Skein compression
function can be converted into a pseudo collision attack on a hash function in a
similar way. The required complexity for the pseudo collision attack on the 37-
round reduced Skein hash function is estimated as 2255.7 (= 2(512−1)/2×21.2/2).

6 Conclusion

In this paper, we gave a generic method to convert preimage attacks to pseudo
collision attacks. It provides a new insight to evaluate the security of hash func-
tions. The essence of the method is converting a partial target preimage attack
to a pseudo collision attack. That is especially compatible to meet-in-the-middle
preimage attacks since it can be converted into a partial target preimage attack if
the matching point can be moved to the end of a hash function or a compression
function and enough freedom on neutral bits are left.

Using the proposed approach, we presented the best pseudo collision at-
tacks on SHA-2 based on the known preimage attacks, which has been left as
open question. We showed pseudo collision attacks on the 43- and 46-step re-
duced SHA-256 and SHA-512 based on the MITM preimage attacks presented
in [4]. Also, pseudo collision attacks on the 52- and 57-step reduced SHA-256
and SHA-512 based on the more advanced MITM preimage attacks in [14] were
demonstrated. We also applied the conversion technique to other hash func-
tions including Skein and BLAKE with the meet-in-the-middle preimage attacks,
which showed the widely usage of this method. The pseudo collision attacks on
the 22- and 37-round reduced Skein-512 were presented. The 4-round reduced
BLAKE-256/512 without the initialization function can be attacked by the con-
verted pseudo collision attack (see Appendix A). Our technique may also apply
to other hash functions, such as Tiger [1]. Based on the MITM preimage attack
on the full Tiger [10], we might construct the pseudo collision attack on the full
Tiger. We believe that the technique can be used for more hash algorithms once
their preimage or pseudo preimage attacks are found.
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By this method, now we only can get pseudo collision attacks. It is left
as future works that how to construct collision attacks from known preimage
attacks.
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Appendix

A Application to BLAKE

We apply our technique to BLAKE hash function family consisting of BLAKE-
224, BLAKE-256, BLAKE-384 and BLAKE-512 [5]. We utilize the result pre-
sented in [30] which showed a pseudo preimage attack on the 4-round reduced
BLAKE compression function without the initialization function. While the
practical impact on the attack for this reduced BLAKE compression function
is debatable, a pseudo collision on the reduced BLAKE can be directly derived
by using our conversion technique. As a result, we can find a pseudo collision of
the 4-round reduced BLAKE-256 compression function without the initialization
with the complexity of 2112. Similarly, a pseudo collision of the 4-round reduced
BLAKE-512 compression function without the initialization can be found with
the complexity of 2224.

A.1 Description of BLAKE

Table 3. Message and Constants Permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

The compression function of BLAKE-256 consists of initialization, round
function and finalization.

Initialization : 8 words of chaining variables h0, . . . , h7 are transformed into
16 words of an initial state v0, . . . , v15 as vi = hi for 0 ≤ i < 8, where hi, vj
∈ {0, 1}32. The other 8 words of the initial state vi (8 ≤ i < 16) are determined
from the given salts s0, ..., s3 and counter t0, t1, where si, tj ∈ {0, 1}32.

Round function : An initial state v is updated by 14 round functions with
message words m0, ...,m15 and constants c0, ..., c7, where mi, cj ∈ {0, 1}32. Each
round function includes the following steps, G0(v0, v4, v8, v12), G1(v1, v5, v9,
v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15), G4(v0, v5, v10, v15), G5(v1, v6, v11,
v12), G6(v2, v7, v8, v13), G7(v3, v4,v7, v14). The function Gi(a, b, c, d) is defined
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as:
a← a+ b+ (mσr(2i) ⊕ cσr(2i+1)), d← (d⊕ a) ≫ 16,
c ← c+ d, b ← (b⊕ c) ≫ 12,
a← a+ b+ (mσr(2i+1) ⊕ cσr(2i)), d← (d⊕ a) ≫ 8,
c ← c+ d, b ← (b⊕ c) ≫ 7,

where permutations σr(j) (0 ≤ j < 16) of the first 4 rounds refer to Table 3.
The functions G0 to G3 and G4 to G7 denote the column transforms and the
diagonal transforms, respectively.

Finalization : After the round functions, the new chaining variables are ex-
tracted with the updated state, the salts and the feed-forward of the initial
chaining variables as follows.

h
′

0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8 h
′

1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9
h

′

2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10 h
′

3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11
h

′

4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12 h
′

5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13
h

′

6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14 h
′

7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15
BLAKE-512 operates on 64-bit words and outputs 512 bits. The compression

function of BLAKE-512 is similar to that of BLAKE-256 except for the number
of rounds (16 instead of 14), and the constants and the amount of rotation used
in G functions.

A.2 Known MITM Preimage Attacks on 4-round Compression
Function of BLAKE [30].

Fig. 5. MITM preimage attack for finalization

In the setting of the pseudo preimage attack on the reduced BLAKE com-
pression function presented in [30], the initialization step is disregarded, and an
attacker can select a random start value from the start of round functions (the
end of initialization step) as shown in Fig. 5.

Figure 6 shows the overview of the pseudo preimage attack on the 4-round
reduced BLAKE compression function without the initialization. Let an input
state of the round i be vi−1 = {vi−1

0 , . . . , vi−1
15 }, where vij ∈ {0, 1}32. In this

attack, message words m4 and m6 are used as the neutral words, and the starting
point of the attack is the state after the column transformation of the round 3.
In the forward computation from the starting point, v4

6 , v4
14 can be computed

without using m6. Similarly, in the backward computation, v0
6 can be computed

without using m4. Therefore, storing m4, v
4
6 , v

4
14 in a list LF , and m6, v

0
6 in a list

LB , we expect to find matching pairs satisfying h′6 = v0
6 ⊕ v4

6 ⊕ v4
14. As a result,

a pseudo preimage of the 4-round reduced BLAKE without the initialization is
found with the complexity of 2224.
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Fig. 6. Pseudo preimage attacks on reduced BLAKE compression function

A.3 Pseudo Collision Attacks on BLAKE Compression Function.

Since the matching point of the known pseudo preimage attack is at the end of
the compression function, a pseudo collision attack can be directly constructed
from it.

Attack Procedure.

1. Randomly choose the 7-th word of the output value h′6, which is the target
value.

2. Randomly choose the values of state words and message words except for
m4 and m6.

3. For all 232 possible m4, compute forward and find v4
6 and v4

14. Store the pairs
(m4, v4

6 ⊕ v4
14) in a list LF

4. For all 232 possible m6, compute forward and find v0
6 . Store the pairs (m4,

h′6 ⊕ v0
6) in a list LB .

5. Compare the value v4
6 ⊕ v4

14 and h′6 ⊕ v0
6 in two lists LF and LB .

6. Once matching, compute states v0
0 , v

0
1 , · · · , v0

15 and v4
0 , v

4
1 , · · · , v4

15. Compute
output values h′0, h

′
1, . . . , h

′
15 according to finalization steps and store with

message words together. Then obtain 232 items in which the value of h′6 are
fixed.

7. Repeat steps (2) - (6) 280 times.

We can obtain 2112 items in which the value of h′6 are fixed. A colliding pair
exists with a high probability that the other 224 bits of output values are also
same. Finally, we can find a pseudo collision of the 4-round reduced BLAKE-256
compression function with the complexity of 2112 = 280 · 232.

The attack is applicable to the reduced BLAKE-512 in a similar way, since
the components of BLAKE-512 are similar to those of BLAKE-256. In BLAKE-
224, the variable h′7 is truncated and discarded. However, the truncation does not
affect our conversion, since we use h′6 as a partial target preimage. Thus, a pseudo
collision attack on the 4-round reduced BLAKE-224 without the initialization
can be constructed with the complexity of 296(= 2(224−32)/2). For BLAKE-384,
in contrast to the other variants, the variable h′6 is discarded by the truncation
as well. Therefore, it is hard to straightforwardly apply our conversion to the
reduced BLAKE-384, since h′6 cannot be used as a partial target preimage.

22


