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Abstract. The GOST block cipher is the Russian encryption standard
published in 1989. In spite of considerable cryptanalytic efforts over the
past 20 years, a key recovery attack on the full GOST block cipher with-
out any key conditions (e.g., weak keys and related keys) has not been
published yet. In this paper, we show a first single-key attack, which
works for all key classes, on the full GOST block cipher. To construct
the attack, we develop a new attack framework called Reflection-Meet-in-
the-Middle Attack. This approach combines techniques of the reflection
attack and the meet-in-the-middle attack. We apply it to the GOST
block cipher with further novel techniques which are the effective MITM
techniques using equivalent keys on short rounds. As a result, a key can
be recovered with 2225 computations and 232 known plaintexts.

Key words: block cipher, GOST, single-key attack, reflection attack,
meet-in-the-middle attack, equivalent keys

1 Introduction

The GOST block cipher [22] is known as the former Soviet encryption standard
GOST 28147-89 which was standardized as the Russian encryption standard in
1989. It is based on a 32-round Feistel structure with 64-bit block and 256-bit
key size. The round function consists of a key addition, eight 4 × 4-bit S-boxes
and a rotation. Since values of S-boxes are not specified in the GOST standard
[22], each industry uses a different set of S-boxes. For example, one of the S-boxes
used in the Central Bank of the Russian Federation is known as in [27].

The GOST block cipher is well-suited for compact hardware implementa-
tions due to its simple structure. Poschmann et al. showed the most compact
implementation requiring only 651 GE [24]. Therefore, the GOST block cipher
is considered as one of ultra lightweight block ciphers such as PRESENT [6] and
KATAN family [8], which are suitable for the constrained environments includ-
ing RFID tags and sensor nodes. Note that for the remainder of this paper we
refer to the GOST block cipher as GOST.

Over the past 20 years, several attacks on GOST have been published. A
differential attack on 13-round GOST was proposed by Seki and Kaneko [28]. In
the related-key setting, an attack is improved up to 21 rounds. Ko et al. showed



Table 1. Key recovery attack on GOST

Key setting Type of attack Round Complexity Data Paper

Single key Differential 13 Not given 251 CP [28]

Slide 24 263 263 ACP [2]

Slide 30 2253.7 263 ACP [2]

Reflection 30 2224 232 KP [17]

Reflection-Meet-in-the-Middle 32 2225 232 KP This paper

Single key Slide (2128 weak keys) 32 263 263 ACP [2]

(Weak key) Reflection (2224 weak keys) 32 2192 232 CP [17]

Related key Differential 21 Not given 256 CP [28]

Differential† 32 2244 235 CP [19]

Boomerang ‡ 32 2248 27.5 CP [15]

CP : Chosen plaintext, ACP : Adaptive chosen plaintext, KP : Known plaintext.

† The attack can recover 12 bits of the key with 236 computations and 235 CP.

‡ The attack can recover 8 bits of the key with 27.5 computations and 27.5 CP.

a related-key differential attack on the full GOST [19]. These results work on
only the GOST that employs the S-boxes of the Central Bank of the Russian
Federation [27]. Fleischmann et al. presented a related-key boomerang attack
on the full GOST which works for any S-boxes [15]. As other types of attacks,
Biham et al. showed slide attacks on the reduced GOST [2]. Their attack utilizes
self similarities among round functions of the encryption process, and does not
also depend on used values of S-boxes. Even if an attacker does not know the
values of S-boxes, the 24-round GOST can be attacked by this approach. If the
values are known, this attack can be improved up to 30 rounds. In addition, for
a class of 2128 weak keys, the full GOST can be attacked by this approach. After
that, Kara proposed a reflection attack on 30-round GOST [17]. This attack
also uses self similarities among round functions, and works for any bijective
S-boxes. The difference from the slide attack proposed by Biham et al. [2] is
to use similarities of both encryption and decryption processes. The reflection
attack utilizes these similarities in order to construct fixed points of some round
functions. Moreover, for a class of 2224 weak keys, the full GOST can be attacked
by using the reflection technique.

In spite of considerable cryptanalytic efforts, a key recovery attack on the
full GOST without any key assumptions (e.g., weak keys and related keys) has
not been published so far. Furthermore, a weak-key attack and a related-key
attack are arguable in the practical sense, because of their strong assumptions.
A weak-key attack is generally applicable to very few keys, e.g., in the attack of
[17], the rate of weak keys is 2−32(= 2224/2256). Hence, almost all keys, (2256 −



2224) ≈ 2256 keys, can not be attacked by [17]. Besides, the attacker can not
even know whether a target key is included in a weak key class or not. A related-
key attack assumes that the attacker can access to the encryption/decryption
under multiple unknown keys such that the relation between them is known
to the attacker. Though this type of attack is meaningful during the design
and certification of ciphers, it does not lead to a realistic threat in practical
security protocols which use the block cipher in a standard way as stated in
[13]. Therefore, the security under the single-key setting is the most important
issue from the aspect of the practical security. In particular, an ultra lightweight
block cipher does not need a security against related-key attacks in many cases.
For example, in low-end devices such as a passive RFID tag, the key may not
be changed in its life cycle as mentioned in [6, 8]. Indeed, KTANTAN supports
only a fixed key [8] and the compact implementation of GOST proposed by
Poschmann et al. also uses a hard-wired fixed key [24]. Therefore, it can be said
that GOST has not been theoretically broken.

Recently, Bogdanov and Rechberger showed a new variant of the Meet-in-
the-Middle (MITM) attack on block ciphers called 3-subset MITM attack [7];
it was applied to KTANTAN [8]. This attack is based on the techniques of the
recent MITM preimage attacks on hash functions [1, 25]. It seems to be effec-
tive for the block cipher whose key schedule is simple, e.g., a bit or a word
permutation. In fact, the key schedule function of KTANTAN consists of a bit
permutation. Since GOST also has a simple key schedule function, which is a
word permutation, the 3-subset MITM attack seems applicable to it. However,
it does not work well on the full GOST, because the key dependency of the full
GOST is stronger than that of KTANTAN due to the iterative use of key words
during many round functions.

Our Contributions. In this paper, we first introduce a new attack framework
called Reflection-Meet-in-the-Middle (R-MITM) Attack ; it is a combination of
the reflection attack and the 3-subset MITM attack. The core idea of this com-
bination is to make use of fixed points of the reflection attack to enhance the
3-subset MITM attack. If some round functions have fixed points, we can prob-
abilistically remove these rounds from the whole cipher. Since this skip using
fixed points allows us to disregard the key bits involved in the removed rounds,
the key dependency is consequently weakened. Thus, our attack is applicable
to more rounds compared to the original 3-subset MITM attack if fixed points
can be constructed with high probability. Then, we apply it to the full GOST
block cipher with further novel techniques which make the MITM approach more
efficient by using equivalent keys on short rounds. As a result, we succeed in con-
structing a first key recovery attack on the full GOST block cipher in the single
key setting. It can recover a key with 2225 computations and 232 known plain-
text/ciphertext pairs. An important point to emphasize is that our attack does
not require any assumptions for a key unlike the previous attacks. In addition,
our attack can be applied to any S-boxes as long as they are bijective. These
results are summarized in Table 1.



Table 2. Key schedule of GOST

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Key k1 k2 k3 k4 k5 k6 k7 k8 k1 k2 k3 k4 k5 k6 k7 k8

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Key k1 k2 k3 k4 k5 k6 k7 k8 k8 k7 k6 k5 k4 k3 k2 k1

Outline of the Paper. This paper is organized as follows. A brief description
of GOST, a 3-subset MITM attack and a reflection attack are given in Section
2. The R-MITM attack is introduced in Section 3. In Section 4, we present a
R-MITM attack on the full GOST. Finally, we present conclusions in Section 5.

2 Preliminaries

In this section, we give a brief description of GOST, a 3-subset MITM attack
and a reflection attack.

2.1 Description of GOST

GOST is a block cipher based on a 32-round Feistel structure with 64-bit block
and 256-bit key size. The F -function consists of a key addition, eight 4 × 4-bit
S-boxes Sj (1 ≤ j ≤ 8) and a 11-bit left rotation (See Fig.1).

<<<11

S 1

S 8

S 2

ki

L i R i

L i+1 R i+1

F - function

Fig. 1. One round of the GOST block cipher

The 256-bit master key K is divided into eight 32-bit words, i.e., K =
(k1, k2, . . . , k8), ki ∈ {0, 1}32. Each ki is used as a round key in each round
function as shown in Table 2.

In the GOST standard [22], the S-boxes are not specified. Each industry uses
a different set of S-boxes. In this paper, we do not care about specific values of
the S-boxes as long as they are bijective.



2.2 3-Subset MITM Attack

The basic concept of the MITM attack was proposed by Diffie and Helman
[12]. So far, this attack has been applied to several block ciphers [9–11, 13, 14,
16]. Furthermore, over the past few years, this attack has been improved in
a line of preimage attacks on hash functions, and several novel techniques are
introduced, e.g., a partial matching [1] and an initial structure [25]. Recently, by
using these novel techniques, Bogdanov and Rechberger showed a new variant of
MITM attack on block ciphers called 3-subset MITM attack [7]; it was applied
to KTANTAN [8].

This attack consists of two stages: a MITM stage and a key testing stage.
First, the MITM stage filters out part of wrong keys from key candidates by
using MITM techniques. Then, the key testing stage finds a correct key from the
surviving key candidates in a brute force manner.

Let EK : {0, 1}b → {0, 1}b be a block cipher with an l-bit key K and a b-bit
block. Assume that EK is a composition of round functions as follows;

EK(x) = Fkr ◦ Fkr−1 ◦ · · · ◦ Fk1(x), x ∈ {0, 1}b,

where r is the number of rounds, k1,. . . ,kr are round keys and Fki is the i-th
round function, Fki : {0, 1}b → {0, 1}b. The composition of j − i + 1 functions
starting from i is denoted by FK [i, j] defined as

FK [i, j](x) = Fkj ◦ · · · ◦ Fki(x), 1 ≤ i < j ≤ r.

In the following, we give details of each stage of the 3-subset MITM attack.

MITM stage : Ek(X) is divided into two functions as EK(X) = FK [a + 1, r] ◦
FK [1, a], 1 < a < r− 1 1. Let K1 and K2 be sets of key bits used in FK [1, a] and
FK [a + 1, r], respectively. A0 = K1 ∩ K2 is the common set of key bits used in
both FK [1, a] and FK [a + 1, r]. A1 = K1 \ K1 ∩ K2 and A2 = K2 \ K1 ∩ K2 are
the sets of key bits used in only FK [1, a] and only FK [a + 1, r], respectively. In
this stage, we use only one plaintext/ciphertext pair (P, C).

The procedure of the MITM stage is as follows. Fig. 2 shows the overview of
the MITM stage.

1. Guess a value of A0.
2. Compute v = FK [1, a](P ) for all values of A1 and make a table of (v,A1)

pairs. In this step, 2|A1| pairs are generated, where |Ai| is the bit length of
Ai and 2|Ai| is the number of elements of Ai.

3. Compute u = F−1
K [a + 1, r](C) for all values of A2. In this step, 2|A2| pairs

are generated.
4. Add key candidates for which the equation v = u is satisfied to the list of

surviving keys.
The number of surviving keys is 2|A1|+|A2|/2b.

1 As in the attack of KTANTAN [7], by using the partial matching technique, EK is
divided into FK [1, a] and FK [a + t, r], t > 1. However, in this paper, we consider
only the case of t = 1, because we do not use the partial matching.
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Fig. 2. Meet-in-the-middle stage

5. Repeat 2-4 for each different value of A0. (2|A0| times)

In this stage, 2l−b key candidates survive, because 2|A1|+|A2|/2b × 2|A0| =
2l/2b.

Key testing stage : We test surviving keys in a brute force manner by using
additional plaintext/ciphertext pairs.

We evaluate the cost of this attack. The whole attack complexity Ccomp is
estimated as

Ccomp = 2|A0|(2|A1| + 2|A2|)︸ ︷︷ ︸
MITM stage

+(2l−b + 2l−2b + . . .).︸ ︷︷ ︸
Key testing stage

The number of required plaintext/ciphertext pair is d l
be. The required memory

is max(2|A1|, 2|A2|), which is the cost of the table used in the MITM stage.
When min(|A1|, |A2|) > 1 the attack is more effective than an exhaustive search.
Therefore, the point of the 3-subset MITM attack is to find independent sets of
master key bits such as A1 and A2.

2.3 Reflection Attack

The reflection attack was first introduced by Kara and Manap [18]; it was applied
to Blowfish [26]. After that, the attack was generalized by Kara [17]. In this
section, we introduce a basic principle of the reflection attack used in our attack.
See [17, 18] for details about the reflection attack.

The reflection attack is a kind of a self-similarity attack such as the slide
attack [4, 5]. Though the reflection attack utilizes similarities of some round
functions of both encryption and decryption processes, the slide attack exploits
similarities among the round functions of only the encryption process. In the
reflection attack, by using these similarities, fixed points of some round functions
are constructed.

Let UK(i, j) be the set of fixed points of the function FK [i, j] defined as
follows;

UK(i, j) = {x ∈ {0, 1}n | FK [i, j](x) = x}.
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Fig. 3. Basic principle of the reflection attack

The basic principle of the reflection attack is given by the following Lemma.

Lemma 1 [17] Let i and j be integers such that 0 ≤ j − i < i + j < r. Assume
that Fki−t = F−1

kj+t
for all t : 1 ≤ t < i. If FK [i − t, i − 1](x) ∈ Uk(i, j), then

x ∈ Uk(i − t, j + t) for all t : 1 < t < i. In addition, if x ∈ UK(i − t, j + t) for
certain t : 1 < t < i, then FK [i − t, i − 1](x) ∈ UK(i, j).

From Lemma 1, if the round functions hold the conditions, a local fixed
point is expanded to previous and next rounds as shown in Fig. 3. Roughly
speaking, fixed points of some round functions can be constructed easily in the
certain setting. These fixed points enable us to probabilistically skip the round
functions from a whole cipher.

We give an example to explain this skip in detail. Let i and j be integers
such that 0 < j − i < i + j < r. Assume that Fki−t = F−1

kj+t
for all t : 1 < t < i,

and EK(x) is expressed as follows;

EK(x) = FK [j + i, r] ◦ FK [j + 1, j + i − 1] ◦ FK [i, j] ◦ FK [1, i − 1](x),
= FK [j + i, r] ◦ F−1

K [1, i − 1] ◦ FK [i, j] ◦ FK [1, i − 1](x).

Besides, assuming FK [1, i−1](x) ∈ UK(i, j), then FK [1, j+i−1](x) = x (Lemma
1). Thus EK(x) is expressed as

EK(x) = F [j + i, r](x).

In this case, the round functions FK [1, j + i − 1] can be skipped from EK . The
probability Pref of that above skip occurs for arbitrary x is |UK(i, j)|/2b. If
Pref > 2−b (i.e., |UK [i, j]| > 1), this skip occurs at FK [1, j + i − 1] with higher
probability than a random function.



3 Reflection-Meet-in-the-Middle Attack

We propose a new attack framework called reflection-meet-in-the-middle (R-
MITM) attack, which is a combination of the reflection attack and the 3-subset
MITM attack. As mentioned in Section 2.2, the point of the 3-subset MITM
attack is to construct independent sets of master key bits. In general, if the
master key bits are used iteratively in each round and the use of key bits is not
biased among rounds 2, it seems to be difficult to find the independent sets of
master key bits, because such cipher have the strong key dependency on even
small number of rounds.

To overcome this problem, we utilize the technique of the reflection attack. In
the reflection attack, some rounds satisfying certain conditions can be skipped
from the whole cipher with the probability Pref . From now on, we call this skip
a reflection skip. Since key bits used in skipped round functions can be omitted,
it becomes easier to construct independent sets of master key bits. This is the
concept of the R-MITM attack. In the following, we give the detailed explanation
of the attack.

3.1 Details of the R-MITM Attack

Suppose that EK is expressed as follows;

EK(x) = FK [a3 + 1, r] ◦ FK [a2 + 1, a3] ◦ FK [a1 + 1, a2] ◦ FK [1, a1](x),

where 2 < a1 + 1 < a2 < a3 − 1 < r − 2 and the reflection skip occurs at
FK [a2 +1, a3] with the probability Pref . Then, EK can be redescribed as follows
and denoted by E

′

K(x),

E
′

K(x) = FK [a3 + 1, r] ◦ FK [a1 + 1, a2] ◦ FK [1, a1](x).

The R-MITM attack consists of three stages; a data collection stage, a R-
MITM stage and a key testing stage. In the following, we explain each stage.

Data collection stage : We collect plaintext/ciphertext pairs to obtain a pair
in which the reflection skip occurs at FK [a2 +1, a3]. Since the probability of this
event is Pref , the number of required plaintext/ciphertext pairs is P−1

ref .

After that, the R-MITM stage and the key testing stage are executed for all
plaintext/ciphertext pairs obtained in the data collection stage.

R-MITM stage : We divide EK into two functions: FK [1, a1] and FK [a1 +
1, r]3. In this stage, we ignore FK [a2 + 1, a3] as follows;

F ′
K [a1 + 1, r] = FK [a3 + 1, r] ◦ FK [a1 + 1, a2],

2 In KTANTAN [8], 6 bits of master key are not used in the first 111 rounds and other
6 bits of master key are also not used in the last 131 rounds. The attack of [7] utilizes
this bias of used key bits among rounds.

3 Though there are many choices of divisions, we use it as an example.
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Fig. 4. Reflection-meet-in-the-middle stage

assuming that the reflection skip occurs. Let K1 and K2 be sets of key bits
used in FK [1, a1] and F ′

K [a1 + 1, r], respectively. A0 = K1 ∩ K2 is the set of
key bits used in both FK [1, a1] and F ′

K [a1 + 1, r]. A1 = K1 \ K1 ∩ K2 and
A2 = K2 \ K1 ∩ K2 are the sets of key bits used in only FK [1, a1] and only
F ′

K [a1 + 1, r], respectively. Figure 4 illustrates the R-MITM stage.
The procedure of the R-MITM stage is almost same as the MITM stage

of Section 2.2. The difference is that in the R-MITM stage, we assume that
reflection skip occurs, i.e., FK [a2 + 1, a3] is ignored. After this stage, 2l−b key
candidates survive.

Key testing stage : We test surviving keys in a brute force manner by using
plaintext/ciphertext pairs.

3.2 Evaluation of the R-MITM Attack

We evaluate the cost of the R-MITM attack. The whole attack complexity Ccomp

is estimated as

Ccomp = ((2|A0|(2|A1| + 2|A2|))︸ ︷︷ ︸
R-MITM stage

+(2l−b + 2l−2b + . . .)︸ ︷︷ ︸
Key testing stage

) × R−1
ref .

The number of required plaintext/ciphertext pair is max(dl/be, R−1
ref ). The

required memory is max(2|A1|, 2|A2|), which is the cost of the table in the R-
MITM stage. When min(2|A1|, 2|A2|, 2b) > (R−1

ref ), the attack is more effective
than an exhaustive search.

Compared with the basic 3-subset MITM attack in Section 2.2, the number
of required plaintext/ciphertext pairs increases, because the R-MITM attack
utilizes the probabilistic event, i.e., reflection skip. In addition, more independent
key bits are needed for the successful attack. However, this attack has a distinct
advantage, which is to be able to skip some round functions by the reflection
skip. Recall that the most important point of the 3-subset MITM attack is
to find independent sets of master key bits. Since the reflection skip enables
us to disregard key bits involved in some round, it obviously becomes easier to
construct such independent sets. Thus, this attack seem to be applicable to more
rounds than the 3-subset MITM attack when the reflection skip occurs with high
probability.



4 R-MITM Attack on the Full GOST Block Cipher

In this section, we apply the R-MITM attack to the full GOST block cipher [22].
From Table. 2, in full 32 rounds, the master key is iteratively used four times
and all master key bits are involved in every 8 rounds. The basic 3-subset MITM
attack in Section 2.2 is not applicable to the full GOST, because independent
sets of master key bits can not be constructed in any divisions of 32 rounds.
However, by using the R-MITM attack, we can construct independent sets and
mount a key recovery attack on the full GOST.

We first introduce the reflection property of GOST proposed by Kara [17]
to construct the reflection skip. Next, we present effective MITM techniques to
enhance the R-MITM stage. These techniques make use of the equivalent keys
of short round functions. Finally, we evaluate our attack.

4.1 Reflection Property of GOST

The reflection attack on GOST has been proposed by Kara [17] 4. The GOST
block cipher EK : {0, 1}64 → {0, 1}64 is expressed as

EK = S ◦ FK [25, 32] ◦ FK [17, 24] ◦ FK [9, 16] ◦ FK [1, 8],
= F−1

K [1, 8] ◦ S ◦ FK [1, 8] ◦ FK [1, 8] ◦ FK [1, 8],

where S is the swap of the Feistel structure.
S has 232 fixed points, because the probability of that the right halves equal

to the left halves is 2−32. From Lemma 1, F−1
K [1, 8] ◦ S ◦ FK [1, 8] also has 232

fixed points, i.e., |UK(17, 32)| = 232. Thus, with the probability Pref = 2−32 (=
(232/264)), FK [17, 32] can be ignored. EK is redescribed as follows and denoted
by E

′

K

E
′

K = FK [1, 8] ◦ FK [1, 8].

Figure 5 shows this reflection skip of GOST.
Therefore, in the data collection stage, we need to collect P−1

ref = 232 plain-
text/ciphertext pairs. In 232 collected pairs, there is a pair in which the reflection
skip occurs, i.e., last 16 rounds can be removed as E

′

K .

4.2 Effective MITM Technique using Equivalent Keys on Short
Rounds

In the R-MITM stage, we mount the MITM approach on only E
′

K = FK [1, 8] ◦
FK [1, 8] for all 232 collected pairs.

As mentioned in Section 3.2, we need to construct independent sets A1 and A2

which hold the condition, min(2|A1|, 2|A2|) > 232. However, despite the reduction
4 The similar technique for constructing a fixed point is also used in the attacks on

the GOST hash function [20, 21].
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Fig. 5. Reflection skip of GOST

of rounds by the reflection skip, in the straightforward method, we can not find
such sets in any divisions of 16 rounds, due to the strict condition of independent
sets.

We introduce effective MITM techniques which make use of equivalent keys of
short round functions (i.e., 4 round). The aim of these techniques is to ignore the
first and the last 4 rounds and to mount the MITM approach in only intermediate
8 rounds. These techniques enable us to construct independent sets enough for
the successful attack.

We treat E
′

K as following four-round units;

E
′

K = FK [5, 8] ◦ FK [1, 4] ◦ FK [5, 8] ◦ FK [1, 4].

In the following, we first explain equivalent keys used in our attack. Then, we
present detail of the R-MITM stage using the equivalent keys.

Equivalent Keys on Short Rounds. Define a set of equivalent keys on
FK [i, j] as Z(FK [i, j], x, y) as follows:

Z(FK [i, j], x, y) = {ek ∈ {0, 1}256 | Fek[i, j](x) = y},

where (x, y) ∈ {0, 1}64. Note that the class of keys defined above is the equivalent
keys with respect to only one input/output pair. To put it more concretely, if
equivalent keys ek ∈ Z(FK [i, j], x, y) are used, input x is always transformed to
y in FK [i, j]. For other input/output pairs, these relations do not hold even if
the same equivalent keys are used.

GOST has an interesting property regarding the equivalent keys on short
rounds as described in the following observation.

Observation 1 : Given any x and y, Z(FK [1, 4], x, y) and Z(F−1
K [5, 8], x, y)

can be easily obtained, and the number of each equivalent keys is 264.

For FK [1, 4], k1, k2, k3 and k4 are added in each round. Given the values of k1

and k2, the other values of k3 and k4 are determined from FK [1, 2](x) and y as
follows:

k3 = F−1(zL + yL) − zR, (1)
k4 = F−1(zR + yR) − yR, (2)
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where F−1 is the inverse of F function, yL and yR are left and right halves of
y, and zL and zR are those of FK [1, 2](x). Since values of (k1, k2) are 64 bits,
the number of Z(FK [1, 4], x, y) is 264. Figure 6 shows this procedure. A similar
property holds for F−1

K [5, 8].

From Observation 1, we can easily obtain 264 equivalent keys of the first and
the last 4 rounds for any inputs and outputs. Moreover, FK [1, 4] and F−1

K [5, 8] use
different master key bits each other, Ka = (k1||k2||k3||k4) and Kb = (k5||k6||k7||k8),
respectively. Thus, Z(FK [1, 4], x, y) and Z(F−1

K [5, 8], x, y) are expressed by sets
of only Ka and Kb as follows;

ZKa(FK [1, 4], x, y) = {eka ∈ {0, 1}128 | Feka [1, 4](x) = y},
ZKb(F−1

K [5, 8], x, y) = {ekb ∈ {0, 1}128 | F−1
ekb

[5, 8](x) = y}.

Since Ka and Kb are independent sets of mater key, ZKa(FK [1, 4], x, y) and
ZKb(F−1

K [5, 8], x, y) are also independent sets.

Detail of the R-MITM Stage using Equivalent Keys. Let S and T be
FK [1, 4](P ) and F−1[5, 8](C), which are input and output values of 8 interme-
diate rounds, i.e., FK [5, 12] = FK [1, 4] ◦ FK [5, 8].

From Observation 1, given values of P , C, S and T , two sets of 264 equivalent
keys, ZKa(FK [1, 4], P, S) and ZKb

(F−1
K [5, 8], C, T ), can be easily obtained.
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Fig. 7. R-MITM stage using equivalent keys

When ZKa(FK [1, 4], P, S) and ZKb
(F−1

K [5, 8], C, T ) are used, S and T are
not changed. Thus by using these equivalent keys, the first and the last 4 round
can be ignored, and we can mount the MITM attack between FK [5, 8](S) and
F−1

K [1, 4](T ). The number of elements in each independent set is 264, which is
enough for the successful attack.

The procedure of the R-MITM stage is as follows and illustrated in Fig. 7.

1. Guess the values S and T .
2. Compute v = FK [5, 8](S) with 264 Kb in ZKb

(F−1
K [5, 8], C, T ) and make a

table of (v, Kb) pairs.
3. Compute u = F−1

K [1, 4](T ) with 264 Ka in ZKa
(FK [1, 4], P, S).

4. Add key candidates for which the equation v = u is satisfied to the list of
surviving keys. The number of surviving keys is 264+64/264 = 264.

5. Repeat 2-4 with the different values of S and T . (2128 times).

After this procedure, 2192 (=264 × 2128) key candidates survive. These key can-
didates are evaluated in the key testing stage.

The R-MITM stage utilizes equivalent-key sets of ZKa(FK [1, 4], P, S) and
ZKb

(F−1
K [5, 8], C, T ), 0 ≤ S, T < 264, where each set includes 264 elements. For

ZKa(FK [1, 4], P, S), 0 ≤ S < 264, all elements of every set are different, because if
the values of S are different, equivalent keys of FK [1, 4] are surely different from
Eq. (1) and (2) as long as S-boxes are bijective. Thus, ZKa(FK [1, 4], P, S), 0 ≤
S < 264 covers all 2128 (= 264 × 264) values of Ka. A similar property holds
for Kb. Therefore, all possible values for the master key are tested and the set
of surviving key candidates surely contain the correct key if the reflection skip
occurs.



4.3 Evaluation

The whole attack complexity Ccomp is estimated as

Ccomp = ((2128(264 + 264))︸ ︷︷ ︸
R-MITM stage

+ (2256−64 + 2256−128 + . . .)︸ ︷︷ ︸
Key testing stage

) × 232,

= 2225.

The number of required known plaintext/ciphertext pairs is max(dl/be, R−1
ref ) =

max(d256/64e, 232) = 232. The required memory is max(264, 264) = 264, which
is the cost of the table used in the R-MITM stage. Therefore, this attack can
recover a key with 2225 computations, 232 known plaintext/ciphertext pairs and
264 memory. It is more effective than an exhaustive attack.

5 Conclusion

This paper has presented a first single-key attack on the full GOST block ci-
pher without relying on weak key classes. To build the attack, we introduced a
new attack framework called Reflection-Meet-in-the-Middle Attack, which is the
combination of the reflection and the 3-subset MITM attacks. The advantage
of this attack over the basic 3-subset MITM attack, some rounds can be prob-
abilistically removed from the whole cipher. Since this allows us to disregard
the key bits involved in the removed rounds, it becomes easier to construct the
independent sets of the key bits. Thus, our attack seems to be applicable to more
rounds when the reflection skip occurs with high probability. Then we applied
it to the full GOST block cipher with further novel techniques which make use
of equivalent keys of short round functions (i.e., 4 rounds). These techniques
enable us to mount the effective MITM approach. As a result, we succeeded
in constructing a first key recovery attack on the full GOST without any key
conditions, which works for any bijective S-boxes. Our result shows that GOST
does not have the 256-bit security for all key classes, even if a fixed key is used
such as [24].

The idea of the R-MITM attack seems applicable to other block ciphers in
which the fixed point can be constructed with high probability and its key sched-
ule is simple in the sense that the key dependency is not strong. Furthermore,
the basic principle of the attack does not constrain the reflection property and
fixed points. Other non-random properties of round functions may also be able
to be utilized as the skip techniques, e.g., the strong correlations among round
functions.
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