
Super-Sbox Cryptanalysis:
Improved Attacks for AES-like Permutations

Henri Gilbert and Thomas Peyrin

Orange Labs, France Ingenico, France
henri.gilbert@orange-ftgroup.fr thomas.peyrin@ingenico.com

Abstract. In this paper, we improve the recent rebound and start-from-
the-middle attacks on AES-like permutations. Our new cryptanalysis tech-
nique uses the fact that one can view two rounds of such permutations as
a layer of big Sboxes preceded and followed by simple affine transforma-
tions. The big Sboxes encountered in this alternative representation are
named Super-Sboxes. We apply this method to two second-round SHA-3

candidates Grøstl and ECHO, and obtain improvements over the previ-
ous cryptanalysis results for these two schemes. Moreover, we improve
the best distinguisher for the AES block cipher in the known-key setting,
reaching 8 rounds for the 128-bit version.
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1 Introduction

Hash functions are among the most important and widely spread primitives in
cryptography. Informally a hash function H is a function that takes an arbitrarily
long message as input and outputs a fixed-length hash value of size n bits. The
classical security requirements for such a function are collision resistance and
(second)-preimage resistance. Namely, it should be impossible for an adversary
to find a collision (two different messages that lead to the same hash value) in
less than 2n/2 hash computations, or a (second)-preimage (a message hashing
to a given challenge) in less than 2n hash computations. Recently, most of the
standardized hash functions [29, 35] have suffered from major improvements in
hash function cryptanalysis [38,39]. As a response, the NIST organized the SHA-3
competition [31] and 51 candidates were accepted to the first round. In July 2009,
14 of them have been selected to the second round. Among them, several hash
proposals like Grøstl [14] or ECHO [2] use parts of the standardized block cipher
AES [9, 30] as internal primitives or mimick the structure of this cipher.

The separation between block ciphers and hash functions has always been
blurry as many constructions [6, 34] are known that turn the former into the
latter. For example, the Davies-Meyer mode converts a secure block cipher into
a secure compression function and is incorporated in a large majority of the
currently known hash functions. A major difference between the cryptanalysis
of block ciphers and hash functions is that the attacker can fully control the



inner behavior of a hash function. In other words, the attacker can use more
efficiently the freedom degrees available on the input (i.e. the number of inde-
pendent binary variables he has to determine). A new security model for block
ciphers, the so-called known-key model [21], was recently proposed in order to
fill the gap between those two situations. In this model, the secret key is known
to the adversary and its goal is to distinguish the behavior of a random instance
of the block cipher from the one of a random permutation by constructing a
set of (plaintext, ciphertext) pairs satisfying an evasive property. Such a prop-
erty is easy to check but impossible to achieve with the same complexity and
a non-negligible probability using oracle accesses to a random permutation and
its inverse. In particular, reduced versions of the AES have been studied in this
setting [21, 28].1 An even more demanding requirement for block ciphers, also
introduced for filling the gap between block ciphers and hash functions, is to
behave as an ideal cipher, i.e. a family of independent random permutations
indexed by the key space, even when the key values can be chosen by an ad-
versary. It has been recently shown that the full AES-256 does not behave as an
ideal cipher due to the existence of a so-called chosen key distinguisher [4].

Cryptanalysis of AES-based hash functions began with the hash family pro-
posal Grindahl [20] for which collision attacks have been found [19, 32]. This
showed that truncated differentials [22] are useful when cryptanalyzing a byte-
oriented primitive such as the AES. Later on, the rebound attack [27] was shown
to lead to substantial efficiency improvements in the freedom degrees usage of
the attacker [23,25,40]. The idea is to build a differential path and use the avail-
able freedom degrees in the “most expensive” part of the path. The “cheaper”
parts are then covered in an inside-out manner in both forward and backward
directions. More recently, improved variants of the initial rebound attack such
as the so-called “start-from-the-middle” attack were also introduced [26].

Our contribution. In this paper, we further improve the rebound or start-
from-the-middle attacks for AES-like permutations. The idea is to view two con-
secutive rounds of an AES-like permutation as the application of a so-called
Super-Sbox [10, 11, 16]: this allows a more efficient use of the freedom degrees.2

Instead of dealing with the classical 8-bit AES Sboxes, one will consider 32-bit
Sboxes each composed of two AES Sbox layers surrounding one MixColumns and

1 It was noticed in [7] that for any cipher which key space is smaller than the plaintext
space, it is possible to construct a (plaintext, ciphertext) pair satisfying an evasive
relation by encrypting the key under itself. However, known key distinguishers such
as those of [21,28] distinguish round-reduced versions of AES from a random permu-
tation in a less contrived manner than such a generic evasive relation.

2 Note that a similar technique, independently discovered by Lamberger et al. [23], has
been applied by these authors to the Whirlpool hash function. However, this method
uses the incoming round subkeys as additional freedom degrees and would not work
as is for fixed-key AES-like permutations such as the ones studied in this article (for
ECHO or Grøstl). Moreover, the known-key distinguishers would not apply anymore
for AES as the key would have to be chosen by the attacker.
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Fig. 1. The compression functions of Grøstl, ECHO-256, and ECHO-512 illustrated from
the top down.

one AddConstant function. The resulting attack method, that we propose to
name Super-Sbox cryptanalysis, is not only simpler than the previous ones, it
also results in cryptanalysis performance improvements since we are now able
to find deviations from the behavior of a random permutation up to 8 rounds.
We also provide an analysis regarding the freedom degrees available during the
attack. We apply this technique to (1) AES, (2) the internal permutations P and
Q of Grøstl, and (3) the internal permutation PE of ECHO. The link between the
compression functions of Grøstl and ECHO and the underlying internal permuta-
tions is illustrated in Figure 1. Our results for AES and the internal permutations
of Grøstl and ECHO are summarized in the first part of Table 1. We obtain an
8-round distinguisher in the known-key model for all versions of the AES block
cipher. This is the first published “attack” against the 8-round version of AES-
128, for which the full number of rounds is 10. We also present a distinguisher
for the 8-round reduced internal permutations of Grøstl-256 (the full number
of rounds is 10) and for the full number of rounds of the internal permutation
of ECHO-256 (8 rounds). In the case of Grøstl-256, our distinguishers for round-
reduced versions of the internal permutation can be immediately converted into
distinguishers for reduced versions of the compression function with the same



number of rounds, or even semi-free-start collisions in some cases.3 We outline
in the second part of Table 1 the results obtained for reduced versions of the
Grøstl-256 compression function. In the case of ECHO and its reduced versions,
our distinguishers for the internal permutation cannot be converted into distin-
guishers for the compression function due to the extra protection provided by
the final shrinking stage of the compression function – namely its convolution
effect on the output distribution of the permutation.

Table 1. The first table gives a summary of results for AES and the internal per-
mutations used in Grøstl-256 and ECHO. The second table shows the results for the
compression functions of Grøstl-256 and ECHO. Some structural observations [1,18] for
Grøstl have not been included in the Tables.

target rounds
computational memory

type source
complexity requirements

AES
7 224 216 known-key-distinguisher see [26]

8 248 232 known-key-distinguisher this paper

Grøstl-256
permutation

7 255 distinguisher see [26]

8 2112 264 distinguisher this paper

ECHO internal
permutation

7 2384 264 distinguisher see [26]

8 2768 2512 distinguisher this paper

target rounds
computational memory

type source
complexity requirements

Grøstl-256

comp. function

6 2120 264 semi-free-start collision see [27]

6 264 264 semi-free-start collision see [26]

7 2120 264 semi-free-start collision this paper

7 255 distinguisher see [26]

8 2112 264 distinguisher this paper

ECHO
none none none —comp. function

2 Description of the analyzed schemes

We give in this section a generic description of an AES-like permutation and we
then provide the parameters in this generic model for AES, Grøstl and ECHO. We
refer to the corresponding specifications [2,9,14,30] for a detailed description of
these schemes.

A generic n-bit AES-like permutation has an internal state that can be viewed
as a square matrix of c-bit cells with r columns and r rows. A cell will be denoted
by Ci,j , where i is its row position and j its column position in the matrix,
starting the counting from 0. The permutation is composed of R rounds and each
round has four layers. The first layer (AddConstant or AC) is a constant/key
3 Similar results were presented at CT-RSA 2010 [13] while the final version of this

paper was in preparation.



addition function. More precisely, for each cell of the internal state, we XOR
a c-bit constant. The second layer (SubBytes or SB) is a non-linear function
defined by the application of an Sbox S: for each cell Ci,j of the internal state,
we compute C ′i,j = S[Ci,j ]. The third layer (ShiftRows or ShR) permutes the
position of each cell in its own row: for each cell Ci,j of the internal state, we
compute C ′i,j = Ci,Subi(j) where Subi(j) is parametrized by the row i. Finally,
the last layer (MixColumns or MC) is a linear function that mixes all the columns
of the internal state separately. The round function on an internal state C can
thus be defined as:

MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(C).
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Fig. 2. The generic AES-like permutation

Even though the MixColumns functions used in AES, Grøstl, and ECHO are
distinct (we do not provide here their detailed specification), we can stick to this
generic description since we are only interested in the differential properties of
this layer, which remain essentially the same.

Extended known key model for the considered schemes In what fol-
lows, we will introduce distinguishers for permutations and compression func-
tions based upon specific examples of the above generic AES-like permutation.
Therefore we have to explain what we mean by “distinguisher” in this context.
Our aim is to capture structural properties that distinguish the behavior of per-
mutations or functions belonging to a family of permutations (resp. functions)
indexed by a parameter from the one of a random permutation (resp. a ran-
dom function). In the case of permutations, these parameters can be viewed as
a known key and our notion of distinguisher entirely coincides with the notion
of known key distinguisher. In order to also cover the case of compression func-
tions, we introduce a natural extension of the notion of known key distinguisher
to a family F = {fi} of functions indexed by a parameter i ∈ I. We (informally)
define a distinguisher for F as a procedure allowing an adversary to construct,
when input with a randomly drawn parameter value i of a function of F , a tuple
of (input, output) pairs for fi satisfying (with a non negligible probability) an



evasive property independent of i. An evasive property means in this context a
property impossible to achieve with the same complexity and a non-negligible
probability using oracle accesses to a random function.4 We propose to view the
permutations and compression functions based upon the generic AES construc-
tion as families of permutations (resp. functions) indexed by the parameter set
I = C × SB equipped with the uniform probability distribution. For a given
family, C is defined as the set of possible values for the constants involved in
the various AddConstant layers, and SB represents the set of tuples of r2R per-
mutations involved in the various SubBytes layers (R represents as before the
number of rounds of the considered instances of the generic AES construction,
and r the number of rows and columns of the matrices representing their states).
This allows to define structural distinguishers for these permutations and these
compression functions, using the extended known key model introduced above.

2.1 AES

Following our generic description, AES [30] is a n = 128-bit block cipher that
can handle 128, 192 or 256-bit keys and those variants have a different number
of rounds, 10, 12 and 14 respectively. The internal state is viewed as a 4 ×
4 matrix of bytes and SB is an 8-bit Sbox. The ShiftRows transformation is
simply defined by Subi(j) = (j − i) mod 4. Finally, we note that in AES the
MixColumns transformation of the last round is not applied and that the last
round is composed with an extra AddConstant transformation.

Since we will analyze AES in the known-key attacker model, the key schedule
and the key additions can be replaced by the AddConstant function. In the
known key distinguishers for R-round versions of AES considered in the sequel,
the set C consists of all R+1-tuples of 128-bit constants equiped with the uniform
law, and the set SB can be either defined as the singleton containing the actual
SubBytes layers or as the set of all 16R-tuples of bijections over {0, 1}8. Our
distinguishers are equally applicable in both settings, and can be immediately
converted into known key distinguishers for R-round versions of AES-128, AES-
192, and AES-256.

2.2 Grøstl

Grøstl [14] is a double-pipe hash function whose compression function is built
upon two AES-like permutations P and Q (that only differ by the constants used

4 Considering a family of functions rather than one single function allows us to express
a structural property common to many individual functions. Moreover, it avoids the
considerable difficulties one would encounter in the case of one single function f for
expressing the requirement that the evasive property used to distinguish f must be
“independent” of f as to exclude for instance the evasive property trivially provided
by each (input,output) pair of f ; in addition, if the size of I is larger than the input
size of F , considering a family of functions instead of one single function allows us
to avoid the already mentioned paradox of [7].



during the AddConstant layer). In the case of Grøstl-256, the internal state of
those permutations can be viewed as a 8×8 matrix of bytes and their number of
rounds is 10. The ShiftRows transformation is defined by Subi(j) = (j−i) mod 8.
In the case of Grøstl-512, the internal state of those permutations can be viewed
as a 8× 16 matrix of bytes, thus not fitting in our generic model.

Finally, as already shown on Figure 1, the compression function takes a mes-
sage input M and a chaining variable input CV and outputs a new chaining
variable CV ′ with

CV ′ = P (CV ⊕M)⊕Q(M)⊕ CV.

In the subsequent analysis of the security of R-round versions of the Grøstl-
256 permutations and the associated compression function, we either define the
set C as the singleton containing the actual constants used in the AddConstant
layers or the set of all possible R-tuples of 512-bit constants (this will not make
any difference for our distinguishers), and we define SB as the set of all the
64 ·R-tuples of bijections over {0, 1}8.

2.3 ECHO

ECHO [2] is also a double-pipe hash function. It uses a compression function built
upon a 2048-bit AES-like permutation whose i-round version is denoted by P i

E .
The internal state of this permutation can be viewed as a 4×4 matrix of 128-bit
words. The Sbox layer on a 128-bit cell is composed of two AES rounds with a
fixed key. The AddConstant layer is not present (or equivalently is present with
constant values equal to zero) and in order to avoid trivial vulnerabilities that
would result from an entirely symmetric round function, each Sbox in ECHO is
distinct thanks to different key additions in each invocation of the 2-round AES.
As for the AES, the ShiftRows transformation is simply defined by Subi(j) =
(j − i) mod 4. In the case of the ECHO-256 compression function, 8 rounds of
the permutation are applied and a shrinking transformation is performed after
the final feedforward. This transformation (denoted here by shrink256) consists
of “XORing” all the four 512-bit columns together. Finally, as already shown
on Figure 1, the compression function takes a message input M and a chaining
variable input CV and outputs a new chaining variable CV ′ with

CV ′ = shrink256(P 8
E(CV ||M)⊕ (CV ||M)).

In the case of the ECHO-512 compression function, 10 rounds of the per-
mutation are applied and a shrinking transformation is applied after the final
feedforward. This transformation (denoted by shrink512) consists of “XORing”
the two first and the two last 512-bit columns together.

CV ′ = shrink512(P 10
E (CV ||M)⊕ (CV ||M)).

Since ECHO is a nested design of AES-like permutations, we will use the prefix
“BIG” when referring to one of the three layers of the 2048-bit permutation.



When not using this prefix, we will refer to the layers of the 2-round AES per-
mutation in the BIG-Sbox of ECHO.

In the subsequent analysis of the security of R-round versions of the ECHO per-
mutation, we define the set C as the singleton containing the R-tuple of Add-
Constant layers associated with the constant zero, and SB as the set of all the
16 ·R-tuples of bijections over {0, 1}128.

3 The Super-Sbox cryptanalysis technique

In this section, we introduce the Super-Sbox view for two rounds of an AES-like
permutation [9–11,16]. Based on this observation, we describe a new cryptanal-
ysis technique in the generic framework of Section 2 and we will apply it to the
specific cases of AES, Grøstl and ECHO in the following section.

3.1 The generic differential paths

In the following attacks, we will consider two distinct generic truncated differ-
ential paths for AES-like permutations. The only difference considered between
two words A and A′ is the XOR difference, that is δ = A ⊕ A′. The first path
is 7-round long and the second one is 8-round long. Both are depicted in Fig-
ure 3. A white cell denotes a c-bit word without difference (inactive word) and a
dark cell represents a truncated c-bit difference (active word), that is a non-zero
difference whose actual value is not considered by the attacker.
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Fig. 3. 7-round and 8-round differential paths for AES-like permutations.

When dealing with truncated differentials for AES-like permutations, one can
easily check that only the MixColumns transformations will not behave deter-
ministically. Indeed, while AddConstant have no effect on the difference of a
cell and ShiftRows just permutes the array of c-bit differences, the SubBytes
transformation will impact the value of the difference, but it will not affect



the truncated difference. The matrix multiplication underlying the MixColumns
transformation presents the interesting property of being a Maximum-Distance
Separable (MDS) mapping: the number of active input and output cells is always
greater or equal to r + 1 (unless there is no active input and output cell at all).
The probability of a truncated differential transition through the restriction of
the MixColumns transformation to one column that meets the MDS constraints
is determined by the number of active cells in the output column. More precisely,
if such a differential transition contains k > 0 active cells in the output column,
its probability of success is closely approximated by 2−c(r−k). For example, a
4 7→ 1 transition for one column of the AES MixColumns layer has a success
probability of approximatively 2−24. Note that the same reasoning applies when
dealing with the inverse function of the MixColumns layer as well.

3.2 Previous start-from-the-middle attacks

By observing the two previous differential paths, one can easily be convinced
that the most costly part is located in the middle rounds, where the full internal
state is active. Therefore, the classical early-round use of the freedom degrees
available to the attacker is not successful in this case. It is more efficient to
actually utilize the freedom degrees during the middle rounds and then let the
rest of the differential trail be verified backward and forward in a probabilistic
way.

3.3 The Super-Sbox view

In [9–11, 16], Daemen and Rijmen introduced the super box representation for
two rounds of the AES in order to study differential properties. The underlying
idea is simple: by considering (r×c)-bit permutations (named here Super-Sboxes)
instead of the usual c-bit S-boxes, two rounds of an AES-like permutation can
be represented using only one non-linear layer. More precisely, the application
of two AES-like permutation rounds on a internal state C

MC ◦ ShR ◦ SB ◦ AC ◦MC ◦ ShR ◦ SB ◦ AC(C)

can be rewritten

MC ◦ ShR ◦ SB ◦ AC ◦MC ◦ SB ◦ ShR ◦ AC(C)

since two adjacent SubBytes and ShiftRows transformations commute. The mid-
dle part

Super-SB = SB ◦ AC ◦MC ◦ SB

of the former composition represents a layer of column-wise applications of r
(r × c)-bit Super-Boxes. The transformation associated with two consecutive
rounds can thus be rewritten

MC ◦ ShR ◦ Super-SB ◦ ShR ◦ AC(C).

This is depicted in Figure 4.
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Fig. 4. Three equivalent views of 2 rounds of an AES-like permutation

3.4 The Super-Sbox cryptanalysis

Our overall strategy is the same as in the previous rebound or start-from-the-
middle attacks: we will try to find a pair of internal state values in the middle of
a well chosen truncated differential path (where the full internal state is active)
such that the path is verified for as many possible rounds as possible backward
and forward. We call this part the controlled rounds and the rest of the path in
both directions will be fulfilled probabilistically.

In order to describe our attack, we use the 8-round path from Figure 3. With
a restricted number of operations on average, we will find an internal state values
pair such that the path is verified for three middle rounds: from the beginning
of round 2 until the end of round 4. A more detailed description of the three
controlled rounds is given in Figure 5.

Sstart S′start Sin Sout Send

AC

SB

ShR MC AC

ShR

Super-SB ShR MC

Fig. 5. A detailed Super-Sbox view (see Figure 4) of the controlled rounds (from round
2 to round 4) of the 8-round differential path from Figure 3

Before describing the attack, we have to make an assumption: we require
that the number of potential distinct differences at the start of the controlled
rounds (Sstart) or at the end of the controlled rounds (Send) be at least (2c−1)r.
In other words, we must have at least r active cells in Sstart or in Send. Note
that this assumption holds for all the types of controlled rounds that will be
considered in the two differential paths of Figure 3. Without loss of generality,
we consider for the rest of the description that this assumption is fulfilled for
the ending difference mask.



The controlled rounds. The initial state of the controlled round is Sstart at
the beginning of round 2 (see Figure 5). Since the AddConstant and SubBytes
layers of this round have no effect on truncated differentials, we can directly be-
gin at S′start, i.e. just after those two transformations. Thus, we select a random
difference value (we do not use truncated differences in the subsequent proce-
dure) for all the active cells of the internal state S′start at the output of the
Sbox layer of round 2. Since the difference mask for the entire internal state is
now specified, one can apply the ShiftRows and MixColumns transformations
and enter round 3 with an updated difference mask. We then easily deduce the
input difference mask ∆ = (∆1, · · · , ∆r) in Sin for the r-tuple of Super-Sboxes
of Super-SB.

Now we perform the following local precomputation: for each of the r Super-
Sboxes, knowing its input difference mask ∆i, we go through all the 2(rc)−1

pairs of input values differing by ∆i and compute the Super-Sbox forward. This
provides 2(rc)−1 output differences values (distinct or not). For each Super-Sbox
output difference reached, the attacker stores the appropriate pair(s) of input
that led to it. We name this storage by Tables Ti for each Super-Sbox i and note
that this precomputation phase requires about 2rc operations and memory.

We now go backward by starting from the end of round 4: we pick a random
difference for all the active cells of the internal state Send at the output of the
MixColumns transformation of round 4. We can invert this MixColumns layer
and get the differences on its input. By also inverting the ShiftRows function of
round 4, we get the aimed output difference mask ∆′ = (∆′1, · · · , ∆′r) in Sout

for the r Super-Sboxes of Super-SB. We only have to check whether for all the
r Super-Sboxes (numbered i = 1 to r), the output difference ∆′i is present in
tables Ti. If this is the case, we can efficiently enumerate all the pairs of input
difference ∆ in Sin leading to an output ∆′ in Sout. It is easy to see that if
∆′ = (∆′1, · · · , ∆′r) was a fully random r-tuple of output differences for the r
Super-Sboxes, the average value over ∆′ of the number n(∆′) of distinct pairs
of input difference ∆ resulting in an output difference ∆′ would be exactly 1/2
(this actually holds for any permutation, independently of the fact that this
permutation is a r-tuple of Super-Sboxes).5 We make the (natural) heuristic
assumption that though ∆′ is not selected from the whole set D of all 2r2c pos-
sible difference values, but from a smaller subset D′ of (2c− 1)r ' 2rc difference
values, the average value of n(∆) over D′ remains extremely close to 1/2. This
assumption is supported by the fact that D′ consists of difference values with

5 The exact distribution of the number n(∆′) of pairs is complex to derive, but one can
at least notice that if n(∆′) 6= 0, i.e. the numbers n1, · · · , nr of input pairs returned
by tables T1, · · · , Tr are all distinct from zero, then n(∆′) = n1 × · · · × nr × 2r−1

since each tuple of pairs provides 2r−1 pairs of complete blocks (as a matter of fact,
the values of each pair of inputs to one Super-Sbox can be swapped, but each of
the 2r pairs of blocks one obtains this way are repeated two times). Though this is
not essential for the estimate of the attack complexity, we can expect the two most
probable values of n(∆′) to be n(∆′) = 0 (with a probability about 1 − 2−r) and
n(∆′) = 2r−1 (with a probability about 2−r).



r2 active cells, and this output difference pattern meets the MDS constraints of
the r Super-Sboxes for any input difference pattern.

Thus, by going through all the potential difference candidates for Send, we
expect to get half of the amount of distinct solutions on average. Since we previ-
ously assumed that we have at least 2rc potential difference candidates for Send,
the average complexity to find one solution is only two operations as soon as we
wish to obtain at least 2rc−1 solutions. In other words, the 2rc cost for build-
ing the tables Ti has been absorbed by the fact that this will allow us to test
about 2rc distinct output difference values at a time. Once all the possible out-
put differences in Send have been exhausted, we can pick a new input difference
candidate in Sstart and build new tables Ti.

To conclude, in order to find k distinct solutions for the controlled rounds,
the overall complexity is max{2rc, k} operations and 2rc memory.

The uncontrolled rounds. The rest of the path (the uncontrolled rounds) is
fulfilled probabilistically. More precisely, we managed so far to get valid candi-
dates from round 2 to round 4, but we have no control on the difference values
in Sstart (since we selected random differences in S′start and going through an
Sbox layer impacts the difference values). Similarly, we know the differences in
Send, but the beginning of the next round is a SubBytes transformation that
does not allow us to control the behavior of the MixColumns function on round
5. The study of the MixColumns differential properties indicates that the path
will be fulfilled with probability about 2−c(r−1) at round 1 and at round 5 since
we are aiming for a r 7→ 1 active cells differential transition through both of
those two MixColumns layers. Note that for round 0, round 6 and round 7, the
probability of success is equal to one. Finally, the attacker must find 22c(r−1)

distinct solutions for the controlled rounds, providing a single valid pair for the
whole 8-round differential path with a total complexity of 22c(r−1) operations
and 2rc memory.

Of course, the same technique applies to the 7-round differential characteristic
of Figure 3 as well, up to the fact that since the condition on the number of
distinct difference values is fulfilled at the input of the Super-Sboxes and not
on the output, one has to fix a random value for the active cell of the ending
difference (at the input of round 5) and work backward instead of forward.
Since only one round of the uncontrolled part (namely round 1) has now to be
fulfilled probabilistically, the attacker must find 2c(r−1) distinct solutions for the
controlled rounds, providing a valid pair for the whole 7-round differential path
with a total complexity of about 2rc operations and memory. If one wants to
find k′ solutions for the whole 7-round path, then the computational complexity
is max{2rc, k′ × 2c(r−1)}.

3.5 Considering freedom degrees

Before moving forward into the study of the various applications of the Super-
Sbox cryptanalysis, we need to evaluate the freedom degrees available to the



attacker. Indeed, we have to be sure that our attacks will find with a good prob-
ability a valid pair for the whole differential path considered. That is, we want
to be sure that enough valid candidates for the controlled rounds exist so that
we have a good probability that one of them will fulfill the entire characteristic.
Moreover, in some of our attacks, our goal will not only be to find one valid pair,
but to find many of them. In the case of some round reduced versions of Grøstl,
we will even use a birthday paradox technique on the set of valid candidates
in order to find a semi-free-start collision for the compression function. For this
reason, we need to evaluate how many valid pairs one can find for a specified
differential path, and how many distinct differential paths can be considered.

A simple counting argument shows that one can generate only about 22c−1

pairs that verify the entire characteristic. Let us first consider the 8-round path
of Figure 3: the controlled rounds allow to produce about 22rc−1 valid pairs for
rounds 2 to 4, out of which about 22rc−1×2−2(r−1)c = 22c−1 pairs fulfill the entire
condition resulting from the differential transitions at round 1 and 5. In the case
of the 7-round path from Figure 3, the controlled rounds allow to produce about
2(r+1)c−1 valid pairs from round 2 to 4, out of which about 2(r+1)c−1×2−(r−1)c =
22c−1 fulfill the entire condition resulting from the differential transitions at
round 1.

We also have to count how many differential paths such as the ones from
Figure 3 can be generated. When the internal state contains only one active cell,
there are clearly r2 possible positions for the location of this cell in the matrix.
Since this situation happens in the forward and in the backward direction, we get
r4 distinct differential paths. To conclude, we can generate r4 distinct differential
paths, each potentially producing 22c−1 distinct valid pairs.

4 Applications

When trying to obtain distinguishing attacks for 7 rounds of an AES-like permu-
tation, the Super-Sbox cryptanalysis will generally not provide any complexity
improvement over existing techniques. However, our method allows the attacker
to carry out an attack on a number of rounds that was unreachable before. For
example, we provide a new known-key distinguisher attack for 8-round reduced
AES and the first distinguishers for the 8-round versions of the reduced Grøstl
internal permutation, the ECHO internal permutation, and the reduced Grøstl
compression function.

4.1 Limited-birthday distinguishers

Before moving to applications of the Super-Sbox cryptanalysis, we have to de-
scribe the distinguishers we will build. One of our goals is to distinguish an
AES-like permutation from an ideal permutation in the known-key setting. The
kind of distinguishers we consider consist in deriving pairs of plaintext/ciphertext
couples with a zero difference value at i prescribed input bit positions and a zero



difference value at j prescribed output bit positions (and arbitrary difference
values for the other r2c− i input bit positions and the other r2c− j output bit
positions). What is the generic attack complexity in the case of an ideal (random)
permutation ? More generally, we can study the problem of mapping a i-bit dif-
ference mask not necessarily equal to the all-zero word to a j-bit difference mask
through an ideal permutation. A rough analysis might suggest that due to the
the birthday paradox, a generic attack requiring 2min{i/2,j/2} exists. However,
this is not always the case since we can find ourselves in the situation where
not enough difference positions are available in order to take full advantage of
the birthday attack. In other words we don’t always have the k/2 unconstrained
difference bits required to mount a 2k/2 collision attack on k bits.

Since we handle a permutation, the attacker can choose to study the function
or its inverse. Without loss of generality, let’s assume that i ≥ j. Due to the
birthday paradox, each structure of 2r2c−i input values obtained by fixing the
value of those i bits where a zero input difference is required allows to achieve a
zero output difference on up to 2(r2c− i) prescribed output bit positions.

– if j ≤ 2(r2c − i), then one can select 2j/2 input values from one single
structure and this suffices to achieve a collision on the j target positions.
The attack complexity is about 2j/2.

– if j > 2(r2c−i), then about 2j−2(r2c−i) structures have to be used to obtain a
collision on the j prescribed positions. Overall, the complexity of the attack
is about 2r2c−i × 2j−2(r2c−i) = 2i+j−r2c.

The same reasoning holds when applying the birthday paradox over the r2c− j
free difference bits on the output and attacking the inverse function.

– if i ≤ 2(r2c− j), then the attack complexity is about 2i/2.
– if i > 2(r2c − j), then the attack complexity is about 2r2c−j × 2i−2(r2c−j)

= 2i+j−r2c.

It can be shown that overall, the attack complexity is max{2j/2, 2i+j−r2c}.
We want to be able to distinguish AES-like permutation-based compression

functions as well. Studying the generic attack for an ideal compression function
is almost the same as previously. The only difference is that we cannot consider
the inverse function anymore, and we have to take into account both the message
and the chaining variable as inputs. Thus, we study the problem of mapping a
i-bit zero difference mask on the input chaining variable and the message (with
t denoting the total number of input bits) to a j-bit zero difference mask on
the output through an ideal compression function. By applying the birthday
paradox, each structure of 2t−i input values obtained by fixing the input values
at the i positions of the input mask bits allows to achieve a collision on up to
2(t− i) prescribed output bit positions.

– if j ≤ 2(t− i), then the attack complexity is 2j/2.
– if j > 2(t− i), then 2j−2(t−i) structures have to be used to obtain a collision

on the j prescribed positions. Overall, the complexity of the attack is 2t−i×
2j−2(t−i) = 2i+j−t.



4.2 AES

Our first application is a known-key distinguishing attack against the AES block
cipher. We will focus on the application of this attack to AES-128. Previously
known attacks on round-reduced version of AES-128 allow to reach up to 7
rounds, and for 7 rounds we get no improvement, due to the minimal cost 2rc

of the Super-Sbox technique. However, we describe here the first known-key
distinguishing attack against a 8-round reduced version of AES-128 (a recent an-
nouncement regarding an unpublished work [5] describes an 8-round chosen-key
distinguisher for AES-128). We recall that in the case of AES, the last MixColumns
transformation is not applied.

We will use the 8-round differential path from Figure 3 and we already showed
that one can get a pair of input fulfilling this path with a computation complex-
ity of 22c(r−1) = 248 operations and 232 in memory. The amount of freedom
degrees is not an issue here since we only need to find one candidate verifying
the whole differential path. This gives us a pair of plaintext/ciphertext with 4
active cells in the input and 4 active cells in the output, with undetermined
non-zero differences. In the previous section, we gave some evidence that in the
case of a perfect random permutation this should require 264 operations, and we
can conclude that 8-round reduced AES-128 can be distinguished from an ideal
cipher in a known-key model with 248 computations and 232 memory. Note that
our distinguishers work even if the last round MixColumns transformation is
applied.

4.3 Grøstl

For Grøstl, finding a valid pair following the generic 8-round path from Figure 3
requires 22c(r−1) = 2112 computations and 264 memory. The obtained pairs have
the distinctive property that i = 512 − 64 = 448 predetermined bits of the
input difference and j = 512 − 64 = 448 predetermined bits of the preimage
of the output difference by the linear transformation MixColumns are equal
to zero. We thus obtain a distinguisher for the 8-round reduced Grøstl-256
internal permutation since the ideal cipher case should require 2i+j−r2c = 2384

computations. This immediately provides a distinguisher for the 8-round reduced
Grøstl-256 compression function as well, as can be seen on Figure 1, by using
the differential path for the P permutation and inserting no difference in the
message (no difference will occur in Q) or alternatively with the differential
path for the permutation Q only (and no difference in P ). In both cases, the
input difference of the compression function belongs to a predetermined vector
space of {0, 1}1024 of dimension 8 × 8 = 64 and the output difference belongs
to the sum of two predetermined vector spaces of {0, 1}512 of dimension 64
each, i.e. a predetermined vector space of dimension at most 128 (by analogy
i = 1024−64 = 960 and j = 512−128 = 384). In the ideal compression function
case, this should require 2i+j−t = 2320 computations. For completeness, we give
in Figure 6 the differential paths for the Grøstl parameters.
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Fig. 6. 7-round and 8-round differential paths for Grøstl-256

Note that in both the 7-round and 8-round cases, we can generate 22×8−1 =
215 distinct valid pairs for each characteristic and one can build 84 = 212 distinct
differential paths. We can now try to compute semi-free-start collisions in the
same manner as in [27]: we use the birthday paradox between the solutions
found for the P and Q branches in order to find colliding difference values for
the active cells of the input and the output. If one expects x active cells in the
input and y in the output of the differential path, then one can find colliding
values by computing 2(x+y)/2 valid candidates for both P and Q. Note that
since it is linear, the very last MixColumns function can be ignored and only the
number of active cells before this layer should be considered. Assuming that we
have 212 × 215 = 227 freedom degrees available in order to apply this birthday
attack would be incorrect: one can apply the birthday paradox only for the same
differential path considered. Thus, we have 215 freedom degrees for each birthday
attack, and we can repeat this step 212 times. Overall, we can make the input
and output difference values collide for only log2((215)2 × 212) = 42 bits.
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Fig. 7. 6-round and 7-round differential paths for Grøstl-256



For this reason, one can not generate collisions for the 7-round and 8-round
reduced compression function with the paths from Figure 3. However, by using
the slightly different paths depicted in Figure 7, one can find semi-free-start col-
lisions for the 6-round reduced Grøstl-256 compression function with 264 = 264

operations and memory and for the 7-round reduced case with 256+64 = 2120

operations and 264 memory. The particularity of those paths is that enough
freedom degrees are now left to the attacker in order to complete the final birth-
day attack. The drawback is that one more r 7→ 1 transition is uncontrolled for
the same total number of rounds. Thus, this type of paths is more costly than
the one from Figure 6.

4.4 ECHO

Since its structure is mimicking the AES, our results regarding the internal per-
mutation of ECHO are very similar, but the complexity has to adapted to the
ECHO parameters. By using the 8-round path from Figure 3, we can distinguish
8 rounds of the ECHO internal permutation from an ideal 2048-bit permutation
with 2768 computations and 2512 memory (the ideal permutation case would
require 21024 computations).

Note that this distinguisher does not apply to the ECHO compression function
because of the shrink operation utilized after the internal permutation and the
feedforward. As a matter of fact the convolution effect of this operation over
the output distribution of the permutation makes it considerably more difficult
to mount a distinguishing attack on the compression function of ECHO than on
its underlying permutation. Moreover, since the Super-Sbox cryptanalysis of
the ECHO permutation presented above requires at least 2512 computations and
memory, it is not a well suited starting point for trying to mount a distinguisher
or a collision search attack against one of the compression functions of ECHO-256
or ECHO-512 (or one of their single-pipe variants).

5 Conclusion

In this paper, we introduced the Super-Sbox cryptanalysis, which very often
improves upon the classical rebound or start-from-the-middle attacks both in
terms of efficiency and simplicity. This technique leads to improved cryptanalytic
results for both Grøstl and ECHO, two SHA-3 candidates, and to the best known-
key distinguisher so far for the AES-128 block cipher.

Acknowledgments

The authors would like to thank Matt Robshaw for insightful discussions and
the anonymous referees for their helpful comments.



References

1. P.S.L.M. Barreto. An observation on Grøstl. Comment submitted to the NIST
hash function mailing list, hash-forum@nist.gov. http://www.larc.usp.br/ pbar-
reto/Grizzly.pdf.

2. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin,
Matt Robshaw, and Yannick Seurin. SHA-3 Proposal: ECHO. Submission to NIST,
2008. Available online at http://crypto.rd.francetelecom.com/echo/.

3. Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers,
volume 4593 of Lecture Notes in Computer Science. Springer, 2007.

4. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-
Key Attack on the Full AES-256. In Halevi [15], pages 231–249.

5. Alex Biryukov and Ivica Nikolic. A New Security Anal-
ysis of AES-128. CRYPTO 2009 rump session, 2009.
http://rump2009.cr.yp.to/b6f3cb038135799a7ea398f99faf4a55.pdf.

6. John R. Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of
the Block-Cipher-Based Hash-Function Constructions from PGV. In Moti Yung,
editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 320–335. Springer-Verlag, 2002.

7. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557, 2004.

8. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science. Springer, 2005.

9. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Information Security
and Cryptography. Springer, 2002. ISBN 3-540-42580-2.

10. Joan Daemen and Vincent Rijmen. Two-Round AES Differentials. Cryptology
ePrint Archive, Report 2006/039, 2006. http://eprint.iacr.org/.

11. Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in
AES. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of Lecture
Notes in Computer Science, pages 78–94. Springer, 2006.

12. Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers, vol-
ume 5665 of Lecture Notes in Computer Science. Springer, 2009.

13. Florian Mendel and Christian Rechberger and Martin Schläffer and Søren Steffen
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