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Abstract. BLAKE is a hash function selected by NIST as one of the 14
second round candidates for the SHA-3 Competition. In this paper, we
follow a bottom-up approach to exhibit properties of BLAKE and of its
building blocks: based on differential properties of the internal function
G, we show that a round of BLAKE is a permutation on the message
space, and present an efficient inversion algorithm. For 1.5 rounds we
present an algorithm that finds preimages faster than in previous at-
tacks. Discovered properties lead us to describe large classes of impos-
sible differentials for two rounds of BLAKE’s internal permutation, and
particular impossible differentials for five and six rounds, respectively
for BLAKE-32 and BLAKE-64. Then, using a linear and rotation-free
model, we describe near-collisions for four rounds of the compression
function.
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1 Introduction

BLAKE [2] is one of the 14 designs selected for the second round of the SHA-3
Competition organized by the U.S. National Institute of Standards and Technol-
ogy. BLAKE uses HAIFA as [3] operation mode, with some simplifications. Its
compression function is based on a keyed permutation that reuses internals of
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the stream cipher ChaCha [4]. Wordwise operations are integer addition, XOR,
and rotation (AXR). Depending on the output length BLAKE works on 32-bit
or 64-bit words. If necessary we refer to the specific instances by BLAKE-32 and
BLAKE-64 respectively.

In a previous work, Ji and Liangyu [5] presented a preimage attack on round-
reduced versions of BLAKE-32 and BLAKE-64 with up to 2.5 rounds (out of
10 and 14 respectively). In particular they described a method with complexity
2192 to find preimages of BLAKE-32 reduced to 1.5 rounds.

Contribution of this paper. We establish differential properties of the permu-
tation used in the compression function of BLAKE and investigate invertibility
of one and more rounds. Following a bottom-up approach, we first state differen-
tial properties of the core function G. We exploit them to show injectivity of one
round of the permutation with respect to the message space. We derive explicit
input-output equations for G, which yield an efficient algorithm to invert one
round and an improved algorithm to find a preimage of 1.5 rounds (in 2'2® for
BLAKE-32). Then we exploit differential properties of G to find large classes of
impossible differentials for one and two rounds, and specific impossible differen-
tials for five and six rounds of BLAKE-32 and BLAKE-64 respectively. Using a
linear and rotation-free model of G we find near-collisions for the compression
function reduced to four rounds.

2 Preliminaries
This section describes the compression function of BLAKE and then fixes nota-

tions used in the rest of this paper. A complete specification of BLAKE can be
found in [2].

2.1 The compression function of BLAKE

The compression function of BLAKE processes a 4 x4 state of 16 words v, . .., v15.
This state is initialized by a chaining value hy, ..., h7, a salt sq, ..., s3, a counter
to,t1, and constants ko, ..., k7 as depicted below:

vo V1 V2 U3 ho hy ha h3

vy U5 UG U7 hy hs he h7

«—
vs Vg V1p V11 S0 @ ko s1 D k1 52 © ko s3 D k3
V12 V13 V14 V15 to @ ky to® ks t1® ke t1 © ke

The initial state is processed by 10 or 14 rounds for BLAKE-32 and BLAKE-64
respectively. A round is composed of a column step:

Go(vo, v4,v8,v12) Gi(vi,vs,v9,v13) Ga(ve,ve,vi0,v14) Ga(vs,vr,vi1,v15)
followed by a diagonal step:

G4(vo,v5,v10,v15) G5(U177J6,”011,7112) GG(UQ,U%U&UB) G7(’U3,U4,U9,’014)-



The G function depends on a position index s € {0,...,7} (indicated as sub-
script), a round indexr > 0, a message blockmy, . .., m15, and constants ko, . . ., k15.
At round r of BLAKE-32, G4(a,b, ¢,d) computes

l:a— (a+0b)+ (m; ®kj) 5:a« (a+b)+ (m; ®k;)
2:d— (d®a)>>16 6:d—(d®a)>8
3:c— (c+d) T:c— (c+d)

4:0— (bdc)> 12 8:b— (bde)>T

with i = 0,.(2s) and j = 0,(2s + 1), where {0, } is a family of permutations of
{0,...,15}. In BLAKE-64, the only differences—besides the word size—are the
rotation constants, respectively set to 32, 25, 16, and 11.

For a fixed message block m, G is invertible and so a series of rounds is a
permutation of the state. One may view the permutation as a block cipher with

key m. After the 10 or 14 rounds the new chaining value hy, ..., h% is computed
as
hébho@SO@Uo@vg hil<—h4@80@1}4@1}12
h&th@Sl@vl@Ug hg<—h5@31€9v5@013
hfy < ho @ s2 ® va ® v1g hi < he @ so ® v D vig’
h «— h3 @ s3 ® vz B vy hi — h7 ® s3 B v7 P v15

Observe that in the definition of G, we write the first line as “a < (a +b) +
(m; @ k;)”, instead of “a «— a+b+ (m; k;)”. This is to avoid ordering ambigu-
ities when computing probabilities of differential characteristics. For instance, a
difference in m; propagates through one addition in the former case, and through
two additions in the latter, when interpreted as “a «— a+ (b+ (m; ® k;))”, idem
for the fifth line. Clearly, one can simultaneously use different characteristics in
this model as being equivalent to a single characteristic in a model that does not
make any assumption on the order of the operations.

2.2 Notations

The symbols A and V denote logical AND and OR. Numbers in hexadecimal
basis are written in typewriter (for example, ABCDEF01). A difference A always
means a difference with respect to XOR, that is, two words m and m’ have the
difference A if m@& A = m’. The Hamming weight of word m is denoted |m/|, the
Hamming weight of (mA7FF - - - FF), that is, the Hamming weight of m excluding
the most significant bit (MSB), is denoted |m||. A differential characteristic
(DC) for BLAKE is the sequence of differences followed through application of
addition, XOR, and rotation. In contrast a differential only consists in a pair of
input and output differences.

When analyzing the differential behavior of the G function, we use the fol-
lowing notation:

Aa : initial difference in a

Aa : difference in the intermediate value of a set at line 1
Aa’: final difference in a

A; : difference in m;



Analogous notations are used for differences in b, ¢, d, and m;. For instance, if
Aa=A; =0and Ab=80---00, then Aad =80---00.

3 Differential properties of the G function

This section enumerates properties of the G function. We first consider the case
of differences in m; and m; only, and then consider the general case with input
differences in the state. Finally we briefly look at the inverse of G.

3.1 Differences in the message words only

All statements below assume zero input difference in the state words, that is,
Aa = Ab= Ac= Ad = 0.

Proposition 1. If (A; = 0) A (A, # 0), then (Aa’ # 0) A (A # 0) A (A’ #
0) A (Ad" #0).

Proof. If there is no difference in m; then there is no difference in a, b, ¢, and d
after the first four lines of G. Thus a difference A in m; always gives a nonzero
difference A’ in a. Then, d always has a difference (A’ > 8), which propagates
to a nonzero difference A” to ¢, and finally b has difference (A" >> 7). O

Proposition 2. If A; # 0, then

(Ad' = 0) = (Ad' # 0) (Ac' = 0) = (AV £ 0) A (Ad' #0)
(AV = 0) = (A #0) (Ad' = 0) = (Ad’ # 0) A (A # 0)

Proof. We show that in the output, a and d cannot be both free of difference,
idem for d and ¢, and for b and c¢. By a similar argument as in the proof of
Proposition 1, after the first four lines of G the four state words have nonzero
differences. In particular, the state has differences (A", A” >> 12, A” A’ >> 16),
for some nonzero A’ and A”. Suppose that we obtain Aa’ = 0. Then we must
have Ad" = (4’ >> 24). Hence a and d cannot be both free of difference.
Similarly, cancelling the difference A” in ¢ requires a difference in d, thus ¢ and
d cannot be both free of difference. Finally, to cancel the difference in b, ¢ must
have a difference, thus b and ¢ cannot be both free of difference. a

Two corollaries immediately follow from Proposition 1 and Proposition 2.

Corollary 1. If (A;V A;) # 0, then there are differences in at least two output
words.

Corollary 2. All differentials with an output difference of one of the following
forms are impossible:

(A,0,0,0) (0,4,0,0) (A,0,0,4") (A,0,4',0)
(0,0,4,0) (0,0,0,4) (A,A,0,0) (0,4,4",0)

for some nonzero A and A, and for any A; and A;.



Note that output differences of the form (0, A, 0, A’) are possible. For instance, if
A; = (A; >> 4), then the output difference obtained by linearization is (0, A4; >>
3,0, 4;). For such a A;, highest probability 2728 is achieved for A = 88888888.

A consequence of Corollary 2 is that a difference in at least one word of
mz,...,my5 gives differences in at least two output words after the first round.
This yields the following upper bounds on the probabilities of DCs.

Proposition 3. A DC with input difference A;, A; has probability at most 27
if (Ai =0) A (A; #0), at most 276 if (A; # 0) A (A; =0) and at most 27° if
(4 #0) A (4; #0).

A proof is given in the full version of this article [1].

3.2 General case
Statements below no longer assume zero input difference in the state words.
Proposition 4. If Ad’ = AV = Ad = Ad' =0, then Ab= Ac = 0.

Proof. First, when A; = A; = 0, collisions do not exist since G is a permutation
for fixed m; and m;. So we must have differences in m; and/or m;. By Propo-
sition 6, in G™! a difference in m; and/or m; cannot affect b and ¢, hence a
collision for G needs no difference in b and c. a

In other words, a collision for G requires zero difference in the initial b and c.
For instance, collisions can be obtained for certain differences Aa, 4;, and zero
differences in the other input words. Indeed at line 1 of the description of G, Aa
propagates to (a + b) with probability 2-I14ll - A; propagates to (m; ® k;) with
probability one, and finally Aa eventually cancels A;. Note that a collision for G
with difference 88888888 in both m; and a is used in §6 to find near-collisions
for a modified version of BLAKE-32 with 4 rounds.
The following result directly follows from Proposition 4.

Corollary 3. The following classes of differentials for G are impossible:
(A, A A" A" (0,0,0,0)
(A,0,A4", A" — (0,0,0,0)
(A, A0,A") — (0,0,0,0)
for nonzero A" and A", possibly zero A and A", and any A; and A;.

Many other classes of impossible differentials for G exist. For example, if Aa’ # 0
and Ab = Ac' = Ad' =0, then Ab = 0.

Proposition 5. The only DCs with probability one give Aa’ = AV = Ad =
Ad' =0 and have either

— A;j=Aa=2800---00 and Ab = Ac=Ad = A; =0;
— Aj =Aa=Ad=800---00 and Ab= Ac=A; =0;



- Aj=A; =Ad=2800---00 and Aa = Ab= Ac=0.

Proof. The difference (800 ---00) is the only difference whose differential prob-
ability is one. Hence probability-1 DCs must only have differences active in
additions. By enumerating all combinations of MSB differences in the input, one

observes that the only valid ones have either MSB difference in A; and Aa, in
Aj; and Aa and Ad, or in A; and A; and Ad.

For constants k; equal to zero, more probability-1 differentials can be obtained
using differences with respect to integer addition.

3.3 Properties of G~

At round r, the inverse of G; of BLAKE-32 computes

h—cod(bkT) 5:b—cd (bx12)
tc—c—d 6:c—c—d
td—a®(dK8) 7T:d—a®(dk16)
ta—a—b—(m; ®k;) 8:a—a—b—(m; ®kj)

IENEGUR O

where i = 0,.(2s) and j = 0,(2s + 1). Unlike G, G~* has low flow dependency:
two consecutive lines can be computed simultaneously and independently, with
concurrent access to one variable.

Many properties of G™! can be deduced from the properties of G. For exam-
ple, probability-1 DCs for G=! can be directly obtained from Proposition 5. We
report two particular properties of G!. The first one follows directly from the
description of G™1.

Proposition 6. In G, the final values of b and c do not depend on the message
words m; and m;. In particular, b depends only on the initial b, ¢, and d.

That is, when inverting G, initial b and ¢ depend only on the choice of the image
(a,b,c,d), not on the message.
The following property follows from the observation in Proposition 3.

Proposition 7. There exists no DC that gives collisions with probability one.

Properties of G™! are exploited in §4 to find impossible differentials.

4 TImpossible differentials

An impossible differential (ID) is a pair of input and output differences that
cannot occur. This section studies IDs for several rounds of the permutation of
BLAKE. First we exploit properties of the G function to describe IDs for one
and two rounds. Then we apply a miss-in-the-middle strategy to reach up to five
and six rounds.

To illustrate IDs we use the following color code:



absence of difference

undetermined (possibly zero) difference

undetermined or partially determined nonzero difference
totally determined nonzero difference

| Nl

4.1 Impossible differentials for one round

The following statement describes many IDs for one round of BLAKE’s permu-
tation.

Proposition 8. All differentials for one round (of any index) with no input
difference in the initial state, any difference in the message block, and an out-
put with difference in a single diagonal of one of the forms in Corollary 2, are
impossible.

Proof. We give a general proof for the central diagonal (vg, vs, v19, v15); the proof
directly generalizes to the other diagonals of the state. We distinguish two cases:

1. No differences are introduced in the column step: the result directly follows
from Proposition 4 and Corollary 2.

2. Differences are introduced in the column step: recall that if Ab # 0 or Ac # 0,
then one cannot obtain a collision for G (see Proposition 4); in particular,
if there is a difference in one of the two middle rows of the state before the
diagonal step, then the corresponding diagonal cannot be free of difference
after.

We reason ad absurdum: if a difference was introduced in the column step
in the first or in the fourth column, then there must be a difference in
the corresponding b or ¢ (for output differences with AY = Ac’ = 0 are
impossible after the column step, see Corollary 2). That is, one diagonal
distinct from the central diagonal must have differences.

We deduce that any state after one round with difference only in the central
diagonal must be derived from a state with differences only in the second or
in the third column. In particular, when applying G to the central diagonal,
we have Aa = Ad = 0. From Proposition 2, we must thus have Aa’ # 0,
Ac # 0, and Ad' # 0. In particular, the output differences in Corollary 2
cannot be reached.

We have shown that after one round of BLAKE, differences in the message block
cannot lead to a state with only differences in the central diagonal, such that
the difference is one of the differences in Corollary 2. The proof directly extends
to any of the three other diagonals. ad

To illustrate Proposition 8, which is quite general and covers a large set of
differentials, Fig. 1 presents two examples corresponding to the two cases in the
proof.

Note that our finding of IDs with zero difference in the initial and in the final
state is another way to prove Proposition 9.



column step diagonal step

prob.=1 prob.=0 H:

column step diagonal step

prob.=0 prob.=1 H:

Fig. 1. Illustration of IDs after one round: when there is no difference introduced in
the column step (top), and when there is one or more (bottom).

4.2 Extension to two rounds

We can directly extend the IDs identified above to two rounds, by prepending
a probability-1 DC leading to a zero difference in the state after one round. For
example, differences 800---00 in mgy and in vy always lead to zero-difference
state after the first round.

By Proposition 8, a state with differences only in vg and v1g cannot be reached
after one round when starting from zero-difference states. Therefore, differences
800---00 in mg and vy cannot lead to differences only in vy and vy after two
rounds. This example is illustrated in Fig. 2.

2 rounds

prob.=0 H:

N [

2 rounds

prob.=0

Fig. 2. Examples of IDs for two rounds: given difference 800 - --00 in mo and vo (top),
or in ma,mg,v1,v3 (bottom).

4.3 Miss in the middle

The technique called miss-in-the-middle [6] was first applied to identify IDs in
block ciphers (for instance, DEAL [7] and AES [8,9]). Let IT = IIy o II; be
a permutation. A miss-in-the-middle approach consists in finding a differential
(av — () of probability one for IT; and a differential (y +— ) of probability one
for IT; ", such that 3 # §. The differential (a + &) thus has probability zero and
so is an ID for II. The technique can be generalized to truncated differentials,



that is, to differentials 8 and ¢ that only concern a subset of the state. Below we
apply such a generalized miss-in-the-middle to the permutation of BLAKE. We
expose separately the application to BLAKE-32 and to BLAKE-64. The strategy
is similar for both:

1. Start with a probability-1 differential with difference in the state and in the
message so that difference vanish until the second round.

2. Look for bits that are changed (or not) with probability one after a few more
rounds, given this difference.

3. Do same as step 2 in the backwards direction, starting from the final differ-
ence.

Good choices of differences are those that maximize the delay before the input
of the first difference, more precisely, those such that the message word with the
difference appears in the second position of a diagonal step forwards, and in the
first position of a column step backwards. The goal is to minimize diffusion so
as to maximize the chance of probability-1 truncated differentials.

2.5 rounds ” 2.5 rounds
prob.=1 5 5 prob.=1

Fig. 3. Miss-in-the-middle for BLAKE-32, given the input differences 80000000 in mg
and v1. The two differences in dark gray are incompatible, thus the impossibility. In the
forward direction, 2.5 rounds are two rounds plus a column step; backwards, 2 inverse
rounds plus an inverse diagonal step.

Application to BLAKE-32. We consider a difference 80000000 in the initial
state in v1, and in the message block word ms; we have that

— Forwards, differences in v; and my cancel each other at the beginning of the
column step and no difference is introduced until the diagonal step of the
second round in which my appears as m; in Gs; after the column step of the
third round (that is, after 2.5 rounds), we observe that bits® 35, 355, 439,
and 443 are always changed in the state.

— Backwards, we start from a state free of difference, and ms introduces a
difference at the end of the first inverse round, as it appears as m; in the
column step’s Go; after 2.5 inverse rounds, we observe that bits 35, 355, 439,
and 433 are always unchanged.

SHere, bit 35 is the fourth most significant bit of the second state word v1, bit 355
is the fourth most significant bit of v11, etc.



The probability-1 differentials reported above were first discovered empirically,
and could be verified analytically by tracking differences, distinguishing bits with
probability-1 (non-) difference, and other bits.

We deduce from the observations above that difference 80000000 in vy and
meo cannot lead to a state free of difference after five rounds. We thus identi-
fied a 5-round ID for the permutation of BLAKE-32. Fig. 3 gives a graphical
description of the ID.

Application to BLAKE-64. For BLAKE-64, we follow a similar approach as
for BLAKE-32, with MSB difference in msy and vy. We could detect contradic-
tious probability-1 differentials over three instead of 2.5 rounds, both forwards
and backwards. For example, we detected probability-1 inconsistencies for bits
450, 453, 457, 462, and 463 of the state. We obtain an ID for six rounds of the
permutation of BLAKE-64.

Remarks.

1. The probability-1 truncated differentials used above were empirically dis-
covered, but one can easily verify them analytically. For instance, for bit
35 forward (fourth bit of vy1), we observe that the state is free of differ-
ence until the input of ms in the second round in Gs, which sets a difference
A = 80000000 in v, and other differences in vg, v11, v12. At the next (third)
round, when computing G; the only difference occurs in the MSB of vy, which
gives difference Aa = A, Ad = A >> 16, A¢ with no difference in the first
15 bits and a difference in the 16th, Ab with no difference in the first three
bits and a difference in the fourth; thus we have Aa’ with no difference in
the first three bits and a difference in the fourth, that is, the bit 35 of the
state is always flipped after 2 rounds plus a column step. Similar verification
can be realized for the backwards differentials.

2. The IDs presented in this section do not lead to IDs for the compression
function. This is because a given difference in the output of the compression
function can be caused by 22°¢ distinct differences in the final value of the
permutation (for BLAKE-32).

5 Invertibility of a round

Let f7 be the function {0, 1}°2x{0,1}%'2 — {0, 1}°'2, that for initial state v and
message block m outputs the state after r rounds of the permutation of BLAKE-
32. Non-integer round indices (for example r = 1.5) mean the application of |r]
rounds and the following column step. We write f7 = f"(v,-) when considering
f" for a fixed initial state and respectively f;, when the message block is fixed.
As noted above, f;, is a permutation for any message block m and any r > 0.
In this section we use the differential properties of G to show that f! is also
a permutation for any initial state v. Then we derive an efficient algorithm for
the inverse of f! and an algorithm with complexity 2'2® to compute a preimage



of 1 for BLAKE-32 (a similar method applies to BLAKE-64 in 2256). This
improves the round-reduced preimage attack presented in [5] (whose complexity
was respectively 2192 and 2384 for BLAKE-32 and BLAKE-64)

5.1 A round is a permutation on the message space

Proposition 9. For any fized state v, one round of BLAKE (for any index
of the round) is a permutation on the message space. In particular, fl is a
permutation.

Proof. We show that if there is no difference in the state, any difference in
the message block implies a difference in the state after one round of BLAKE.
Suppose that there is a difference in at least one message word. We distinguish
two cases:

1. No differences are introduced in the column step: there is thus no difference
in the state after the column step. At least one of the message words used in
the diagonal step has a difference; from Corollary 1, there will be differences
in at least two words of the state after the diagonal step.

2. Differences are introduced in the column step: from Corollary 2, output dif-
ferences of the form (0,0,0,0), (4,0,0,0), (0,0,0,4), or (A,0,0,4") are
impossible. Thus, after the first column step, there will be a difference in at
least one word of the two middle rows (that is, in vy, ...,v11). These words
are exactly the words used as b and c¢ in the calls to G in the diagonal step;
from Proposition 4, we deduce that differences will exist in the state after
the diagonal step, since Ab = Ac = 0 is a necessary condition to make
differences vanish (see Proposition 4).

We conclude that whenever a difference is set in the message, there is a difference
in the state after one round. O

The fact that a round is a permutation with respect to the message block
indicates that no information of the message is lost through a round and thus
can be considered a strength of the algorithm. The same property also holds for
AES-128. Note that Proposition 9 says nothing about the injectivity of f; for

r# 1.

5.2 Inverting one round and more

Without loss of generality, we assume the constants equal to zero, that is, k; = 0
for i = 0,...,7 in the description of G. We use explicit input-output equations
of G to derive our algorithms.

Input—output equations for G. Consider the function G4 operating at round
r on a column or diagonal of the state respectively. Let (a,b, ¢, d) be the initial
state words and (a’,b’, ¢, d’) the corresponding output state words. For shorter



notation let ¢ = 0,.(2s) and j = 0,.(2s+1). Let @ = a+b+m; be the intermediate
value of a set at line 1 of the description of G. From line 2 we get a = (d &
16) @ d, where d is the intermediate value of d set at line 2. From line 7 we get

d=(d <« 8) ®d’ and derive
a=((d «<8)®d)<16)®d—b—m,. (1)
Below we use the following equations that can be derived in a similar way:

a= (KN <<T)@d) <« 12)@b) —c) <« 16) & d) —m; — b @)

=d —(V <N @d)—mj—b—m; 3)
b=((t <« T)d)<12)® (d —d) )
c=c —d - ((d <8 ®dd) 5)
d —d —((da (a+b+m)) >>16) (6)
d=(((d < 8)®d) < 16)® (' — (V' < 7) &) —m;) )

d=((((<xNed) 12)db) —c) <k 16)dd)+ (V' < 7) &) +m;
(8)

V= ((b®(—d)>12)ad)>>T) (9)

d=cd—c—((d®(a+b+m;))>>16) (10)

Observe that (1), (2) and (8) allow to determine m; and m; from (a, b, ¢,d) and
(', 0, ,d"). Further, (4) and (5) imply Proposition 6.

We now apply these equations to invert f! and to find a preimage of fl-5(m)
for arbitrary m and v. Denote v* = v{,. .., vi; the internal state after i rounds.
Again, non-integer round indices refer to intermediate states after a column step
but before the corresponding diagonal step. The state v" is the output of f7,.

Inverting fl. Given v° and v!, the message block m = (mo,...,mi5) with
flo(m) = v' can be determined as follows:

1. Determine v$5, ... 0?5 using (4) and v-%, ..., v using (5).
2. Determine my, ..., my using (2), (8), and (10).
3. Determine v, ..., 035,095, ... 09> using Go, ..., Gs.

4. Determine msg, ..., my5 using (2), (8), and (10).

This algorithm always succeeds, as it is deterministic. Although slightly more
complex than the forward computation of f!, it can be executed efficiently.

Preimage of fﬁ‘r’(m) Given some v", and v!'-® in the codomain of fvl(f’ (thus,
a preimage of v!'5 exists), a message block m with f3(35(m) = v can be deter-
mined as follows:

1. Guess mg, mig, m11 and v?('f.
2. Determine v}, ..., v} using (4) and vg,...,v{; using (5), viy, vi; using (7).



3. Determine v3-5, v9-5 using (4), my (2), v1 (2), 9 (6), v9-5 (3), v (5), vis>
2).

4. Determine v3-% (5), ms (8), mg (2), vis (7), v92 (6), v25 (4), v§ (5), mo (8),
™14 (2)

5. Determine v§'5 (5), m7 (8), v8 5 (2), vg ©(5), mg (1), vd (5), vi, (2), mis (8).
6. Determine v$5 (9), mq (8), v3° (6), vi (8), miz (2), ma (2), mz (8), v95> (7),
mio (2)

7. If f1°(m) = o' output m, otherwise make a new guess.

This algorithm yields a preimage of fl:5(m) for BLAKE-32 after 212® guesses
in the worst case. It directly applies to find a preimage of the compression
function of BLAKE reduced to 1.5 rounds and thus greatly improves the round-
reduced preimage attack of [5] which has complexity 2!92. The method also
applies to BLAKE-64, giving an algorithm of complexity 2256, improving on [5]’s
2384 algorithm.

There are other possibilities to guess words of m and the intermediate states.
But exhaustive search showed that at least four words are necessary to determine
the full message block m by explicit input-output equations.

6 Near collisions

In this section, we exploit linearization of the G function, that is, approximation
of addition by XOR. This enables us to find near collisions for a variant of
BLAKE-32 with four rounds.

6.1 Linearizing G

Observe that in G, the number of bits rotated are 16, 12, 8 and 7. Only 7 is not
a multiple of 4.

The idea of our attack is to use differences that are invariant by rotation of
4 bits (and thus by any rotation multiple of 4), as 88888888, and try to avoid
differences pass through the rotation by 7. We model the compression function in
GF(2), where a 1 denotes a difference in the register and 0 means no difference.
We linearize the G function by replacing addition with XOR. Further we remove
the rotations as the differences we choose are rotation invariant.

6.2 Differential characteristic for near collisions

In our linearized model, we have 16 bits of message and 16 bits of chaining
values, hence the search space is 232, which can be explored exhaustively.

We can further reduce the search space by the condition that no difference
passes through rotation by 7 over four rounds of the compression function.

As the model is linear, the whole compression function can be expressed by
a bit vector consisting of message and chaining value multiplied by a matrix.
We used the program MAGMA to efficiently reduce the search space to 2* for a
4-round reduced compression function.



Linearizing a difference pattern 8888888 costs 27 for each addition. We aim
to find those configurations which linearize the addition operation as little as
possible. Note that by choosing proper chaining values and messages, we can get
the first 1.5 rounds “for free”. We did the search, and the configuration with
differences in mi; and vy, vy, vs, vg, U7, U7, V10, V11, V13, V15 and starting point at
round 6 gives count 6 only. This gives complexity 242, with no memory require-
ments. This configuration gives after feedforward final differences in hf, b, h,

and hg (assuming no difference in salts).

We thus obtain a near collision on (256 — 40) = 216 bits (note hf contains 16
bits of difference). Figure 6.2 shows how differences propagate from round 6 to
9. We expect similar methods to apply to any sequence of four rounds, though
with different complexities.

Fig. 4. Tracing the differences for near collisions on rounds 6 to 9.

6.3 On the extension to more rounds

Consider the linearized model of G, in which we approximate addition by xor,
and use the special difference 88888888 (so that differences do not propagate to
the final b).

Consider a linearized round, as in §6.1. Since there are 16 chaining variables
and 16 message words, hence we have 2'6+16 different configurations. When we
restrict “no difference in output b of G”, the number of good configurations is
reduced by a factor 2 when passing each G. Each round function has eight G’s.
Hence each round reduces the “good configurations” by a factor 28. Thus, N
rounds reduce the number of good configurations to 232/28N > 1. Hence four
seems to be the maximum possible number of rounds for which our method
applies, which was verified by our program. This is also why we need to seek
non-linear connectors to give collisions for more rounds.

The 4-round near collision applies to almost all 4-round (i.e. start with any
round), however they give different complexity due to different counts for number
of linearization, the round 6-9 gives lowest count 6.
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Conclusion

We studied differential properties of the SHA-3 candidate BLAKE, and our main
findings are

Differential properties of BLAKE’s permutation and of its core function G.
Inversion algorithms for one and 1.5 rounds of BLAKE’s round function for

a fixed initial value.

Impossible differentials for five (resp. six) rounds of BLAKE-32’s (resp. BLAKE-
64’s) permutation.

Near-collisions on four rounds of the compression function of BLAKE-32.

None of our observations seems to be a threat to the security of BLAKE.

Future work may address properties related to additive differences, instead of

XOR differences. Our results may also assist cryptanalysis of the stream ciphers
Salsa20 and ChaCha, on which BLAKE is based.
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