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Abstract. This paper evaluates the preimage resistance of the Tiger
hash function. We will propose a pseudo-preimage attack on its com-
pression function up to 23 steps with a complexity of 2181, which can
be converted to a preimage attack on 23-step Tiger hash function with
a complexity of 2187.5. The memory requirement of these attacks is 222

words. Our pseudo-preimage attack on the Tiger compression function
adopts the meet-in-the-middle approach. We will divide the computa-
tion of the Tiger compression function into two independent parts. This
enables us to transform the target of finding a pseudo-preimage to an-
other target of finding a collision between two independent sets of some
internal state, which will reduce the complexity. In order to maximize
the number of the attacked steps, we derived several properties or weak-
nesses in both the key schedule function and the step function of the
Tiger compression function, which gives us more freedom to separate
the Tiger compression function.

Keywords: Tiger, hash function, meet-in-the-middle, preimage attack,
independent chunks

1 Introduction

Tiger is a cryptographic hash function designed by Anderson and Biham [1]. It
adopts the well-known Merkle-Damg̊ard structure, and produces 192-bit hash
digests. Throughout this paper, “Tiger” and “tiger” are referred to as the Tiger
hash function and the Tiger compression function respectively.

This paper will evaluate the preimage resistance of Tiger. If Tiger is secure,
it should take no less than 2192 tiger computations to find a preimage of a given
hash digest. At WEWoRC 2007, Indesteege et al. proposed a preimage attack
on Tiger reduced to 13 steps with a complexity of 2128.5 [2], where the full
version of Tiger consists of 24 steps. At FSE 2009, Isobe et al. published another
preimage attack on Tiger, which extended the number of the attacked steps to
16 with a complexity of 2161 and a memory requirement of 232 words [3]. At
AFRICACRYPT 2009, Mendel published his preimage attack on Tiger up to 17
steps with a complexity of 2185 and a memory requirement of 2160 words [4].



Besides preimage resistance, cryptographers also pay attention to the collision
resistance of Tiger. Several papers have been published to evaluate the collision
resistance of Tiger [5] [6] [7]. Here we only point out that the maximum number
of the attacked steps of Tiger in the sense of collision resistance is 19 [6].

Our contributions. This paper will propose a preimage attack on Tiger up to
23 steps with a complexity of 2187.5 tiger computations, which are lower than
the exhaustive search complexity. This attack is based on a meet-in-the-middle
pseudo-preimage attack on tiger with a complexity of 2181. The memory re-
quirement of the above attacks is 222 words. A comparison with previous related
works is shown in Table 1.

Table 1. Comparison with previous preimage attacks

Reference #steps Complexity Memory requirement

[2] 13 2128.5 Negligible

[3] 16 2161 232

[4] 17 2185 2160

This paper 23 2187.5 222

The applicability of the meet-in-the-middle pseudo-preimage attack on tiger
essentially depends on the existence of two sets of message words independent
from each other and suitable for applying the attack. This paper denotes the
independent sets of message words as independent chunks. If such independent
chunks do exist as a matter of fact (maybe cryptographers have not found them
yet), the preimage resistance of Tiger will surely be broken by the meet-in-
the-middle attack. In order to evaluate the maximum number of the attacked
steps, we exploit all the properties we found on tiger. From its key schedule
function, we derive several properties which can be adopted to make message
words independent from each other. In specific, we use the following properties.
1) Bit-shift operations eliminate some information. This gives more freedom to
search for independent chunks. 2) In our attack, we add several least significant
bits of two variables and several most significant bits of the same two variables.
The large word-size (64 bits) helps us to make these two additions independent
because the carry from the lower bits is hard to transmit to the upper bits due to
the large number of intermediate bits. 3) Even if Tiger uses addition, subtraction,
and XOR as its operations, they can be linearized by setting conditions, and it
is possible to cancel two different operations. From its step function, we find
several properties that enable us to make the related techniques work for more
steps. Finally we find the independent chunks that can be applied for a preimage
attack on Tiger reduced to 23 out of 24 steps.



Organization of the paper. Section 2 describes the specification of Tiger. Sec-
tion 3 introduces the meet-in-the-middle preimage attack procedure on Tiger.
Section 4 shows our independent chunks feasible up to 23 steps. Section 5 illus-
trates the preimage attack procedure. Section 6 gives a conclusion.

2 Specification of Tiger

An input message M of Tiger will be padded and then divided into 512-bit
message blocks {M0,M1, . . . , Ml−1}. The padding rule is simple: first add a
single ‘1’, then add a minimum number of ‘0’s to make the bit length become
448 modulo 512, and finally add the bit length of the original M to the last 64
bits. Message blocks will be fed into tiger sequentially from M0 until Ml−1 as
follows:

hi+1 ← tiger(hi,Mi), for i = 0, 1, . . . , l − 1,

where h0 is a public constant and each hi from {h0, . . . , hl} has 192 bits. hl is
the hash digest of M .

Specification of tiger. The inputs hi and Mi are divided into 64-bit variables,
denoted as (A0, B0, C0) and (X0, X1, . . . , X7) respectively. Correspondingly ad-
dition, subtraction, and multiplication are carried out with modulo 264. Here-
after we will omit the description “modulo 264” for simplicity. tiger consists of
24 step functions, regrouped into three 8-step passes. The step function at step
t (1 ≤ t ≤ 24) is as follows, which is also shown in Fig. 1:

At = (Bt−1 + odd(Ct−1 ⊕Xt−1))× st−1,

Bt = Ct−1 ⊕Xt−1,

Ct = At−1 − even(Ct−1 ⊕Xt−1),

where st−1 is a constant, even(·) and odd(·) are two non-linear functions based on
S-boxes, and Xt−1 (9 ≤ t ≤ 24) is derived from {X0, X1, . . . , X7}. The constant
st−1 differs for each pass, which is 5, 7, and 9 for the first, second, and third
passes respectively. Details of even(·) and odd(·) are as follows:

even(C) = T0(c[0])⊕ T1(c[2])⊕ T2(c[4])⊕ T3(c[6]),
odd(C) = T3(c[1])⊕ T2(c[3])⊕ T1(c[5])⊕ T0(c[7]),

where each T from {T0, T1, T2, T3} is a S-box mapping 8-bit values to 64-bit
values, and the input C is divided to 8 bytes (c7, c6, · · · , c0) with c7 as the most
significant byte and c0 as the least significant byte.

The variables of {X8, . . . , X23} are derived from {X0, . . . , X7} by computing
a Key Schedule Function (KSF ):

(X8, . . . , X15) = KSF (X0, . . . , X7),
(X16, . . . , X23) = KSF (X8, . . . , X15).



Fig. 1. Step function

Here we will pick (X8, · · · , X15) as an example to describe the details of KSF .

Y0 = X0 −X7 ⊕ const1,

Y1 = X1 ⊕ Y0,

Y2 = X2 + Y1,

Y3 = X3 − (Y2 ⊕ ((¬Y1) ¿ 19)),
Y4 = X4 ⊕ Y3,

Y5 = X5 + Y4,

Y6 = X6 − (Y5 ⊕ ((¬Y4) À 23)),
Y7 = X7 ⊕ Y6,

X8 = Y0 + Y7,

X9 = Y1 − (X8 ⊕ ((¬Y7) ¿ 19)),
X10 = Y2 ⊕X9,

X11 = Y3 + X10,

X12 = Y4 − (X11 ⊕ ((¬X10) À 23)),
X13 = Y5 ⊕X12,

X14 = Y6 + X13,

X15 = Y7 −X14 ⊕ const2,
where const1 and const2 are 0xA5A5A5A5A5A5A5A5 and 0x0123456789ABCDEF re-
spectively, and ¬ means bitwise complement. KSF is invertible. We will denote
by KSF−1 the inverse computation of KSF in this paper.

Finally the output hi+1 is computed as follows:

hi+1 = (A24 ⊕A0)||(B24 −B0)||(C24 + C0).

3 Meet-in-the-middle preimage attack on Tiger

This section introduces the application of a meet-in-the-middle attack procedure,
which was proposed by Aoki et al. [8], to preimage attacks on Tiger. Isobe et
al.’s preimage attack on Tiger up to 16 steps adopted this meet-in-the-middle
attack approach [3].

3.1 Notations

The notations in Table 2 are used to explain the meet-in-the-middle preimage
attack procedure. We will describe (X2

i , X4
j ) as independent words, and (X2,

X4) as independent chunks. Xt ∈ X2 sometimes is denoted as X2
t for simplicity.



Table 2. Notations for our meet-in-the-middle preimage attack

X2
i , X4

j : Two message words whose values change independently.

X2: A set of message words which change with only X2
i .

X4: A set of message words which change with only X4
j .

X4,2: A set of message words which change with both X2
i and X4

j .

X ∗: A set of message words which are fixed as constant values.

E2: Consecutive step functions with input message words from only X2
SX ∗.

E4: Consecutive step functions with input message words from only X4SX ∗.

Similarly X4
t , X4,2

t and X∗
t denote Xt ∈ X4, Xt ∈ X4,2 and Xt ∈ X ∗

respectively. During the independent computations of E2 and E4, the internal
states will be denoted as (A2, B2, C2) and (A4, B4, C4) correspondingly.

3.2 Meet-in-the-middle preimage attacks on Tiger

A preimage attack on Tiger is constructed by combining a meet-in-the-middle
pseudo-preimage attack on tiger and a meet-in-the-middle attack on Merkle-
Damg̊ard structure.

Pseudo-preimage attacks on tiger. tiger is designed following the Davies-
Meyer scheme. Recall the structure of Davies-Meyer: h′ = E(M, h) ⊕ h, where
E is a block cipher, M is a message block, h is the current intermediate hash
value, and h′ is the next intermediate hash value. More precisely, M is expanded
to X0|| · · · ||X23. Note that h′ is not calculated by h ⊕ E(M, h) in tiger. But
in this section, we regard h′ as h ⊕ E(M, h) for simplicity. The main novelty
of the pseudo-preimage attacks on tiger is dividing X0|| · · · ||X23 into suitable
independent chunks. The simplest case is X0|| · · · ||X23 −→ X4||X2, which is
also shown in Fig. 2. The high-level description of finding a pseudo-preimage (h,
M) for a given value h′ is as follows.

1. Set a random value to h, which also fixes the output of E as h′ ⊕ h.
2. For all the values of X4, calculate E4(h,X4), and store them in a table T .
3. For each value of X2, calculate E2(h⊕ h′,X2), and compare it with all the

elements in T . If it is equal to one element in T , a pseudo-preimage of h′ is
found.

4. If no pseudo-preimage is found after trying all the values of X2, change the
value of h at step 1, and repeat steps 2 − 4.

Suppose there is enough degree of freedom for the independent chunks. The
above meet-in-the-middle attack procedure only takes 296 tiger computations
and 296 memories to find a pseudo-preimage with a good probability. Moreover,
the above attack procedure can be transformed to a memoryless meet-in-the-
middle attack [9], where the complexity becomes 297 tiger computations.



Meet-in-the-middle attacks on Merkle-Damg̊ard [10]. Suppose finding a
pseudo-preimage on tiger takes 2s tiger computations. Denote by h′ the given

hash digest. First generate 2
192−s

2 pseudo-preimages of h′: {(h1,m1), . . . , (h2
192−s

2 ,

m2
192−s

2 )}, where tiger(hi,mi) = h′. Then randomly select a message m, calcu-

late tiger(h0,m), and compare it with all the values of {h1, . . . , h2
n−s

2 }. If it is
equal to hi for some i, m||mi is a preimage of h′. After 2

192+s
2 m are tried, one

preimage will be found with a good probability. The total complexity is 2
192+s

2 +1

tiger computations and 2
192−s

2 memories, which will be lower than the exhaustive
search complexity as long as s < 190.

3.3 Related techniques

The applicability of the meet-in-the-middle pseudo-preimage attack on tiger de-
pends on whether suitable independent chunks exist in X0|| · · · ||X23. The ex-
ample in Section 3.2 is the simplest case. Usually the attacker has to deal with
more complicated cases. Cryptographers have developed several techniques for
more complicated cases. Aoki et al. proposed splice-and-cut, partial-matching
and partial-fixing [8]. Sasaki et al. proposed initial-structure [11].

Splice-and-cut. This technique is based on the fact that once the value h is de-
termined, the output of E will be fixed as h′⊕h. Therefore, the first step and the
last step of E can be regarded to be consecutive. For example, the attacker ob-
tains the independent chunks as follows: X0|| · · · ||X23 −→ X4||X2||X4, which
is also shown in Fig. 3. Obviously, the procedure in Section 3.2 cannot be ap-
plied directly. However, by adopting the splice-and-cut technique, the attacker
will randomly determine the internal state IS, where X4 and X2 separate from
each other, and then compute E4 and E2 independently.

Fig. 2. Simplest meet-in-the-middle attack Fig. 3. Splice-and-cut

Fig. 4. Partial-matching and partial-fixing Fig. 5. Initial-structure



Partial-matching and partial-fixing. These two techniques are based on the
fact that the output of one step function can be partially determined with the
knowledge of only part of the input. Therefore internal states at different step
positions can be partially compared if their step distance is reasonable. For in-
stance, the attacker obtains the independent chunks as follows: X0|| · · · ||X23 −→
X4||X4,2||X2, which is also shown in Fig. 4. In such a case, during applying
the attack procedure in Section 3.2, the internal state E4(h,X4) is not at the
same step position as the internal state E2(h ⊕ h′,X2), but with a several-
step distance. By adopting the partial-matching and partial-fixing techniques,
E4(h,X4) and E2(h⊕ h′,X2) will be partially compared.

Initial-structure. We will pick an example to illustrate this technique. Suppose
the attacker obtains two independent chunks as follows: X0|| · · · ||X23 −→ X4||
X4,2||X2||X4, which is also shown in Fig. 5. By adopting the initial-structure
technique, for each value of X4, the attacker generates a corresponding IS4.
For each value of X2, the attacker generates a corresponding IS2. Moreover, for
any pair of (IS4,X4) and any pair of (IS2,X2), IS4 always matches with IS2

using X4,2. Therefore, the attacker can carry out the independent calculations
E4 and E2 using (IS4,X4) and (IS2,X2) respectively.

4 Our independent chunks

As we discussed in Section 3, one most important part of the meet-in-the-middle
pseudo-preimage attack on tiger is how to separate the message words into two
independent chunks (X2,X4), which is hard because the key schedule function
of tiger is complicated. We implemented an automated independent chunk search
program based on several properties of the key schedule function and the step
function of tiger that we found. For the details of our program, refer to the full
version of this paper [12].

This section will describe the independent chunks, which can be used to
attack 23-step tiger. The independent words are X15 and X23, which will be de-
noted as X2

15 and X4
23 respectively. The overview of the two independent chunks

is detailed in Table 3, following the notations in Table 2.

Table 3. Our independent chunks

X2
0 X2

1 X2
2 X4,2

3 X∗
4 X∗

5 X∗
6 X4,2

7

Y 4,2
0 Y 4,2

1 Y 4
2 Y ∗

3 Y ∗
4 Y ∗

5 Y ∗
6 Y 4,2

7

X∗
8 X4

9 X∗
10 X∗

11 X∗
12 X∗

13 X∗
14 X4,2

15

Y 4,2
8 Y 2

9 Y 2
10 Y 2

11 Y 2
12 Y 2

13 Y 2
14 Y 4,2

15

X2
16 X2

17 X2
18 X2

19 X2
20 X2

21 X2
22 X4,2

23



4.1 The independent chunk X 4

This section will explain the independence/dependence from X4
23 for each mes-

sage word in detail. In this section the notation X∗
i (resp. Y ∗

i ) means that Xi

(resp. Yi) is independent from X4
23. Roughly speaking, we will first regard the

message words X16, . . . , X22 as independence from X4
23, and then determine the

relation between the other message words and X4
23 backwards utilizing the prop-

erties of KSF−1.
Before explaining the details for each message word, we point out that several

conditions are set on the message words in order to make this chunk work, which
are listed in Table 4. We can only change the 19 MSBs of X4

23 in order to make
Y9 be independent from it. More details are given below.

The message words (Y8, . . . , Y15). Y10, . . . , Y14 are independent from X4
23

because they are computed by KSF−1 using X∗
17, . . . , X

∗
22.

– Y15: Y15 = X4
23 + (X∗

22 ⊕ const2)
Obviously the 19 MSBs of Y15 will change with X4

23.

– Y9: Y9 = X∗
17 + (X∗

16 ⊕ ((¬Y 4
15 ) ¿ 19))

Since only the 19 MSBs of Y15 change with X4
23 and these bits disappear

after the bit-shift operation, Y9 is independent from X4
23. This is also the

reason why we can only change the 19 MSBs of X4
23.

– Y8: Y8 = X∗
16 − Y 4

15

The 19 MSBs of Y8 will change with X4
23. Moreover, from two conditions

in Table 4: (1) X16,63−45 = 1 · · · 1; and (2) no carry occurs from bits 44 to
45 during X16 − Y15, we can get that the 19 MSBs of Y 4

8 are always the
bitwise complement of the 19 MSBs of Y 4

15 , which is denoted as Y 4
8,63−45 =

¬Y 4
15,63−45.

Table 4. The conditions on the message words

Xi,j2−j1 (resp. Yi,j2−j1) is the consecutive bits from j1 to j2 of Xi (resp. Yi).

X0,63−45 = 1 · · · 1; X1,63−45 = const1,63−45; X2,63−45 = 0 · · · 0;

Y6,63−45 = const1,63−45; Y7,44−26 = 0 · · · 0 X8,63−45 = 1 · · · 1;

X10,63−45 = 0 · · · 0; X14,63−45 = const2,63−45; Y9,63−45 = 0 · · · 0;

Y14,63−45 = const1,63−45; X16,63−45 = 1 · · · 1;

No carry occurs from bits 44 to 45 during the following computations:

X16 − Y15; Y8 + (X15 ⊕ const1); X15 + (X14 ⊕ const2);

X9 + (X8 ⊕ ((¬Y7) ¿ 19)); X8 − Y7; Y0 + (X7 ⊕ const1);

Y2 − Y1;



Hereafter we will denote all the message words, which change with X4
23, as

equations on Y 4
15,63−45.

The message words (X8, . . . , X15). X10, . . . , X14 are independent from X4
23

because they are computed by KSF−1 using Y ∗
9 , . . . , Y ∗

14.

– X15: X15 = Y 4
15 ⊕ Y ∗

14

The 19 MSBs of X15 will change with X4
23. From one condition in Ta-

ble 4: Y14,63−45 = const1,63−45, we can get that X4
15,63−45 = Y 4

15,63−45 ⊕
const1,63−45.

– X9: X9 = Y ∗
9 ⊕ Y 4

8

The 19 MSBs of X9 will change with X4
23. From one condition in Table 4:

Y9,63−45 = 0 · · · 0, we can get that X4
9,63−45 = Y 4

8,63−45 = ¬Y 4
15,63−45.

– X8: X8 = Y 4
8 + (X4

15 ⊕ const1)
Since Y8 and X15 will only change their 19 MSBs with X4

23, the 45 LSBs
of X8, namely X8,44−0, are independent from X4

23. Moreover, from one con-
dition in Table 4: no carry occurs from bits 44 to 45 during Y8 + (X15 ⊕
const1), we can get that X8,63−45 = Y 4

8,63−45 + (X4
15,63−45 ⊕ const1,63−45) =

(¬Y 4
15,63−45) + (Y 4

15,63−45 ⊕ const1,63−45 ⊕ const1,63−45) = 1 · · · 1. Note that
X8,63−45 is predetermined to be 1 · · · 1 as a condition in Table 4. Therefore
X8,63−45 does not change with X4

23. Finally we get that X8 is independent
from X4

23.

The messag words (Y0, . . . , Y7). Y3, . . . , Y6 are independent from X4
23 be-

cause they are computed by KSF−1 using X∗
10, . . . , X

∗
14.

– Y7: Y7 = X4
15 + (X∗

14 ⊕ const2)
The 19 MSBs of Y7 will change with X4

23. From two conditions in Table 4: (1)
X14,63−45 = const2,63−45; and (2) no carry occurs from bits 44 to 45 during
X15 + (X14 ⊕ const2), we can get that Y 4

7,63−45 = X4
15,63−45 = Y 4

15,63−45 ⊕
const1,63−45.

– Y2: Y2 = X∗
10 ⊕X4

9

The 19 MSBs of Y2 will change with X4
23. From one condition in Table 4:

X10,63−45 = 0 · · · 0, we can get that Y 4
2,63−45 = X4

9,63−45 = ¬Y 4
15,63−45.

– Y1: Y1 = X4
9 + (X∗

8 ⊕ ((¬Y 4
7 ) ¿ 19))

Because Y 4
7 will only change its 19 MSBs with X4

23, which disappear af-
ter the bit-shift operation, X∗

8 ⊕ ((¬Y 4
7 ) ¿ 19) is independent from X4

23.
Therefore the 19 MSBs of Y1 will change with X4

23. From three conditions
in Table 4: (1) X8,63−45 = 1 · · · 1; (2) Y7,44−26 = 0 · · · 0; and (3) no carry



occurs from bits 44 to 45 during X9 + (X8 ⊕ ((¬Y7) ¿ 19)), we can get
Y 4

1,63−45 = X4
9,63−45 = ¬Y 4

15,63−45.

– Y0: Y0 = X∗
8 − Y 4

7

The 19 MSBs of Y0 will change with X4
23. From two conditions in Table 4:

(1) X8,63−45 = 1 · · · 1; and (2) no carry occurs from bits 44 to 45 during
X8−Y7, we can get that Y 4

0,63−45 = ¬Y 4
7,63−45 = ¬(Y 4

15,63−45⊕const1,63−45).

The message words (X0, . . . , X7). X4, X5 and X6 are independent from
X4

23, because they are computed by KSF−1 using Y ∗
3 , Y ∗

4 , Y ∗
5 and Y ∗

6 .

– X7: X7 = Y 4
7 ⊕ Y ∗

6

The 19 MSBs of X7 will change with X4
23. From one condition in Table 4:

Y6,63−45 = const1,63−45, we can get that X4
7,63−45 = Y 4

7,63−45 ⊕ const1,63−45

= (Y 4
15,63−45 ⊕ const1,63−45)⊕ const1,63−45 = Y 4

15,63−45.

– X3: X3 = Y ∗
3 + (Y 4

2 ⊕ (¬Y 4
1 ) ¿ 19)

Y1 only changes its 19 MSBs with X4
23, which will disappear after the bit-shift

operation. So (¬Y 4
1 ) ¿ 19 is independent from X4

23. The 19 MSBs of X3 will
change with X4

23. Here we cannot determine the relation between X4
3,63−45

and Y 4
15,63−45, but it is actually not necessary for this chunk. The reason is

that step 4, where X3 is used, will be skipped by the partial-matching and
partial-fixing techniques. More details are shown in Section 5.3.

– X2: X2 = Y 4
2 − Y 4

1

Since Y2 and Y1 will only change their 19 MSBs with X4
23, the 45 LSBs

of X2, namely X2,44−0, will be independent from X4
23. From one condition

in Table 4: no carry occurs from bits 44 to 45 during Y2 − Y1, we can get
that X2,63−45 = Y 4

2,63−45 − Y 4
1,63−45 = (¬Y 4

15,63−45) − (¬Y 4
15,63−45) = 0 · · · 0.

Note that X2,63−45 is predetermined to be 0 · · · 0 as a condition in Table 4.
X2,63−45 does not change with X4

23. Therefore X2 is independent from X4
23.

– X1: X1 = Y 4
1 ⊕ Y 4

0

Similarly the 45 LSBs of X1, namely X1,44−0, are independent from X4
23.

X1,63−45 = Y 4
1,63−45⊕Y 4

0,63−45 = (¬Y 4
15,63−45)⊕(¬(Y 4

15,63−45⊕const1,63−45)) =
const1,63−45. Note that X1,63−45 is predetermined to be const1,63−45 as a
condition in Table 4, so X1,63−45 does not change with X4

23. Therefore X1 is
independent from X4

23.

– X0: X0 = Y 4
0 + (X4

7 ⊕ const1)
Similarly X0,44−0 is independent from X4

23. From one condition in Table 4:
no carry occurs from bits 44 to 45 during Y0 + (X7 ⊕ const1), we can
get that X0,63−45 = Y 4

0,63−45 + (X4
7,63−45 ⊕ const1,63−45)= (¬(Y 4

15,63−45 ⊕



const1,63−45)) + (Y 4
15,63−45 ⊕ const1,63−45) = 1 · · · 1. Note that X0,63−45 is

predetermined to be 1 · · · 1 as a condition in Table 4, so X0,63−45 is also
independent from X4

23. Therefore X0 is independent from X4
23.

4.2 The independent chunk X 2

This section will explain the independence/dependence from X2
15 for each mes-

sage word in detail. In this section, the notations X∗
i (resp. Y ∗

i ) means that
Xi (resp. Yi) is independent from X2

15. Roughly speaking, we will first define
the message words X8, . . . , X14 are independent from X2

15, and then determine
the relation between the other message words and X2

15 backwards and forwards
utilizing the properties of KSF−1 and KSF respectively.

We point out that the independence/dependence of the other message words
from X2

15 is determined just following the specifications of KSF and KSF−1.
We only need to pay attention to make sure that this chunk does not influence
the bit positions, where the conditions in Table 4 are set, in order to guarantee
the two chunks are really independent. Note that all the conditions in Table 4
locate at upper bits. We decide to change several lower bits of X2

15 in order to
avoid bit overlap at some message word. Finally we will change bits 19 − 9 of
X2

15, namely X15,19−9. 3 Moreover, in order to clearly make sure that this chunk
will not influence the conditions in Table 4, we set several conditions on the
message words to control bit-carry propagations, which are listed in Table 5.

Table 5. Conditions on message words to control carry propagation

X7,22 = const1,22 Y0,22 = 0; Y1,41 = 0; Y2,41 = 1; Y7,21 = 0; X8,20 = 1;

X8,21 = 1; X8,40 = 1; X9,40 = 0 X10,21 = 0; X11,40 = 1; X13,41 = 0;

X14,20 = const2,20; X14,42 = 1; X15,20 = 0; Y8,43 = 0; Y9,21 = 0; Y10,40 = 1;

Y12,41 = 0; Y13,42 = 0; Y15,43 = 0;

In the following discussion, we will mainly pay attention to which bit positions
of the message words will change with X2

15.

The message words (Y0, . . . , Y7). Y2, . . . , Y6 will not change with X2
15 since

they are computed by KSF−1 using X∗
9 , . . . , X∗

14.

– Y7: Y7 = X2
15 + (X∗

14 ⊕ const2)
From two conditions in Table 5: X15,20 = 0 and X14,20 = const2,20, no carry
will occur from bits 20 to 21 no matter how X15 change its bits 19 − 9.
Therefore, only Y7,20−9 will change with X2

15.

3 The reason why we choose 11 lower bits is because of our attack procedure in Section
5.4.



– Y1: Y1 = X∗
9 + (X∗

8 ⊕ ((¬Y 2
7 ) ¿ 19))

From two conditions in Table 5: X8,40 = 1 and Y7,21 = 0, bit 40 of X∗
8 ⊕

((¬Y 2
7 ) ¿ 19) is 0. From another condition in Table 5: X9,40 = 0, no carry

will occur from bits 40 to 41 during Y 2
7 changes. Therefore, only Y1,40−28

will change with X2
15.

– Y0: Y0 = X∗
8 − Y 2

7

From two conditions in Table 5: X8,21 = 1 and Y7,21 = 0, no carry will
happen from bits 21 to 22 during Y 2

7 changes. Therefore, only Y0,21−9 will
change with X2

15.

The message words (X0, . . . , X7). X4, X5 and X6 will not change with X2
15

because they are computed by KSF−1 using Y ∗
3 , Y ∗

4 , Y ∗
5 and Y ∗

6 .

– X7: X7 = Y 2
7 ⊕ Y ∗

6

X7,20−9 will change with X2
15.

– X3: X3 = Y ∗
3 + (Y ∗

2 ⊕ ((¬Y 2
1 ) ¿ 19))

Since no condition has been set on X3 in Table 4, we do not need to pay
attention to which bit positions of X3 will change with X2

15, but only the
fact that it will change with X2

15.

– X2: X2 = Y ∗
2 − Y 2

1

From two conditions in Table 5: Y1,41 = 0 and Y2,41 = 1, no carry will occur
from bits 41 to 42 during Y 2

1 changes. Therefore X2,41−28 will change with
X2

15.

– X1: X1 = Y 2
1 ⊕ Y 2

0

X1,40−9 will change with X2
15.

– X0: X0 = Y 2
0 + (X2

7 ⊕ const1)
From two conditions in Table 5: Y0,22 = 0 and X7,22 = const1,22, no carry
will occur from bits 22 to 23 during Y 2

0 and X2
7 change. Therefore X0,22−9

will change with X2
15.

The message words (Y8, . . . , Y15).

– Y8: Y8 = X∗
8 − (X2

15 ⊕ const1)
From two conditions in Table 5: X8,20 = 1 and X15,20 = 0 (const1,20 = 0),
no carry will occur from bits 20 to 21 during X2

15 changes. So Y8,20−9 will
change with X2

15.

– Y9: Y9 = X∗
9 ⊕ Y 2

8

Y9,20−9 will change with X2
15.



– Y10: Y10 = X∗
10 + Y 2

9

From two conditions in Table 5: X10,21 = 0 and Y9,21 = 0, no carry will
occur from bits 21 to 22 during Y 2

9 changes. So Y10,21−9 will change with
X2

15.

– Y11: Y11 = X∗
11 − (((¬Y 2

9 ) ¿ 19)⊕ Y 2
10)

From two conditions in Table 5: Y9,21 = 0 and Y10,40 = 1, bit 40 of ((¬Y 2
9 ) ¿

19)⊕ Y 2
10 is 0. From another condition in Table 5: X11,40 = 1, no carry will

occur from bits 40 to 41 during Y 2
9 and Y 2

10 change. Therefore Y11,40−9, will
change with X2

15.

– Y12: Y12 = X∗
12 ⊕ Y 2

11

Y12,40−9 will change with X2
15.

– Y13: Y13 = X∗
13 + Y 2

12

From two conditions in Table 5: X13,41 = 0 and Y12,41 = 0, no carry will
occur from bits 41 to 42 during Y 2

12 changes. So Y13,41−9 will change with
X2

15.

– Y14: Y14 = X∗
14 − (Y 2

13 ⊕ ((¬Y 2
12) À 23))

From one condition in Table 5: Y13,42 = 0, bit 42 of Y 2
13 ⊕ ((¬Y 2

12) À 23) is
0. From another condition in Table 5: X14,42 = 1, no carry will occur from
bits 42 to 43 during Y 2

12 and Y 2
13 change. Therefore Y14,42−0 will change with

X2
15.

– Y15: Y15 = X2
15 ⊕ Y 2

14

Y15,42−0 will change with X2
15.

The message words (X16, . . . , X23). We do not need to pay attention to
which bit positions of the message words X17, . . . , X23 will change with X2

15, but
only the fact that these message words will change with X2

15.

– X16: X16 = Y 2
8 + Y 2

15

From two conditions in Table 5: Y8,43 = 0 and Y15,43 = 0, no carry will occur
from bits 43 to 44 during Y 2

8 and Y 2
15 change. Therefore X16,43−0 will change

with X2
15.

4.3 Summary of our independent chunks

We will first find a message block that can satisfy all the conditions in Tables
4 and 5. Then we will change the 19 MSBs of X4

23 and bits 19 − 9 of X2
15

independently to apply a pseudo-preimage attack on tiger.

5 Preimage attack on 23-step Tiger

This section will propose a pseudo-preimage attack on tiger up to 23 steps, which
will be converted to a preimage attack on 23-step Tiger. The overview of the



attack has been shown in Table 6. The attack target is the first 23 steps. Hence,
X23 is erased from Table 6.

Table 6. Overview of our pseudo-preimage attack on tiger

X2
0 X2

1 X2
2 X4,2

3 X∗
4 X∗

5 X∗
6 X4,2

7

−→ −→ −→ | partial-matching

X∗
8 X4

9 X∗
10 X∗

11 X∗
12 X∗

13 X∗
14 X4,2

15

| ←− ←− E4 calculations ←− | initial-

for X4 chunk structure

X2
16 X2

17 X2
18 X2

19 X2
20 X2

21 X2
22

| −→ E2 calculations −→ −→
for X2 chunk

5.1 Precomputation

Before starting the pseudo-preimage attack on tiger, we need to find a message
block X0|| · · · ||X7, which can satisfy all the conditions in Tables 4 and 5. The
total number of the conditions in these two tables is 237. But the complexity of
searching such a message block will be greatly reduced by the message modifi-
cation technique. Moreover, we stress that the precomputation will be executed
only once during the pseudo-preimage attack on tiger. The search procedure is
as follows.

1. Randomly choose a message block and modify X0, X1, X2 and X7 to satisfy
the conditions on them.

2. Modify Y0 to satisfy the condition Y0,22 = 0, and then inversely calculate
X0 without changing the other message words. Due to the long bit distance
from bits 22 to 45, the conditions on X0 will not be influenced with an
overwhelming probability.

3. Similarly make the conditions on Y1 and Y2 be satisfied by modifying X1,
X2 and X3.

4. Modify Y6 to satisfy the conditions, and then inversely compute X6.
5. Make the conditions on Y7 be satisfied by modifying Y6 and X6.
6. Note that the conditions on X8 in Table 4 will be automatically satisfied if

both X0 and Y6 satisfy the conditions on them.
7. The remaining conditions will be satisfied by the exhaustive search.

In total there are 115 conditions, which will be satisfied by the exhaustive
search at step 7. Although more conditions can be satisfied by applying message
modification, we will not discuss more about the precomputation due to limited
space and the fact 2115 ¿ 2192.



5.2 Apply the initial-structure technique at step 16

We will illustrate how the initial-structure technique works at step 16 of tiger,
which is also shown in Fig. 6. Recall that the 19 MSBs of X15 will change with
the X4 chunk, its bits 19− 9 will change with the X2 chunk, and the other bits
wll be constant. Let the 19 MSBs, the 20 LSBs and the intermediate 25 bits of
X4,2

15 be X4
15, X2

15 and α respectively. Then X4,2
15 is written as (X4

15||0(45)) ⊕
(0(19)||α||X2

15), where 0(b) represents b-bit sequential ‘0’s. We can analyze the
impact to step 16 from X4 and from X2 independently.

We first fix the constant numbers const, const′, and const′′ marked in Fig.
6 to randomly chosen values. Then, every time we obtain the value of X4

15, we
compute

(A415, B
4
15, C

4
15) ← (const, const′, (const′′ ⊕ (X4

15‖0(45)))).

Similarly, every time we obtain the value of X2
15, we compute

temp ← const′′ ⊕ (0(19)‖α‖X2
15),

(A2
16, B

2
16, C

2
16) ← ((const′ + odd(temp))× 7, temp, const− even(temp)).

Finally, we can compute (A415, B
4
15, C

4
15) and (A2

16, B
2
16, C

2
16) independently even

though X15 are affected by both chunks.

Fig. 6. Initial-structure at step 16

5.3 Apply the partial-matching and partial-fixing techniques at
steps 8−4

We will illustrate how to partially compare (A2
3 , B2

3 , C2
3 ) with (A48 , B4

8 , C48 )
using the partial-matching and partial-fixing techniques, which is also shown



Fig. 7. Partial-matching and partial-fixing for steps 8-4

in Fig. 7. The main idea is that for both E4 and E2, the value of A5 will be
partially computed. With this idea, we can compare the 45 LSBs of A2

5 and of
A45 .

– For the E2 computation, since only the 19 MSBs of X3 change with X4,
bits 44 − 0 of X4,2

3 are known. At step 4, we compute bits 44 − 0 of B2
4 .

Then we guess byte 6 of X3⊕C3, namely bits 55− 48, and compute C2
4 . At

step 5, we compute bits 44− 0 of A2
5 .

– For the E4 computation, we can compute A45 easily from step 8.

5.4 Pseudo-preimage attack on tiger

1. Generate a message block satisfying all the conditions in Tables 4 and 5. The
details have been shown in Section 5.1.

2. Set const, const′ and const′′ in Fig. 6 to random values.
3. For all the values of the 19 MSBs of X4

23,
(a) Compute the value of all Xi ∈ X4 and partial value of all Xi ∈ X4,2,

namely, all bits of X4
9 and partially-known bits of X4,2

15 , X4,2
7 and

X4,2
3 . Then, compute the corresponding IS4, that is (A415, B

4
15, C

4
15).

The details have been explained in Section 5.2.
(b) From (A415, B

4
15, C

4
15) and X14, X13, . . . , X8, compute E4 to obtain the

value of (A48 , B4
8 , C48 ).

(c) By following the backward computation of the partial-matching and
partial-fixing techniques explained in Section 5.3, compute the values
of A45 .

(d) Store (X4, A45 , A48 , B4
8 , C48 ) in a table T .



4. For all the values of bits 19− 9 of X2
15,

(a) Compute the value of all Xi ∈ X2 and partial value of all Xi ∈ X4,2,
namely, all bits of X2

16, X
2
17, . . . , X

2
22, X

2
0 , X2

1 , X2
2 and partially-known

bits of X4,2
3 , X4,2

7 , and X4,2
15 . Then, compute the corresponding IS2,

that is (A2
16, B

2
16, C

2
16). The details have been explained in Section 5.2.

(b) From (A2
16, B

2
16, C

2
16) and X16, X17, . . . , X22, X0, X1, X2, compute E2 to

obtain the value of (A2
3 , B2

3 , C2
3 ).

(c) At Step 4, we know all bits of (A2
3 , B2

3 , C2
3 ) and the 45 LSBs of X4,2

3 .
We compute the 45 LSBs of B4 by C2

3 ⊕X4,2
3 . Then, we exhaustively

guess byte 6 of X4,2
3 , which are 8 bits (bits 48−55) of X4,2

3 . Based on
each guessed value, we compute even(·) function and obtain all bits of
C2

4 .
(d) At Step 5, we compute the 45 LSBs of A2

5 by using the 45 LSBs of B2
4

and all bits of C2
4 .

(e) Check whether or not the obtained bit-values of A2
5 will match one A45

in T .
(f) If it matches, recover the value of X4,2

3 . Then, obtain the values of
(A2

8 , B2
8 , C2

8 ) by updating (A2
3 , B2

3 , C2
3 ) with recovered X3 and already

fixed X4, X5, . . . , X7, and check whether or not the remaining 147 bits
match or not.

(g) If all bits match, the corresponding M and A0, B0, C0 is a valid pseudo-
preimage with a probability 2−8 (the success probability of guess at Step
4c). If a matched pair does not exist for all the degree of freedom, we
will change the value at step 2, and repeats steps 3 and 4.

5.5 The complexity of our pseudo-preimage attack on tiger

We regard one tiger computation as a unit.

Step 1. The complexity is 2115. This step will be executed only once. Since
2115 ¿ 2192, we will ignore the complexity of step 1.

Step 2. Negligible.
Step 3a. The complexity is 219 computations of KSF .
Step 3b. The complexity is 219 × 7

23 .
Step 3c. The complexity is 219 × 3

23 .
Step 3d. The memory requirements is 222 message words. (X4 consists of 4

words X4
9 , X4,2

15 , X4,2
7 , X4,2

3 ).
Step 4a. The complexity is 211 computations of KSF .
Step 4b. The complexity is 211 × 10

23 .
Step 4c. The complexity is 219 × 1

23 .
Step 4d. The complexity is 219 × 1

23 .
Step 4e. Negligible.

With the complexity less than 219, we can compare 238 pairs and will find 2−7

pairs that match the 45 LSBs. Note that each guess at Step 4c has a success
probability 2−8. Therefore, by repeating the steps 2−4 of the above procedure



2162(= 2192−45+7+8) times, we expect to obtain a pseudo-preimage. Finally the
complexity of finding a pseudo-preimage for Tiger compression function is 2181(=
219 · 2162). The dominant memory use is 222 words at Step 3d.

5.6 Preimage attack on Tiger

Our pseudo-preimage attack on tiger can be converted to a preimage attack
on Tiger adopting the meet-in-the-middle attack on Merkle-Damg̊ard structure
detailed in Section 3.2. The complexity is 2187.5 and the memory requirement is
222 words. Note that we have to fix bit 56 of X6 to be ‘1’ and the 9 LSBs of X7

to be binary-encoding of 447 in order to make the bit length matched.

6 Open discussion and conclusion

Compared with the MD4-family, Tiger uses a stronger key schedule function, a
stronger step function, but a smaller number of steps. However, based on our
analyses, we found several properties of both the key schedule function and the
step function, which can be used for the preimage attack.

For the key schedule function, we found the following properties.
– Bit-shift is easily used to introduce independence of computations.
– The large word size is suitable to make upper and lower bits independent

with respect to carry.
– Mixing the use of addition, subtraction and XOR does not introduce

enough non-linearity. They can be linearized by setting conditions.
For the step function, we found the following properties.

– Even though the whole internal state is updated at each step function, a
part of internal state (At, Bt) are updated by using independent values
(only even bytes and only odd bytes of Ct−1 ⊕Xt−1).

– Tiger’s S-boxes are so-called target heavy, which map 8-bit values to
64-bit values. This enables us to obtain the knowledge of a large number
of bits by only guessing the values of a small number of bits, and later
efficiently find out the correct guesses by matching the large bits.

So far, we have not found a preimage attack on full-step Tiger yet.4 However, by
considering the future attack improvement, the number of steps seems a little
bit small with respect to the preimage resistance. For the confidence of security,
we suggest that the number of steps should be increased.

Conclusion

This paper presented a meet-in-the-middle pseudo-preimage attack on tiger up
to 23 steps with a complexity of 2181. This was converted to a preimage attack
on 23-step Tiger with a complexity of 2187.5. The memory requirement of our
attacks is 222 words.
4 We notice that recently Guo et al. announced that they found a preimage attack on

full-step Tiger [13].
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