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Abstract. Knudsen and Preneel (Asiacrypt’96 and Crypto’97) intro-
duced a hash function design in which a linear error-correcting code is
used to build a wide-pipe compression function from underlying block-
ciphers operating in Davies-Meyer mode. In this paper, we (re)analyse
the preimage resistance of the Knudsen-Preneel compression functions
in the setting of public random functions.
We give a new non-adaptive preimage attack, beating the one given by
Knudsen and Preneel, that is optimal in terms of query complexity. More-
over, our new attack falsifies their (conjectured) preimage resistance se-
curity bound and shows that intuitive bounds based on the number of
‘active’ components can be treacherous.
Complementing our attack is a formal analysis of the query complexity
(both lower and upper bounds) of preimage-finding attacks. This analysis
shows that for many concrete codes the time complexity of our attack is
optimal.

1 Introduction

Cryptographic hash functions remain one of the most used cryptographic prim-
itives, and the design of provably secure hash functions (relative to various se-
curity notions) is an active area of research. From an appropriate perspective,
most hash function designs can be viewed as the Merkle-Damg̊ard iteration of
a blockcipher-based compression function (where a single permutation can be
regarded as a degenerate or fixed key blockcipher).

The classical PGV blockcipher-based compression functions [16] have an out-
put size matching the blocksize n of the underlying blockcipher. Yet even for the
optimally secure ones [1, 23], the (time) complexity of collision- and preimage-
finding attacks is at most 2n/2, resp. 2n; when n = 128 (e.g. AES) the resulting
bounds have been deemed unacceptable for current practice.
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This mismatch between desired output sizes for blockciphers versus hash
functions has been recognized early on (dating back to Yuval [27]), and blockcipher-
based compression functions that output more than n bits have been put forth.
This output expansion is typically achieved by calling the blockcipher multiple
times and then combining the resulting blockcipher outputs in some clever way.
In the 1990s many so-called double-length constructions (where 2n bits are out-
put) were put forth, but large classes of these were subsequently broken. Only
recently have a few double-length constructions been supported by formal se-
curity proofs; see e.g. [5, 6, 7, 13, 15] for an overview. In any case, the standard
approach in designing wider-output compression functions has been to fix a tar-
get output size (and often a target number of blockcipher calls as well) and then
to build a compression function that is optimally collision-resistant for that size.

In three papers [8,9,10], Knudsen and Preneel adopted a different approach,
namely to let the output size and (relatedly) the number of blockcipher calls vary
as needed in order to guarantee a particular security target. Specifically, given
r independent ideal compression functions f1, . . . , fr, each mapping cn-bits to n
bits, they create a new ‘bigger’ compression function outputting rn bits.3

The f1, . . . , fr are run in parallel, and each of their inputs is some linear
combination of the blocks of message and chaining variable that are to be pro-
cessed; the rn-bit output of their construction is the concatenation of the out-
puts of these parallel calls. The elegance of the KP construction is in how the
inputs to f1, . . . , fr are computed. They use the generator matrix of an [r, k, d]
error-correcting code over F2c to determine how the ck input blocks of the ‘big’
compression function are xor’ed together to form the inputs to the underlying r
functions. (In a generalization they consider the fi as mapping from bcn′ to bn′

bits instead and use a code over F2bc .)
Under a broad—but prima facie not unreasonable—assumption related to

the complexity of finding collisions in parallel compression functions, Knudsen
and Preneel show that any attack needs time at least 2(d−1)n/2 to find a colli-
sion in their construction. Thus for a code with minimum distance d = 3, one
obtains a 2n collision-resistance bound. For preimage resistance, Knudsen and
Preneel conjecture that attacks will require at least 2(d−1)n time. They also give
preimage- and collision-finding attacks that, curiously, are mostly independent
of the minimum distance. For preimage resistance the attacks of Knudsen and
Preneel meet their conjectured bound (at least for MDS codes). For collision
resistance the story is different, as for many of the codes they consider there
is a considerable gap between the actual complexity of their attacks and their
2(d−1)n/2 bound. Watanabe [25] has subsequently shown a collision attack that
is more efficient than Knudsen and Preneel’s attack for many of their parameter
sets. He was even able to show that the collision resistance lower bound given
by Knudsen and Preneel is wrong for certain parameters (e.g. for 3 < d ≤ k).

3 Note that Knudsen and Preneel also propose to instantiate the underlying ideal
compression functions with a blockcipher run in Davies-Meyer mode and to iterate
the compression function to obtain a full blockcipher-based hash function. See the
full version for details.
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Table 1. Knudsen-Preneel constructions (cf. [10, Table V]) based on 2n-to-n bit
primitive (PuRF or single-key blockcipher). Non-MDS parameters in italic.

Preimage Resistance
Code sn+mn→ sn Query Our Attack KP-Conj. KP-Attack

Complexity Time Time Time

[r, k, d]2e 2kn→ rn 2rn/k Sec. 5 2(d−1)n Thm. 1

[5, 3, 3]4 (5 + 1)n→ 5n 25n/3 25n/3 22n 22n

[8 , 5 , 3 ]4 (8 + 2)n→ 8n 28n/5 28n/5 22n 23n

[12 , 9 , 3 ]4 (12 + 6)n→ 12n 24n/3 24n/3 22n 23n

[9 , 5 , 4 ]4 (9 + 1)n→ 9n 29n/5 211n/5 23n 24n

[16 , 12 , 4 ]4 (16 + 8)n→ 16n 24n/3 27n/3 23n 24n

[6, 4, 3]16 (6 + 2)n→ 6n 23n/2 23n/2 22n 22n

[8, 6, 3]16 (8 + 4)n→ 8n 24n/3 24n/3 22n 22n

[12, 10, 3]16 (12 + 8)n→ 12n 26n/5 26n/5 22n 22n

[9, 6, 4]16 (9 + 3)n→ 9n 23n/2 22n 23n 23n

[16, 13, 4]16 (16 + 10)n→ 16n 216n/13 22n 23n 23n

Our contribution. This paper offers a new security analysis of the KP con-
struction when the underlying compression functions are modeled as public ran-
dom functions (PuRFs). In the process we also introduce a precise formalization
of the Knudsen-Preneel transform and, more generally, blockwise-linear schemes.
We directly address the conjectured preimage-resistance security by describing
an attack taking into account both query and time-complexity; we see the latter
as especially important when considering attacks. Our attacks go well below the
conjectured lower bound by Knudsen and Preneel, demonstrating its incorrect-
ness and, more generally, that intuition about security derived from the number
of active functions can be misleading.

Our main result is a new preimage attack whose time and query complexity
(ignoring the constant and logarithmic factors) is summarized4 in Tables 1 and 2.
From a practical point of view, the time complexity of our attack beats the one
given by KP in every case but two, namely when the code is [4, 2, 3]8 or [5, 2, 4]8;
in both cases we match the original attack, moreover we show that it is optimal
for the former. Startlingly, in the [12, 9, 3]4 case our preimage attack is even
faster than the collision attack proposed by Knudsen and Preneel. So in that
case we have uncovered a new collision attack as well!

Reducing the query complexity. We begin with the simple observation that
(0a ||x1) ⊕ (0a ||x2) yields a string of the form (0a ||X). More generally, any
linear combination of strings with the same pattern of fixed zero bits will yield a

4 We note that our attack is not specific to the cases c ∈ {2, 3}, it also works for
instance against the compression functions suggested by Knudsen and Preneel with
c = 5 (mimicking the MD4 and MD5 situation).
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Table 2. Knudsen-Preneel constructions (cf. [10, Table VIII]) based 3n-to-n bit
primitive (PuRF or double-key blockcipher).

Preimage Resistance
Code sn+mn→ sn Query Our Attack KP-Conj. KP-Attack

Complexity Time Time Time

[r, k, d]2e 3kn→ rn 2rn/k Sec. 5 2(d−1)n Thm. 1

[4, 2, 3]8 (4 + 2)n→ 4n 22n 22n 22n 22n

[6, 4, 3]8 (6 + 6)n→ 6n 23n/2 23n/2 22n 22n

[9, 7, 3]8 (9 + 12)n→ 9n 29n/7 29n/7 22n 22n

[5, 2, 4]8 (5 + 1)n→ 5n 25n/2 23n 23n 23n

[7, 4, 4]8 (7 + 5)n→ 7n 27n/4 29n/4 23n 23n

[10, 7, 4]8 (10 + 11)n→ 10n 210n/7 22n 23n 23n

string with the same form. By restricting the queries (to the PuRFs) to strings
with the same (blockwise) pattern, we can optimize the yield (the maximum
number of compression function evaluations an adversary can make given a par-
ticular number of queries to the oraclized, ideal objects that underlie it). This
observation allows us to reduce the query complexity of a preimage-finding at-
tack to the bare minimum and also allows the attack to be deterministic and
non-adaptive.

The results we derive here (Section 4) are relevant beyond the KP construc-
tion. In particular, they apply to all constructions in which the inputs to the
blockciphers (or PuRFs) are determined by blockwise linear combinations of
blocks of compression function input. This includes the schemes discussed by
Peyrin et al. [15] and Seurin and Peyrin [20].

Exploiting the dual code to reduce the time complexity. When mounting our
reduced-query attack against a KP construction with parameters [r, k, d]2e , the
result is r lists with partial preimages (under each of the fi respectively) and,
with high probability, a full preimage is ‘hiding’ among these lists. That is to
say, when we consider all possible combinations of partial preimages, some will
correspond to a codeword and others will not. To reduce the time complexity
we need to be able to find such a ‘codeword’ (being an actual, full preimage)
efficiently among all possibilities.

The main innovation of our attack (Section 5) is in how to find full preimages
from the lists of partial preimages. It is based on the observation that codewords
in the dual code can be used to express relations between PuRF-inputs that cor-
respond to a codeword. Using known techniques to solve the generalized birthday
problem (see e.g. [24,19,3,2]) this allows us to prune the lists and consequently
find a preimage for the compression function faster (than a naive approach or
than Knudsen and Preneel). In the full version we explore additional reductions
in the memory requirements.
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Proving optimality. A secondary result of this paper is a security proof for preim-
age resistance of the Knudsen-Preneel compression functions in the information-
theoretic model. Here (Theorem 3) we determine a lower bound on the query
complexity for a computationally unbounded adversary to successfully find preim-
ages. We give a concrete bound and, to interpret it, switch to an asymptotic as-
sessment. This shows that the query complexity of our new attack is essentially
optimal (up to a small factor).

Since the lower bounds on the query complexity serve as ‘best case’ lower
bounds for the complexity of real-world attacks, we can conclude that our new
preimage-finding attack is optimal whenever the time complexity of our attack
matches its query complexity. This happens for 9 out of the 16 schemes: for the
seven MDS schemes with d = 3, and for codes [8, 5, 3]4 and [12, 9, 3]4. For the
remaining seven schemes we leave a gap between the information-theoretic lower
bound and the real-life upper bound.

2 Preliminaries

Blockwise-linear compression functions. A compression function is a map-
ping H : {0, 1}tn → {0, 1}sn for some blocksize5 n > 0 and integer parameters
t > s > 0. For positive integers c and n, we let Func(cn, n) denote the set of all
functions mapping {0, 1}cn into {0, 1}n. A compression function is PuRF-based
if its mapping is computed by a program with oracle access to a finite number
of specified oracles f1, . . . , fr, where f1, . . . , fr

$← Func(cn, n). When a PuRF-
based compression function operates on input W , we write Hf1,...,fr (W ) for
the resulting value. Of primary interest for us will be single-layer PuRF-based
compression functions without feedforward. These call all oracles in parallel and
compute the output based only on the results of these calls; in particular, input
to the compression function is not further considered.

Most PuRF-based (and blockcipher-based) compression functions are of a
special type. Instead of arbitrary pre- and postprocessing, one finds only func-
tions that are blockwise linear. For example, consider all of the PGV hash func-
tions. An advantage of a blockwise approach is that it yields simple-looking
hash functions whose security is easily seen to be determined by the blocksize n.
Linearity allows for relatively efficient implementation via bitwise exclusive-or of
n-bit blocks. The Knudsen-Preneel construction is also blockwise linear, so let us
define formally what is a blockwise-linear single-layer PuRF-based compression
function without feedforward, an unwieldy name we shorten to blockwise-linear
scheme.

Definition 1 (Blockwise-linear scheme). Let r, c, b, t, s be positive integers
and let matrices Cpre ∈ F

rcb×tb
2 , Cpost ∈ F

sb×rb
2 be given. We define H =

BLb(Cpre,Cpost) to be a family of single-layer PuRF-based compression func-
tions Hn : {0, 1}tn → {0, 1}sn, for all positive integers n with b|n. Specifically,
5 We include the blocksize in the definition for convenience later on—it is not a ne-

cessity and only mildly restrictive.
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let n′b = n, and f1, . . . , fr ∈ Func(cn, n). Then on input W ∈ {0, 1}tn (in-
terpreted as column vector), Hn

f1...fr (W ) computes the digest Z ∈ {0, 1}sn as
follows:

1. Compute X ← (Cpre ⊗ In′) ·W ;
2. Parse X = (xi)i=1...r and for i = 1...r compute yi = fi(xi);
3. Parse (yi)i=1...r = Y and output Z = (Cpost ⊗ In′) · Y .

where ⊗ denotes the Kronecker product and In′ the identity matrix in Fn
′×n′

2 .

In the definition above we silently identified {0, 1}n with the vector space Fn2 ,
etc. The map corresponding to (Cpre ⊗ In′) will occasionally be denoted Cpre.
It will be convenient for us to write the codomain of Cpre as a direct sum, so we
identify {0, 1}rcn with

⊕r
i=1 Vi where Vi = F

cn
2 for i= 1, . . . , r. If x1 ∈ V1 and

x2 ∈ V2, then consequently x1 +x2 will be in V1⊕V2. (This extends naturally to
L1 + L2 when L1 ⊂ V1, L2 ⊂ V2.) If we want to add ‘normally’ in Fcn2 we write
x1 ⊕ x2 which conveniently corresponds to exclusive or and the result will be in
F
cn
2 as expected.

Preimage resistance. A preimage-finding adversary is an algorithm with ac-
cess to one or more oracles, and whose goal is to find a preimage of some specified
compression function output. We will consider adversaries in two scenarios: the
information-theoretic one and a more realistic concrete setting. For information-
theoretic adversaries the only resource of interest is the number of queries made
to their oracles. Otherwise, these adversaries are considered (computationally)
unbounded. In the concrete setting, on the other hand, we are interested in
the actual runtime of the algorithm (when fixing any reasonable computational
model) and, to a lesser extent, its memory consumption (and code-size6). With-
out loss of generality, in both settings adversaries are assumed not to repeat
queries to oracles nor to query an oracle outside of its specified domain.

There exist several definitions of preimage resistance, depending on the dis-
tribution of the element for which a preimage needs to be found. The strongest
notion is that preimage resistance should hold with respect to any distribution,
which can be formalized as everywhere preimage resistance [17].

Definition 2 (Everywhere preimage resistance). Let c, r, s, t > 0 be in-
teger parameters, and fix a blocksize n > 0. Let H : {0, 1}tn → {0, 1}sn be a
PuRF-based compression function taking r oracles f1, . . . , fr ∈ Func(cn, n). The
everywhere preimage-finding advantage of adversary A is defined to be

Advepre
H (A) = max

Z∈{0,1}sn

{
Pr
[
f1...fr

$← Func(cn, n), (W ′)← Af1...fr (Z) :

Z = Hf1...fr (W ′)
]}

Define Advepre
H (q) and Advepre

H (t) as the maximum advantage over all adversaries
making at most q queries to each of their oracles respectively running in time at
most t.
6 We force algorithms to read their own code so the runtime is naturally lower bounded

by the code-size.

6



Linear error correcting codes. An [r, k, d]2e linear error correcting code C is
the set of elements (codewords) in a k-dimensional subspace of Fr2e , where the
minimum distance d is defined as the minimum Hamming weight (taken over all
nonzero codewords in C). The dual code [r, r− k, d⊥]2e is the set of all elements
in the r − k-dimensional subspace orthogonal to C (with respect to the usual
inner product), and its minimum distance is denoted d⊥.

Not all parameter sets are possible, in particular r ≥ k (trivial) and the
Singleton bound puts a (crude) limit on the minimum distance d ≤ r − k + 1.
Codes matching the Singleton bound are called maximum distance separable
(MDS). The dual code of an MDS code is MDS itself as well, so d⊥ = k + 1.

An [r, k, d]2e code C can be generated by a matrix G ∈ Fk×r2e , meaning that
C = {x ·G|x ∈ Fk2e} (using row vectors throughout). Without loss of generality,
we restrict ourselves to systematic generator matrices, that is G = [Ik|P ] for
P ∈ Fk×(r−k)

2e and Ik the identity matrix in Fk×k2e .

3 The Knudsen-Preneel Hash Functions

Knudsen and Preneel [8,9] introduced a family of hash functions employing error
correcting codes. (We use the journal version [10] as our frame of reference).
Although their work was ostensibly targeted at blockcipher-based designs, the
main technical thread of their work develops a transform that extends the range
of an ‘ideal’ compression function (blockcipher-based, or not) in a manner that
delivers some target level of security. As is nowadays typical, we understand
an ideal compression function to be a PuRF. In fact, the KP transform is a
special instance of a blockwise-linear scheme (Definition 1), in which the inputs
to the PuRFs are determined by a linear code over a binary field with extension
degree e > 1, i.e. F2e , and with Cpost being the identity matrix over Frb×rb2

(corresponding to concatenating the PuRF outputs). The extension field itself is
represented as a subring of the matrix ring (of dimension equalling the extension
degree) over the base field. We formalize this by an injective ring homomorphism
ϕ : F2e → F

e×e
2 and let ϕ̄ : Fr×k2e → F

re×ke
2 be the component-wise application

of ϕ and subsequent identification of (Fe×e2 )r×k with Fre×ke2 (we will use ϕ̄ for
matrices over F2e of arbitrary dimensions).

Definition 3 (Knudsen-Preneel transform). Let [r, k, d] be a linear code
over F2e with generator matrix G ∈ Fk×r2e . Let ϕ : F2e → F

e×e
2 be an injec-

tive ring homomorphism and let b be a positive divisor of e such that ek > rb.
Then the Knudsen-Preneel compression function H = KPb([r, k, d]2e) equals
H = BLb(Cpre,Cpost) with Cpre = ϕ̄(GT ) and Cpost = Irb.

If H = KPb([r, k, d]2e), then Hn : {0, 1}kcn → {0, 1}rn with c = e/b is defined for
all n for which b divides n. Moreover, Hn is based on r PuRFs in Func(cn, n). For
use of H in an iterated hash function, note that per invocation (of H) one can
compress (ck − r) message blocks (hence ek > rb ensures actually compression
is taking place), and the rate of the compression function is ck/r − 1.
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We will concentrate on the case (b, e) ∈ {(1, 2), (2, 4), (1, 3)} and then in
particular on the 16 parameter sets given by Knudsen and Preneel. (Since b is
uniquely determined given e, we will often omit it.) For an illustrative example
of this formalism, please see Appendix A.

Knudsen and Preneel’s security claims. Knudsen and Preneel concentrate
on the collision resistance of their compression function in the complexity the-
oretic model. Under a fairly generous (but plausible) assumption, they essen-
tially7 show that if H = KPb([r, k, d]2e), then finding collisions in Hn takes time
at least 2(d−1)n/2. The intuition behind this result is fairly simple. The use of a
code of minimum distance d implies that for any pair of differing compression
function inputs W 6= W ′ there are at least d different PuRF inputs. That is, if
(xi)i=1..r and (x′i)i=1..r are the respective PuRF inputs, then there is an index
set I ⊆ {1, . . . , r} such that |I| ≥ d and for all i ∈ I it holds that xi 6= x′i.
Thus, for W and W ′ to collide, one needs to find collisions for the PuRFs fi
for all i ∈ I simultaneously. Also, as the dimension of the code is k, there exist
k PuRFs that can be attacked independently, say f1, ..., fk. Now, this is where
their assumption comes into play. Namely, finding a collision is assumed to take
2vn/2 time where v is the number of PuRFs fj , j ∈ {k+ 1, . . . , r}, whose inputs
satisfy xj 6= x′j once W 6= W ′. From the Singleton bound, one has r− k ≥ d− 1.
Hence, v ≥ d− 1.

For preimage resistance Knudsen and Preneel do not give a corresponding
theorem and assumption, yet they do conjecture it to be essentially the square
of the collision resistance, that is, they conjecture that finding a preimage will
take at least time 2(d−1)n.

Known attacks. To lowerbound the security of their construction, Knudsen and
Preneel also present two attacks, one for finding preimages [10, Proposition 3]
and one for finding collisions [10, Proposition 4]. We summarize these here, using
our formalism.

Theorem 1 (Knudsen-Preneel attacks). Let H = KPb([r, k, d]2e) be given
and consider Hn (with b dividing n). Then

1. Preimages can be found in time max(2n(r−k), k2rn/k), using as many PuRF
evaluations and requiring ek2(r−k)n/k n-bit blocks of memory;

2. Collisions can be found in time max(2n(r−k)/2, k2(r+k)n/2k), using as many
PuRF evaluations and requiring ek2(r−k)n/2k n-bit blocks of memory.

4 Information-Theoretic Considerations

Bounding the yield. In the information-theoretic setting, the yield (Defini-
tion 4) of an adversary captures the number of compression function evaluations
the adversary can make given the queries made so far. The concept has proven
very fruitful in attacking schemes [12] and proving security [20,21].
7 Their actual theorem statements [10, Theorems 3 and 4] are phrased existentially.
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Definition 4. Let Hf1,...,fr be a compression function based on (ideal) primi-
tives f1, . . . , fr. The yield of an adversary after a set of queries to f1, . . . , fr,
is the number of inputs to H for which he can compute Hf1,...,fr given the an-
swers to his queries. With yield(q) we denote the maximum expected yield given
q queries to each of the oracles f1, . . . , fr.

For an arbitrary tn-to-sn bit compression function with r underlying cn-
to-n primitives (each called once), the known lower bound on the yield [22,
Theorem 6] is yield(q) ≥ 2tn(q/2cn)r. However, for the blockwise-linear schemes
(Definition 1) it is possible to obtain a much bigger yield (being single-layer does
not help either) and in particular it is independent of the number of primitive
calls r.

Theorem 2. Let H = BLb(Cpre,Cpost) be a blockwise linear scheme with pa-
rameters c, t, s, r. Consider Hn with b dividing n. Then

yield(q) ≥ 2b
lg q
bc cbt ≈ qt/c .

Proof. Recall that t is the number of external n-bit input blocks and c the
number of internal n-bit input blocks and that all n-bit blocks are subdivided
into b n′-bit blocks. Set nq = blg q/(bc)c and X = (0n

′−nq × {0, 1}nq )bc. For
each of the bc internal input subblocks, set the first n′ − nq bits identical zero
and let the rest range over all possibilities in {0, 1}nq . All combinations of the
internal input subblocks are combined (under concatenation) to give (2nq )bc ≤ q
distinct inputs for any particular internal function. Query the fi on these inputs
(precisely corresponding to X defined above), for i = 1, . . . , r.

Consider an external input W that consists of a concatenation of subblocks
each with the first n′−nq bits set to zero. Then, due to linearity, (Cpre⊗In′) ·W
will map to a collection of PuRF-inputs all corresponding to the queries formed
above, and hence thisW will contribute to the yield. Since there are 2nqbt possible
W that adhere to the format, we get the stated lower bound on the yield.

The approximation follows by ignoring the floor and simplifying the resulting
expression. Although this can lead to slight inaccuracies, for increasing n there
will be more and more values of q for which the expression is precise (so when
q = 2αn for rational α the expression is precise infinitely often). ut

Information-theoretic attacks. Intuitively, when the yield for a tn-to-sn
compression function gets close to 2sn/2, a collision is expected (birthday bound)
and once it surpasses 2sn a collision is guaranteed (pigeon hole) and a preimage
expected. The bounds for permutation-based compression functions by Rogaway
and Steinberger [18] are based on formalizing this intuition. In the claims below
we relate what the bound on the yield implies for preimage and collision resis-
tance, assuming that the yield results in more or less uniform values. Note that
the assumption certainly does not hold in general (hence ‘presumably’), see also
the discussion below.
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Claim (Consequences for blockwise-linear schemes). Let H = BLb(Cpre,Cpost)
be a blockwise linear scheme with parameters c, t, s, r. Consider Hn with b di-
viding n.

1. If q ≥ 2scn/t then yield(q) ≥ 2sn and a collision in Hn can be found with
certainty; preimages can presumably be found with high probability.

2. If q ≥ 2scn/(2t) then yield(q) ≥ 2sn/2 and collisions in Hn can presumably
be found with high probability.

Information-theoretic security proof. The following result provides a se-
curity proof for preimage resistance of the Knudsen-Preneel compression func-
tions in the information-theoretic model. That is, we give a lower bound on the
query complexity (for a computationally unbounded adversary) of any preimage-
finding attack. This bound shows that the query complexity of our new attack
is optimal, up to a small factor. Therefore, the time complexity of our preimage
attack is optimal whenever the time complexity of our attack matches its query
complexity, and this is the case for 9 out of the 16 Knudsen-Preneel schemes.

Theorem 3. Let H = KPb([r, k, d]2e) and, for b dividing n, consider Hn based
on underlying PuRFs fi ∈ Func(cn, n) for i= 1, . . . , r with c = e/b. Then for
q ≤ 2cn queries to each of the oracles and δ ≥ 0 an arbitrary real number:

Advepre
H (q) ≤ q1+δ

2(r−k)n + p

where p = Pr
[
B[kq; 2−n] > kq(1+δ)/k

]
and B[kq; 2−n] denotes a random variable

counting the number of successes in kq independent Bernoulli trials, each with
success probability 2−n.

Proof (Sketch). Let Z = z1 || · · · || zr be the range point to be inverted. Recall
that f1, . . . , fk are the functions corresponding to the systematic part of the
[r, k, d]2e code. Without loss of generality we will restrict our attention to an
adversary A asking exactly q queries to each of its oracles and consider the
transcript of the oracle queries and responses. Necessarily, in this transcript
there is at least one tuple (x1, . . . , xk) of queries to f1, . . . , fk such that for all
i= 1, . . . , k we have fi(xi) = zi. Notice that because f1, . . . , fk correspond to the
systematic portion of the code, any tuple (x1, . . . , xk) of queries to these k PuRFs
uniquely defines a tuple of queries (xk+1, . . . , xr) to the remaining r− k PuRFs.
Thus the number of tuples (x1, . . . , xk) in the transcript such fi(xi) = zi for all
i= 1, . . . , k determines the number of tuples (xk+1, . . . , xr) that could possibly
be a (simultaneous) preimage for zk+1 || · · · || zr. Intuitively, if this number is
bounded to be sufficiently small, then the probability that A could have won
the epre game will also be small. Assuming kq(1+δ)/k as an upperbound on
the number of partial preimages for the systematic portion assures that at most
q(1+δ) tuples (by the arithmetic-geometric mean inequality) can possibly ”work”
for the non-systematic portion. So under that assumption, the probability of
finding a preimage is at most q1+δ/2(r−k)n. The bound follows. ut
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The following corollary makes the theorem more concrete. By considering a
parameter δ that provides a good balance between the first and second terms
in the bound, it follows that Ω(2rn/k) queries are necessary to win the epre
experiment. Since we already knew that O(2rn/k) queries are sufficient (under
a reasonable uniformity assumption), this gives a complete characterization (up
to increasingly small factors) of the query-complexity of finding preimages in
Knudsen-Preneel construction.

Corollary 1. Let H = KPb([r, k, d]e). Then asymptoticallly for n (with b divid-

ing n) and q ≤ g(n)
(

2n

e

)r/k
with g(n) = o(1):

Advepre
H (q) = o(1) .

Proof (Sketch). Set δ = r(k−1)−k2

r and substitute q = g(n)
(

2n

e

)r/k
in the state-

ment of Theorem 3. Substitution in the first term yields
(

1
e

)(r−k) (g(n))1+δ which
clearly vanishes whenever g does. For the second term in the bound of Theorem 3
we need to bound the tail probability of a binomial distribution. A standard
Chernoff bound and substitution of the above δ and q gives that p vanishes as
well for g(n) = o(1). ut

5 Preimage Attack against the Knudsen-Preneel
Constructions

Setting the stage. Section 4 contains a theoretical attack with a minimal num-
ber of queries. This already allows us to turn Knudsen-Preneel’s preimage attack
from an adaptive one into a non-adaptive one and reduce its query consumption.
In this section, we address reducing the time complexity as well.

Let H = KPb([r, k, d]2e) and n be given, where b|n (and bn′ = n and c = e/b
as before). Consider a non-adaptive preimage-finding adversary A against Hn,
trying to find a preimage for Z ∈ {0, 1}rn. For each i= 1, . . . , r, A will commit to
query lists Qi ⊆ Vi which, after querying, will result in a list of partial preimages
Li = {xi ∈ Qi|fi(xi) = zi}. Since fi is presumed random, we can safely assume
that Li is a set of approximately |Qi|/2n randomly drawn elements of Qi.

Finding a preimage then becomes equivalent to finding an element X in the
range of Cpre for which xi ∈ Li for all i= 1, . . . , r, or—exploiting the direct
sum viewpoint—X ∈

∑r
i=1 Li. Due to the linearity of Cpre at hand, the range-

check itself is efficient for any given X, so a naive approach would be to simply
exhaustively search

∑r
i=1 Li. This would take time |L|r.

An improvement can already be obtained by observing that, when a system-
atic matrix G is used to generate the code, any element X1..k ∈

⊕k
i=1 Vi can

uniquely (and efficiently) be extended to some X in the range of Cpre. This lies
at the heart of Knudsen and Preneel’s adaptive attack and it can be adapted to
the non-adaptive setting: for all X1..k ∈

∑k
i=1 Li compute its unique completion

X and check whether for the remaining i= k + 1, . . . , r the resulting xi ∈ Li.
This reduces the time-complexity to |L|k.

11



Organization. Still, we can do better. For concreteness, Section 5.1 provides
a concrete warm-up example of our attack to the compression function H =
KP([5, 3, 3]4). Section 5.2 builds on this and contains the core idea of how to
reduce the time complexity of this new non-adaptive attack, as well as its ap-
plication against compression functions based on MDS codes. The slightly more
complicated non-MDS case is discussed in Section 5.3.

5.1 Example: Preimages in KP([5, 3, 3])4 in O(25n/3) Time

Before describing our preimage attack in its full generality, we present an example
of it applied to the compression function H = KP([5, 3, 3]4).

Claim. For the compression function H = KP([5, 3, 3]4), preimages in Hn can
be found in O(25n/3) time with a memory requirement of O(24n/3) n-bit blocks.

Proof. We refer the reader to Appendix A for the details of G, ϕ and Cpre.
Let target digest Z = z1|| . . . ||z5 be given, then our aim is to find the PuRF
inputs xi = (x1

i ||x2
i ) ∈ {0, 1}2n such that fi(xi) = zi holds for all i = 1, . . . , 5,

and X = (Cpre ⊗ In′) ·W for some compression function input W (where X is
comprised of the five xi). In this case W is a preimage for Z.

The attack starts with what we call the Query Phase. Namely, for each
i = 1, . . . , 5 and for all x1

i , x
2
i ∈ 0n/6×{0, 1}5n/6, we query fi(xi) and keep a list

Li of pairs that hit the target digest zi. As a result, a total of 25n/3 queries are
made (in 25n/3 time) per PuRF, resulting in |Li| ≈ 25n/3/2n = 22n/3 (as each
query has probability 2−n to hit its target).

Since any tuple (x1, x2, x3) ∈ L1 × . . .× L3 uniquely determines a preimage
candidate W , finding a preimage is equivalent to finding an element X ∈ L1 ×
. . . × L5 in the range of Cpre. To do this efficiently, we will first identify the
tuples (x1, x2, x3, x4) in the lists that can be complemented (not necessarily
using x5 ∈ L5) to an element in the range. From the generator matrix G it can
be seen that this complementation is possible iff x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0. (The
task is actually to determine whether a random vector y is a valid codeword;
this can easily be detected by checking y ·HT = 0 where H is the parity check
matrix of the underlying code C.) So let us define

L{1,2,3,4} = {(x1, x2, x3, x4) ∈ L1 × L2 × L3 × L4 | x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0} .

We can construct L{1,2,3,4} efficiently using a standard technique related to the
generalized birthday problem. It starts with the Merge Phase, where we create
the lists L̃{1,2} and L̃{3,4} defined by

L̃{1,2} = {((x1, x2), x1 ⊕ x2) | (x1, x2) ∈ L1 × L2} ,
L̃{3,4} = {((x3, x4), x3 ⊕ x4) | (x3, x4) ∈ L3 × L4}

both sorted on their second component. In the Join Phase we look for the
collisions in their second components. Since |Li| ≈ 22n/3, creating either L̃ takes
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about O(n24n/3) time and O(24n/3) memory. (In general, the smallest L̃ is sorted
and stored and the other is used for collision check.) Since L̃{1,2} and L̃{3,4} both
have roughly 24n/3 elements and they need to collide on 2n bits, of which n/3 bits
are set to zero, the expected number of collisions is about (24n/3)2/2(2−1/3)n =
2n = |L{1,2,3,4}|.

We now have the collision list L{1,2,3,4} and all that needs to be done is
to check, for each of its elements, whether the corresponding x5 ∈ Li. If this
is the case, then (x1, x2, x3) is a valid preimage. This final phase we call the
Finalization phase. It is clear that it cannot take much longer than it took
to create L{1,2,3,4}. Moreover, the expected number of preimages output is 1.
Note that |L{1,2,3,4}| ≈ 2n and |L5| ≈ 22n/3. Again, we need to check the corre-
spondence on 2n bits, of which n/3 are set to zero. Hence, we do expect to find
2(1+2/3)n/2(2−1/3)n = 1 preimage.

Picking up the stepwise time and memory complexities gives the desired
result. ut

5.2 Generic Attack against MDS Schemes

Our attack on the compression function KP([5, 3, 3]4) can be generalized to other
Knudsen-Preneel compression functions. Note that the attack above consists of
four steps:

1. Query phase to generate the lists of partial preimages;
2. Merge phase where two sets of lists are each merged exhaustively;
3. Join phase where collisions between the two merged lists are selected re-

sulting in fewer partial preimages that however are preimage of a larger part
of the target digest.

4. Finalization where the remaining partial preimages are filtered for being
a full preimage.

(As a slight, standard optimization trick to save some memory one could gen-
erate and store one merged list only and, when creating the second merged list
amortize with the Join and Finalization phases. Further memory optimiza-
tions are explored in the full version.)

The core observation. From a high level, our approach is simple: we first
identify an index set I ⊆ {1, . . . , r} defining a subspace

⊕
i∈I Vi for which the

range of Cpre (when restricted to this subspace), is not surjective. By (blockwise-
linear) construction, Cpre will then map to a subspace of

⊕
i∈I Vi of at most

dimension (|I| − 1)cn (over F2). As a consequence, we will be able to prune
significantly the total collection of candidate preimages in

∑
i∈I Li, keeping only

those elements that are possibly in the range of Cpre restricted to
⊕

i∈I Vi. In
the following, we will show how to efficiently find an index set I and how to
efficiently prune.

It turns out that an important parameter determining the runtime of our
preimage attack is d⊥, the minimum distance of the dual code. Let χ be the
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function that maps h ∈ Fr2e to the set of indices of non-zero entries in h. Thus,
χ(h) ⊆ {1, . . . , r} and |χ(h)| equals the Hamming weight of the codeword. If
h ∈ C⊥, then for I = χ(h) we have precisely the property that allows us to
prune

∑
i∈I Li for partial preimages. The following proposition develops the key

result for understanding our attack and the role the dual code plays in it. The
interpretation follows the proposition.

Proposition 1. Let H = KPb([r, k, d]2e) and M ∈ Fe×re/b2 be given. Suppose
that M = ϕ̄(hT ) for some h ∈ Fr2e , then for all positive integers n′ it holds that
(M ⊗ In′) · (Cpre ⊗ In′) ·W = 0 for all W ∈ {0, 1}ken′ iff h ∈ C⊥.

Proof. Let h ∈ Fr2e and W ∈ {0, 1}ken′ be given. Let M = ϕ̄(hT ) and recall that
Cpre = ϕ̄(GT ) where G is a generator of C. Then

(M ⊗ In′) · (Cpre ⊗ In′) ·W = (ϕ̄(hT )⊗ In′) · (ϕ̄(GT )⊗ In′) ·W
= ((ϕ̄(hT ) · ϕ̄(GT ))⊗ In′) ·W
= (ϕ̄((Gh)T )⊗ In′) ·W

The statement that (ϕ̄((Gh)T )⊗ In′) ·W = 0 for all W ∈ {0, 1}ken′ is equivalent
to the statement that ϕ̄((Gh)T ) = 0. Since ϕ is injective, this in turn is equivalent
to (Gh)T = 0. By definition, it holds that Gh = 0 iff h ∈ C⊥. ut

In essence, this proposition tells us that if we are given a codeword h ∈ C⊥
and an element X ∈ Frcn2 (to be input to the PuRFs), then X can only be in
the range of Cpre if (ϕ̄(hT ) ⊗ In′) · X = 0. Since the only parts of X relevant
for this check are those lining up with the nonzero entries of h, we get that
I = χ(h) is the droid we are looking for. Indeed, an element X ∈

∑
i∈χ(h) Li can

be completed to an element in the range of Cpre iff (ϕ̄(h) ⊗ In′) · (X + 0) = 0
(where we write X + 0 for embedding into the larger ⊕ri=1Vi).

Efficient creation of

Lh =

X ∈ ∑
i∈χ(h)

Li | (ϕ̄(h)⊗ In′) · (X + 0) = 0


is done adapting standard techniques [3,24,19] by splitting the codeword in two
and looking for all collisions. Suppose that h = h0 + h1 with χ(h0) ∩ χ(h1) = ∅,
and define, for j = 0, 1

L̃hj =

(Xj , (ϕ̄(hj)⊗ In′) · (Xj + 0)) | Xj ∈
∑

i∈χ(hj)

Li

 .

Then Lh consists of the elements X0 +X1 for which (X0, Y0) ∈ L̃h0 , (X1, Y1) ∈
L̃h1 , and Y0 = Y1. By sorting the two L̃ ’s the time complexity of creating Lh
is then roughly the maximum cardinality of the three sets L̃h0 , L̃h1 , and Lh
involved. It therefore clearly pays dividends to minimize the Hamming weights
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Algorithm 4 (Preimage attack against MDS-based schemes).

Input: H = KPb([r, k, d]2e), block size n with b|n and target digest
Z ∈ {0, 1}rn.

Output: A preimage W ∈ {0, 1}tn such that Hn(W ) = Z.

1. Query Phase. Define

X = ({0}
n
b
− rn

ek × {0, 1}
rn
ek )e

and, for i= 1, . . . , r let Qi = X ⊂ Vi. Query fi on all xi ∈ Qi. Keep a list
Li of all partial preimages xi ∈ Qi satisfying fi(xi) = yi.

2. First Merge Phase. Find a nonzero codeword h ∈ C⊥ of minimum
Hamming weight d⊥. Let h = h0 + h1 with χ(h0) ∩ χ(h1) = ∅ and of
Hamming weights bd⊥/2c and dd⊥/2e respectively. Create, for j = 0, 1

L̃hj =

8<:(Xj , (ϕ̄(hj)⊗ In′) · (Xj + 0)) | Xj ∈
X

i∈χ(hj)

Li

9=;
both sorted on their second component.

3. First Join Phase. Create Lh consisting exactly of those elementsX0+X1

for which (X0, Y0) ∈ L̃h0 , (X1, Y1) ∈ L̃h1 , and Y0 = Y1.

4. Finalization. For all X ∈ Lh create the unique W corresponding to it
and check whether it results in xi ∈ Li for all i= 1, . . . , r. If so, output W .

of h0 and h1, which is done by picking a codeword h ∈ C⊥ of minimum distance
d⊥ and splitting it (almost) evenly.

For an MDS code, we know that d⊥ = k + 1. As a result, if h attains this,
the map Cpre is injective when restricted to

⊕
i∈χ(h) Vi (or else the minimum

distance would be violated). Hence, we know that all possible preimages given
all the lists Li are represented by the partial preimages contained in L̃h. We can
finalize by simply checking for all elements in L̃h whether its unique completion
to X ∈

⊕r
i=1 Vi corresponds to xi ∈ Li for all i= 1, . . . , r (where checking for

i ∈ χ(h) can be omitted). The complete preimage-finding algorithm is given in
Algorithm 4.

Reinterpreting the example. Let us revisit our preimage attack example on
H = KP([5, 3, 3]4) to see how it fits within the general framework. In the example
we more or less magically came up with the relation x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0. We
can now appreciate that this constraint is really imposed by the dual codeword
h = (1 1 1 1 0). Thus our example corresponds to Algorithm 4 with χ(h0) =
{1, 2} and χ(h1) = {3, 4} (leading to a completely even division).

Note that one can also perform the attack based on other dual codewords of
minimum distance, for instance h =

(
1 w w2 0 1

)
. These two minimum distance
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dual codewords can easily be found based on the given systematic generator
matrix G = [Ik|P ] of the original code. Namely, the dual codeword in the (j−k)th

row of the corresponding generator matrix of the dual code G⊥ = [PT |Ir−k] is
used as h to check the membership for the list Lj for j > k. (In general finding
a minimum distance codeword might be more involved, but the dimensions are
sufficiently small to allow exhaustive search.)

Analysis of the preimage attack. We proceed with the analysis of the generic
preimage attack by providing the justifications of our claims and the overall time
and memory complexities. We initially maintain d⊥ in the expressions for future
use (when discussing non-MDS codes). The proof of Theorem 5 (together with
that of Theorem 7) is given in Appendix B.

Theorem 5. Let H = KPb([r, k, d]2e) be given and let d⊥ be the minimum dis-
tance of the dual code of C. Suppose C is MDS and consider the preimage attack
described in Algorithm 4 run against Hn using q = 2rn/k queries (|Qi| = 2rn/k).
Then the expected number of preimages output equals one and the expectations
for the internal list sizes are:

|Li| = 2
(r−k)n

k , |Lh| = 2
(d⊥(r−k)−r)n

k , |L̃h0 | = 2b
d⊥
2 c

(r−k)n
k , |L̃h1 | = 2d

d⊥
2 e

(r−k)n
k .

The average case time and memory complexity (expressed in the number cn-bit
blocks) of the algorithm is O(2αn) and O(2βn) respectively where (substituting
d⊥ = k + 1)

α = max
(
r

k
, dk + 1

2
e
(
r − k
k

)
, r − k − 1

)
, β = bk + 1

2
c
(
r − k
k

)
which for d = 3 simplifies to α = r

k = 1 + 2
k and β ≤ k+1

k .

In our attack, we set the number of queries as suggested by a yield-based
bound. Hence, as long as this first querying phase is dominating, we know that
our attack is optimal, as in the case for example against KP([5, 3, 3]4). When
the querying phase is not dominating (indicated by a gap between the time
complexities of our attack and the lower bounds given in Tables 1 and 2) further
improvements might be possible.

5.3 Extending the Attack to Non-MDS Constructions

For non-MDS codes we can try to mount the preimage attack given by Algo-
rithm 4, but in the Finalization we encounter a problem. Since d⊥ < k+ 1 for
non-MDS codes, the map Cpre restricted to ⊕i∈χ(h)Vi is no longer injective and
we can no longer reconstruct a unique W corresponding to some X ∈ Lh. There
are two possible fixes to this problem. One is to simply merge as yet unused
lists Li into Lh until reconstruction does become unique. We will refer to this
as Algorithm 4′.
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Algorithm 6 (Preimage attack against non-MDS-based schemes).

Input: H = KPb([r, k, d]2e), block size n with b|n and target digest
Z ∈ {0, 1}rn.

Output: A preimage W ∈ {0, 1}tn such that Hn(W ) = Z.

1. Query Phase. As in Algorithm 4.
2. First Merge Phase. As in Algorithm 4.
3. First Join Phase. As in Algorithm 4.

4. Second Merge Phase. Find a codeword h′ ∈ C⊥\F2eh of mini-
mum Hamming weight (possibly exceeding d⊥). Let h′ = h′0 + h′1 with
χ(h′0) ∩ χ(h′1) = ∅, χ(h′1) ∩ χ(h) = ∅, and of Hamming weights yet to be
determined. Create

L̃h′0 =

8<:`X0, (ϕ̄(h′0)⊗ In′) · (X0 + 0)
´
| X0 ∈ Lh +

X
i∈χ(h′0)\χ(h)

Li

9=;
L̃h′1 =

8<:`X1, (ϕ̄(h′1)⊗ In′) · (X1 + 0)
´
| X1 ∈

X
i∈χ(h′1)

Li

9=; .

5. Second Join Phase. Create Lh′ consisting exactly of those elements
X0 +X1 for which (X0, Y0) ∈ L̃h′0 , (X1, Y1) ∈ L̃h′1 , and Y0 = Y1.

6. Finalization. For all X ∈ Lh′ create the unique W corresponding to it
and check whether it results in xi ∈ Li for all i= 1, . . . , r. If so, output W .

However, a more efficient approach is to perform a second stage of merging
and joining. In Algorithm 6 we simply paste in extra Merge and Join phases in
order to maintain the low complexity. We have only included one extra merge-
join phase for non-MDS codes. For the parameters proposed by Knudsen and
Preneel, this will always suffice. For other parameters possibly extra merge-join
phases are required before full rank is achieved, we did not investigate this.

Analysis of the attack. Although the addition of one extra round of Mergeing
and Joining sounds relatively simple, the analysis of it is slightly tedious, mainly
because the first joining creates some asymmetry between the lists (that was not
present before). We note that in Theorem 7 below the value i for which T1 at-
tains its minimum really only has a choice of two, but its algebraic optimization
would not ease readability and obscure the underlying meaning. Note that for
the memory analysis, we use a modified version of the algorithm, that is memory-
optimized without aversely affecting the running time.

Because it is less clear from the theorem what the actual cardinalities will end
up being (and consequently which step will be dominating), Table 3 summarizes
the relevant quantities for the four non-MDS compression functions KP([r, k, d]4)
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Table 3. Preimage attacks on the KP compression functions based on 2n → n
PuRFs and non-MDS-codes.

Code Cardinalities related to our attack Overall Alg. 4′

[r, k, d]2e d⊥ |Qi| |L̃h0 | |L̃h1 | |Lh| max
“
|L̃h′0 |, |L̃h′1 |

”
|Lh′ | Time Memory Time

[8, 5, 3]4 4 28n/5 26n/5 26n/5 24n/5 27n/5 2n 28n/5 26n/5 22n

[12, 9, 3]4 7 24n/3 2n 24n/3 2n 24n/3 2n 24n/3 2n 22n

[9, 5, 4]4 4 29n/5 28n/5 28n/5 27n/5 211n/5 22n 211n/5 28n/5 23n

[16, 12, 4]4 11 24n/3 25n/3 22n 27n/3 27n/3 22n 27n/3 25n/3 23n

suggested by Knudsen and Preneel [10]. Only for the [9, 5, 4]4 code the second
stage dominates the overall runtime.

Theorem 7. Let [r, k, d] ∈ {[8, 5, 3], [12, 9, 3], [9, 5, 4], [16, 12, 4]} be given with a
generator matrix G for [r, k, d]4 (as given by Magma’s BKLC routine); let d⊥

be the minimum distance of the dual code of C. For H = KP([r, k, d]4) consider
the preimage attack described in Algorithm 6 run against Hn using q = 2rn/k

queries (|Qi| = 2rn/k). Then, the expected number of preimages output equals
one and the expectations for the internal list sizes are for the first merge-join
are as before (see Theorem 5) and for the second merge-join phase

max(|L̃h′0 |, |L̃h′1 |) ≤ 2T1n , min(|L̃h′0 |, |L̃h′1 |) ≤ 2T2n , |Lh′ | ≤ 2(r−k−2)n

where

T1 = min
i∈{0,...,k−d⊥+1}

(
max{ (k − d⊥ + 2− i)(r − k)

k
,

((i+ d⊥)(r − k)− r)
k

}
)

and T2 = r− k+ r
k − 2− T1. The expected time complexity of the algorithm is a

small constant multiple of

max
(
q, |L̃h1 |, |Lh|, |L̃h′0 |, |L̃h′1 |, |Lh′ |

)
requiring expected memory around max

(
|L̃h0 |,min(|L̃h′0 |, |L̃h′1 |)

)
(expressed in

the number cn-bit blocks).

Choice of code. Our attacks against the four non-MDS codes were based on
the generator matrix given by Magma’s BKLC routine. It is conceivable that
different, non-equivalent codes perform differently under our attack. Most im-
portantly, they might not have the same d⊥ which will certainly change some
of the cardinalities involved in our attack. Although this does not automatically
means the attack becomes faster or slower, it is certainly a possibility. We note
that there is a trivial bound d⊥ ≤ k (or else the code would be MDS), but in
none of the four cases we achieved this bound. Stronger bounds on d⊥ might be
possible by extending the recently developed primal-dual distance bounds [11]
to the F4 setting.
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6 Conclusion

In this paper, we provide a new security analysis of the KP construction by
directly addressing its conjectured preimage-resistance security. Firstly, we de-
scribe an attack taking into account both query and time-complexities. Our
attacks demonstrate that the conjectured lower bound by Knudsen and Pre-
neel is incorrect and exemplify that security bounds derived from the number
of active functions can be misleading. Secondly, we determine a lower bound on
the query complexity for a computationally unbounded adversary to success-
fully find preimages. This shows that the query complexity of our new attack
is essentially optimal (up to a small factor). Moreover, we can conclude that
the time complexity of our new preimage-finding attack is optimal for 9 out of
the 16 schemes. For the remaining seven schemes we leave a gap between the
information-theoretic lower bound and the real-life upper bound.

Acknowledgement. We thank the anonymous referees for their comments, in
particular pointing out the work of Watanabe [25].
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A Illustrating the KP-Transform: KP1([5, 3, 3]22)

Consider the compression function H = KP([5, 3, 3]4). This builds a 6n → 5n
compression function using five underlying PuRFs each mapping 2n → n (so
the rate is (2 · 3− 5)/5 = 1/5). The preprocessing function Cpre of H is defined
by a generator matrix G of the code [5, 3, 3]4. Using the G proposed in [10] and
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defining ϕ by (that is also the one given in [10])

ϕ(0) =
(

0 0
0 0

)
, ϕ(1) =

(
1 0
0 1

)
, ϕ(w) =

(
1 1
0 1

)
and ϕ(w2) =

(
0 1
1 1

)
.

we get

G =

1 0 0 1 1
0 1 0 1 w
0 0 1 1 w2

 and Cpre =


1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 1 1
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 0 1 1 1

 .

Therefore, given W ∈ {0, 1}6n, Hn computes the digest Z ∈ {0, 1}5n as follows:

1. Compute X ← (Cpre ⊗ In) ·W ;
2. Parse X = (xi)i=1...5 and for i = 1...5 compute yi = fi(xi);
3. Parse (yi)i=1...5 = Y and output Z = (I5⊗In)·Y , equivalently Z = y1||...||y5.

B Runtime Analysis (Proof of Theorems 5 and 7)

We will proceed step by step to prove our claims. The first three steps are
common for the MDS and non-MDS case (where for MDS codes d⊥ = k + 1).
The remaining steps are treated separately. In the complexity estimations below,
we concentrate on expected values and largely ignore (the effects of) polynomial
factors in n (e.g. due to memory access). Throughout memory is measured in
multiples of cn-bit blocks.
1. Query Phase. The time complexity of this step is simply 2rn/k PuRF eval-
uations as q = 2rn/k. Per Li we need q/2n = 2(r−k)n/k memory.
2. First Merge Phase. The main computational part of this step is the gen-
eration of the lists L̃hj for j = 0, 1. The time required for generating L̃h0 and
L̃h1 essentially equals their respective sizes, namely |Li||χ(h0)| and |Li||χ(h1)|.
We left i unspecified since all the Li should be about the same size, namely
|Li| ≈ 2(r−k)n/k. Since by construction, |χ(h0)| = bd⊥/2c and |χ(h1)| = dd⊥/2e,
the relevant cardinalities become 2(r−k)bd⊥/2cn/k and 2(r−k)dd⊥/2en/k. This is
clearly dominated by the latter.
3. First Join Phase. This step constructs Lh by finding collisions between
L̃h0 and L̃h1 in their second components. Since |L̃h0 | · |L̃h1 | ≈ 2d

⊥(r−k)n/k and
we are interested in collisions on rn/k bits, we have |Lh| ≈ 2(d⊥(r−k)−r)n/k

(which equals 2(r−k−1)n for MDS codes, given that d⊥ = k + 1). Each colliding
element can be forwarded directly to the next step eliminating a need to store
Lh. Moreover, the collision search can be performed in conjunction with step 2
storing L̃h0 and checking (and processing) collisions on the fly when generating
L̃h1 . This way the memory requirements are reduced to |L̃h0 | ≈ 2(r−k)bd⊥/2cn/k.
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4. Second Merge Phase and 5. Second Join Phase (for non-MDS codes).
For this scenario we restrict to the four codes suggested by Knudsen and Preneel.
For the (chosen) systematic generator matrices we can always find (by inspec-
tion) h, h′ ∈ C⊥ with the property that h has minimal weight, {1, . . . , k} ⊂
χ(h)∪ χ(h′) (so we reach reach full rank and can Finalize afterwards) and the
number of i ∈ χ(h′) for which i /∈ χ(h) equals k − d⊥ + 2.

As a result, the relation defined by h′ (and thus the second phase) will involve
k − d⊥ + 2 ‘fresh’ lists Li (those for which i /∈ χ(h) and i ∈ χ(h′)) with |Li| =
2(r−k)n/k, as well as Lh, for which |Lh| = 2(d⊥(r−k)−r)n/k. Hence, regardless of
the way of Mergeing and Joining there will be

2
(d⊥(r−k)−r)n

k · 2
(k−d⊥+2)(r−k)n

k = 2(r−k+ r
k−2)n

elements in total to be checked for collisions. As in the previous step, collisions
will be searched for on rn/k bits. This leads to a list Lh′ of roughly |Lh′ | =
2(r−k−2)n elements at the end of Second Join Phase.

To minimize the complexity of the merging phase, we need to find the sets
χ(h′0) and χ(h′1) such that χ(h′0)∩ χ(h′1) = ∅ and the full 2(r−k+ r

k−2)n elements
(involved in the merging) are distributed as evenly as possible without violating
the constraints imposed by the asymmetric list sizes.

Suppose |L̃h′0 | = 2αn and |L̃h′1 | = 2βn for α and β to be determined. The
condition χ(h) ∩ χ(h′1) = ∅ implies that Lh is assigned to h′0; assume that
i further fresh Li are used for h′0. This automatically means that |χ(h′1)| =
(k − d⊥ + 2− i) and furthermore that |L̃h′1 | = 2(k−d⊥+2−i)(r−k)n/k and |L̃h′0 | =
2i(r−k)n/k+(d⊥(r−k)−r)n/k, implying α = ((d⊥+ i)(r−k)−r)/k. Given a particu-
lar i, the merging time will be governed by the maximum of α and β whereas the
storage requirement is similarly the minimum of that pair. In order to optimize
the overall time complexity, we take the minimum (of the maximum just men-
tioned) over all i and denote the value by T1 and, for the value i used, denote
by T2 the corresponding ‘memory’-minimum. Note that T1 +T2 = r− k+ r

k − 2.
Collision finding can then be performed in 2T1n time with a memory requirement
of roughly 2T2n.
6. Finalization. For each element in Lh (resp. in Lh′ for non-MDS codes) we
need to perform a simple check (that we assume costs unit time and constant
memory). For MDS codes, after the First Join Phase, we have that Lh has size
roughly |Lh| = 2(r−k−1)n. For the non-MDS case, we have already shown that
|Lh′ | = 2(r−k−2)n (at least for the four non-MDS codes provided by Knudsen
and Preneel).

Picking up the obtained complexities for the various steps gives the desired
overall complexity.

ut
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