
New Features of Latin Dances:

Analysis of Salsa, ChaCha, and Rumba

Jean-Philippe Aumasson1, Simon Fischer1, Shahram Khazaei2,
Willi Meier1, and Christian Rechberger3

1 FHNW, Windisch, Switzerland
2 EPFL, Lausanne, Switzerland

3 IAIK, Graz, Austria

Abstract. The stream cipher Salsa20 was introduced by Bernstein in
2005 as a candidate in the eSTREAM project, accompanied by the re-
duced versions Salsa20/8 and Salsa20/12. ChaCha is a variant of Salsa20
aiming at bringing better diffusion for similar performance. Variants of
Salsa20 with up to 7 rounds (instead of 20) have been broken by differen-
tial cryptanalysis, while ChaCha has not been analyzed yet. We introduce
a novel method for differential cryptanalysis of Salsa20 and ChaCha, in-
spired by correlation attacks and related to the notion of neutral bits.
This is the first application of neutral bits in stream cipher cryptanaly-
sis. It allows us to break the 256-bit version of Salsa20/8, to bring faster
attacks on the 7-round variant, and to break 6- and 7-round ChaCha.
In a second part, we analyze the compression function Rumba, built as
the XOR of four Salsa20 instances and returning a 512-bit output. We
find collision and preimage attacks for two simplified variants, then we
discuss differential attacks on the original version, and exploit a high-
probability differential to reduce complexity of collision search from 2256

to 279 for 3-round Rumba. To prove the correctness of our approach we
provide examples of collisions and near-collisions on simplified versions.

1 Introduction

Salsa20 [5] is a stream cipher introduced by Bernstein in 2005 as a candidate in
the eSTREAM project [12], that has been selected in April 2007 for the third and
ultimate phase of the competition. Three independent cryptanalyses were pub-
lished [11,13,16], reporting key-recovery attacks for reduced versions with up to 7
rounds, while Salsa20 has a total of 20 rounds. Bernstein also submitted to pub-
lic evaluation the 8- and 12-round variants Salsa20/8 and Salsa20/12 [6], though
they are not formal eSTREAM candidates. Later he introduced ChaCha [3,4,8],
a variant of Salsa20 that aims at bringing faster diffusion without slowing down
encryption.

The compression function Rumba [7] was presented in 2007 in the context of
a study of generalized birthday attacks [17] applied to incremental hashing [2],
as the component of a hypothetical iterated hashing scheme. Rumba maps a
1536-bit value to a 512-bit (intermediate) digest, and Bernstein only conjectures

collision resistance for this function, letting a further convenient operating mode
provide extra security properties as pseudo-randomness.

Related Work. Variants of Salsa20 up to 7 rounds have been broken by differ-
ential cryptanalysis, exploiting a truncated differential over 3 or 4 rounds. The
knowledge of less than 256 key bits can be sufficient for observing a difference
in the state after three or four rounds, given a block of keystream of up to seven
rounds of Salsa20. In 2005, Crowley [11] reported a 3-round differential, and built
upon this an attack on Salsa20/5 within claimed 2165 trials. In 2006, Fischer et
al. [13] exploited a 4-round differential to attack Salsa20/6 within claimed 2177

trials. In 2007, Tsunoo et al. [16] attacked Salsa20/7 within about 2190 trials,
still exploiting a 4-round differential, and also claimed a break of Salsa20/8.
However, the latter attack is effectively slower than brute force, cf. §3.5. Tsunoo
et al. notably improve from previous attacks by reducing the guesses to certain
bits—rather than guessing whole key words—using nonlinear approximation of
integer addition. Eventually, no attack on ChaCha or Rumba has been published
so far.

Contribution. We introduce a novel method for attacking Salsa20 and ChaCha
(and potentially other ciphers) inspired from correlation attacks, and from the
notion of neutral bit, introduced by Biham and Chen [9] for attacking SHA-0.
More precisely, we use an empirical measure of the correlation between certain
key bits of the state and the bias observed after working a few rounds backward,
in order to split key bits into two subsets: the extremely relevant key bits to
be subjected to an exhaustive search and filtered by observations of a biased
output-difference value,and the less significant key bits ultimately determined
by exhaustive search. To the best of our knowledge, this is the first time that
neutral bits are used for the analysis of stream ciphers. Our results are summa-
rized in Tab. 1. We present the first key-recovery attack for the 256-bit version
of Salsa20/8, improve the previous attack on 7-round Salsa20 by a factor 239,
and present attacks on ChaCha up to 7 rounds. The 128-bit versions are also
investigated. In a second part, we first show collision and preimage attacks for
simplified versions of Rumba, then we present a differential analysis of the orig-
inal version using the methods of linearization and neutral bits: our main result
is a collision attack for 3-round Rumba running in about 279 trials (compared to
2256 with a birthday attack). We also give examples of near-collisions over three
and four rounds.

Table 1. Complexity of the best attacks known, with success probability 1/2.

Salsa20/7 Salsa20/8 ChaCha6 ChaCha7 Rumba3

Before 2190 2255 2255 2255 2256

Now 2151 2251 2139 2248 279

Road Map. We first recall the definitions of Salsa20, ChaCha, and Rumba in
§2, then §3 describes our attacks on Salsa20 and ChaCha, and §4 presents our
cryptanalysis of Rumba. The appendices give the sets of constant values, and
some parameters necessary to reproduce our attacks.

2 Specification of Primitives

In this section, we give a concise description of the stream ciphers Salsa20 and
ChaCha, and of the compression function Rumba.

2.1 Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as input a 256-bit key
k = (k0, k1, . . . , k7) and a 64-bit nonce v = (v0, v1), and produces a sequence of
512-bit keystream blocks. The i-th block is the output of the Salsa20 function,
that takes as input the key, the nonce, and a 64-bit counter t = (t0, t1) corre-
sponding to the integer i. This function acts on the 4× 4 matrix of 32-bit words
written as

X =

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 =

c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3

 . (1)

The ci’s are predefined constants (see Appendix A). There is also a mode for a
128-bit key k′, where the 256 key bits in the matrix are filled with k = k′‖k′. If
not mentioned otherwise, we focus on the 256-bit version. A keystream block Z
is then defined as

Z = X + X20 , (2)

where “+” symbolizes wordwise integer addition, and where Xr = Roundr(X)
with the round function Round of Salsa20. The round function is based on the fol-
lowing nonlinear operation (also called the quarterround function), which trans-
forms a vector (x0, x1, x2, x3) to (z0, z1, z2, z3) by sequentially computing

z1 = x1 ⊕
[
(x3 + x0) ≪ 7

]
z2 = x2 ⊕

[
(x0 + z1) ≪ 9

]
z3 = x3 ⊕

[
(z1 + z2) ≪ 13

]
z0 = x0 ⊕

[
(z2 + z3) ≪ 18

]
.

(3)

In odd numbers of rounds (which are called columnrounds in the original specifica-
tion of Salsa20), the nonlinear operation is applied to the columns (x0, x4, x8, x12),
(x5, x9, x13, x1), (x10, x14, x2, x6), (x15, x3, x7, x11). In even numbers of rounds
(which are also called the rowrounds), the nonlinear operation is applied to
the rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9), (x15, x12, x13, x14). We
write Salsa20/R for R-round variants, i.e. with Z = X + XR. Note that the r-
round inverse X−r = Round−r(X) is defined differently whether it inverts after
an odd or and even number of rounds.

2.2 ChaCha

ChaCha is similar to Salsa20 with the following modifications

1. The input words are placed differently in the initial matrix:

X =

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15 .

 =

c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

 . (4)

2. The nonlinear operation of Round transforms a vector (x0, x1, x2, x3) to
(z0, z1, z2, z3) by sequentially computing

b0 = x0 + x1, b3 = (x3 ⊕ b0) ≪ 16
b2 = x2 + b3, b1 = (x1 ⊕ b2) ≪ 12
z0 = b0 + b1, z3 = (b3 ⊕ z0) ≪ 8
z2 = b2 + z3, z1 = (b1 ⊕ z2) ≪ 7 .

(5)

3. The round function is defined differently: in odd numbers of rounds, the non-
linear operation is applied to the columns (x0, x4, x8, x12), (x1, x5, x9, x13),
(x2, x6, x10, x14), (x3, x7, x11, x15), and in even numbers of rounds, the non-
linear operation is applied to the diagonals (x0, x5, x10, x15), (x1, x6, x11, x12),
(x2, x7, x8, x13), (x3, x4, x9, x14), see [3] for details.

As for Salsa20, the round function of ChaCha is trivially invertible. R-round
variants are denoted ChaChaR. The core function of ChaCha suggests that “the
big advantage of ChaCha over Salsa20 is the diffusion, which at least at first
glance looks considerably faster” [4].

2.3 Rumba

Rumba is a compression function built on Salsa20, mapping a 1536-bit message
to a 512-bit value. The input M is parsed as four 384-bit chunks M0,. . . ,M3,
and Rumba’s output is

Rumba(M) = F0(M0)⊕ F1(M1)⊕ F2(M2)⊕ F3(M3)
= (X0 + X20

0)⊕ (X1 + X20
1)⊕ (X2 + X20

2)⊕ (X3 + X20
3) ,

(6)

where each Fi is an instance of the function Salsa20 with distinct diagonal con-
stants (see Appendix A). The 384-bit input chunk Mi along with the corre-
sponding 128-bit diagonal constants are then used to fill up the corresponding
input matrix Xi. A single word j of Xi is denoted xi,j . Note that the functions
Fi include the feedforward operation of Salsa20. RumbaR stands for R-round
variant.

3 Differential Analysis of Salsa20 and ChaCha

This section introduces differential attacks based on a new technique called prob-
abilistic neutral bits (shortcut PNB’s). To apply it to Salsa20 and ChaCha, we
first identify optimal choices of truncated differentials, then we describe a general
framework for probabilistic backwards computation, and introduce the notion of
PNB’s along with a method to find them. Then, we outline the overall attack,
and present concrete attacks for Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7.
Eventually, we discuss our attack scenarios and possibilities of improvements.

3.1 Choosing a Differential

Let xi be the i-th word of the matrix-state X, and x′i an associated word with the
difference ∆0

i = xi ⊕ x′i. The j-th bit of xi is denoted [xi]j . We use (truncated)
input/output differentials for the input X, with a single-bit input-difference
[∆0

i]j = 1 in the nonce, and consider a single-bit output-difference [∆r
p]q af-

ter r rounds in Xr. Such a differential is denoted ([∆r
p]q | [∆0

i]j). For a fixed key,
the bias εd of the output-difference is defined by

Pr
v,t
{[∆r

p]q = 1 | [∆0
i]j} =

1
2
(1 + εd) , (7)

where the probability holds over all nonces and counters. Furthermore, consider-
ing key as a random variable, we denote the median value of of εd by ε?

d. Hence,
for half of the keys this differential will have a bias of at least ε?

d. Note that our
statistical model considers a (uniformly) random value of the counter. In the
following, we use the shortcuts ID and OD for input- and output-difference.

3.2 Probabilistic Backwards Computation

In the following, assume that the differential ([∆r
p]q | [∆0

i]j) of bias εd is fixed,
and the corresponding outputs Z and Z ′ are observed for nonce v, counter t
and key k. Having k, v and t, one can invert the operations in Z = X + XR

and Z ′ = X ′+(X ′)R in order to access to the r-round forward differential (with
r < R) from the backward direction thanks to the relations Xr = (Z−X)r−R and
(X ′)r = (Z ′ − X ′)r−R. More specifically, define f(k, v, t, Z, Z ′) as the function
which returns the q-th LSB of the word number p of the matrix (Z−X)r−R⊕(Z ′−
X ′)r−R, hence f(k, v, t, Z, Z ′) = [∆r

p]q. Given enough output block pairs with
the presumed difference in the input, one can verify the correctness of a guessed
candidate k̂ for the key k by evaluating the bias of the function f . More precisely,
we have Pr{f(k̂, v, t, Z, Z ′) = 1} = 1

2 (1 + εd) conditioned on k̂ = k, whereas for
(almost all) k̂ 6= k we expect f be unbiased i.e. Pr{f(k̂, v, t, Z, Z ′) = 1} = 1

2 .
The classical way of finding the correct key requires exhaustive search over all
possible 2256 guesses k̂. However, we can search only over a subkey of m = 256−n
bits, provided that an approximation g of f which effectively depends on m key

bits is available. More formally, let k̄ correspond to the subkey of m bits of the
key k and let f be correlated to g with bias εa i.e.:

Pr
v,t
{f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)} =

1
2
(1 + εa) . (8)

Note that deterministic backwards computation (i.e. k̄ = k with f = g) is a
special case with εa = 1. Denote the bias of g by ε, i.e. Pr{g(k̄, v, t, Z, Z ′) =
1} = 1

2 (1 + ε). Under some reasonable independency assumptions, the equality
ε = εd · εa holds. Again, we denote ε? the median bias over all keys (we verified
in experiments that ε? can be well estimated by the median of εd ·εa). Here, one
can verify the correctness of a guessed candidate ˆ̄k for the subkey k̄ by evaluating
the bias of the function g based on the fact that we have Pr{g(ˆ̄k, v, t, Z, Z ′) =
1} = 1

2 (1 + ε) for ˆ̄k = k̄, whereas Pr{g(ˆ̄k, v, t, Z, Z ′) = 1} = 1
2 for ˆ̄k 6= k̄. This

way we are facing an exhaustive search over 2m subkey candidates opposed to
the original 2256 key candidates which can potentially lead to a faster attack.
We stress that the price which we pay is a higher data complexity, see §3.4 for
more details.

3.3 Probabilistic Neutral Bits

Our new view of the problem, described in §3.2, demands efficient ways for
finding suitable approximations g(k̄,W) of a given function f(k, W) where W
is a known parameter; in our case, it is W = (v, t, Z, Z ′). In a probabilistic
model one can consider W as a uniformly distributed random variable. Finding
such approximations in general is an interesting open problem. In this section
we introduce a generalized concept of neutral bits [9] called probabilistic neutral
bits (PNB’s). This will help us to find suitable approximations in the case that
the Boolean function f does not properly mix its input bits. Generally speaking,
PNB’s allows us to divide the key bits into two groups: significant key bits (of
size m) and non-significant key bits (of size n). In order to identify these two
sets we focus on the amount of influence which each bit of the key has on the
output of f . Here is a formal definition of a suitable measure:

Definition 1. The neutrality measure of the key bit ki with respect to the func-
tion f(k, W) is defined as γi, where Pr = 1

2 (1 + γi) is the probability (over all k
and W) that complementing the key bit ki does not change the output of f(k,W).

Singular cases of the neutrality measure are:

– γi = 1: f(k, W) does not depend on i-th key bit (i.e. it is a neutral bit).
– γi = 0: f(k, W) is statistically independent of the i-th key bit (i.e. it is a

significant bit).
– γi = −1: f(k,W) linearly depends on the i-th key bit.

In practice, we set a threshold γ and put all key bits with γi ≤ γ in the set of
significant key bits. The less significant key bits we get, the faster the attack will

be, provided that the bias εa (see Eq. 8) remains non-negligible. Having found
significant and non-significant key bits, we simply let k̄ be the significant key
bits and define g(k̄, W) as f(k,W) with non-significant key bits being set to a
fixed value (e.g. all zero). Note that, contrary to the mutual interaction between
neutral bits in [9], here we have directly combined several PNB’s without altering
their probabilistic quality. This can be justified as the bias εa smoothly decreases
while we increase the threshold γ.

Remark 1. Tsunoo et al. [16] used nonlinear approximations of integer addition
to identify the dependency of key bits, whereas the independent key bits—with
respect to nonlinear approximation of some order—are fixed. This can be seen
as a special case of our method.

3.4 Complexity Estimation

Here we sketch the full attack described in the previous subsections, then study
its computational cost. The attack is split up into a precomputation stage, and
a stage of effective attack; note that precomputation is not specific to a key or
a counter.

Precomputation
1. Find a high-probability r-round differential with ID in the nonce or counter.
2. Choose a threshold γ.
3. Construct the function f defined in §3.2.
4. Empirically estimate the neutrality measure γi of each key bit for f .
5. Put all those key bits with γi < γ in the significant key bits set (of size

m = 256− n).
6. Construct the function g using f by assigning a fixed value to the non-

significant key bits, see §3.2 and §3.3.
7. Estimate the median bias ε? by empirically measuring the bias of g using

many randomly chosen keys, see §3.2.
8. Estimate the data and time complexity of the attack, see the following.

The cost of this precomputation phase is negligible compared to the effective
attack (to be explained later). The r-round differential and the threshold γ
should be chosen such that the resulting time complexity is optimal. This will
be addressed later in this section. At step 1, we require the difference to be in the
nonce or in the counter, assuming that both variables are user-controlled inputs.
We exclude a difference in the key in a related-key attack due to the disputable
attack model. Previous attacks on Salsa20 use the rough estimate of N = ε−2

samples, in order to identify the correct subkey in a large search space. However
this estimate is incorrect: this is the number of samples necessary to identify a
single random unknown bit from either a uniform source or from a non-uniform
source with ε, which is a different problem of hypothesis testing. In our case, we
have a set of 2m sequences of random variables with 2m − 1 of them verifying
the null hypothesis H0, and a single one verifying the alternative hypothesis H1.
For a realization a of the corresponding random variable A, the decision rule
D(a) = i to accept Hi can lead to two types of errors:

1. Non-detection: D(a) = 0 and A ∈ H1. The probability of this event is pnd.
2. False alarm: D(a) = 1 and A ∈ H0. The probability of this event is pfa.

The Neyman-Pearson decision theory gives results to estimate the number of
samples N required to get some bounds on the probabilities. It can be shown
that

N ≈
(√

α log 4 + 3
√

1− ε2

ε

)2

(9)

samples suffices to achieve pnd = 1.3× 10−3 and pfa = 2−α. Calculus details and
the construction of the optimal distinguisher can be found in [15], see also [1] for
more general results on distributions’ distinguishability. In our case the value of ε
is key dependent, so we use the median bias ε? in place of ε in Eq. 9, resulting in
a success probability of at least 1

2 (1−pnd) ≈ 1
2 for our attack. Having determined

the required number of samples N and the optimal distinguisher, we can now
present the effective (or online) attack.

Effective attack
1. For an unknown key, collect N pairs of keystream blocks where each pair is

produced by states with a random nonce and counter (satisfying the relevant
ID).

2. For each choice of the subkey (i.e. the m significant key bits) do:
(a) Compute the bias of g using the N keystream block pairs.
(b) If the optimal distinguisher legitimates the subkeys candidate as a (pos-

sibly) correct one, perform an additional exhaustive search over the n
non-significant key bits in order to check the correctness of this filtered
subkey and to find the non-significant key bits.

(c) Stop if the right key is found, and output the recovered key.

Let us now discuss the time complexity of our attack. Step 2 is repeated for all
2m subkey candidates. For each subkey, step (a) is always executed which has
complexity4 of N . However, the search part of step (b) is performed only with
probability pfa = 2−α which brings an additional cost of 2n in case a subkey
passes the optimal distinguisher’s filter. Therefore the complexity of step (b) is
2npfa, showing a total complexity of 2m(N + 2npfa) = 2mN + 2256−α for the
effective attack. In practice, α (and hence N) is chosen such that it minimizes
2mN+2256−α. Note that the potential improvement from key ranking techniques
is not considered here, see e.g. [14]. The data complexity of our attack is N
keystream block pairs.

Remark 2. It is reasonable to assume that a false subkey, which is close to the
correct subkey, may introduce a non-negligible bias. In general, this results in
an increased value of pfa. If many significant key bits have neutrality measure
close to zero, then the increase is expected to be small, but the precise practical
impact of this observation is unknown to the authors.
4 More precisely the complexity is about 2(R − r)/RN times the required time for

producing one keystream block.

3.5 Experimental Results

We used automatized search to identify optimal differentials for the reduced-
round versions Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7. This search is
based on the following observation: The number n of PNB’s for some fixed
threshold γ mostly depends on the OD, but not on the ID. Consequently, for
each of the 512 single-bit OD’s, we can assign the ID with maximum bias εd, and
estimate time complexity of the attack. Below we only present the differentials
leading to the best attacks. The threshold γ is also an important parameter:
Given a fixed differential, time complexity of the attack is minimal for some
optimal value of γ. However, this optimum may be reached for quite small γ,
such that n is large and |ε?

a| small. We use at most 224 random nonces and
counters for each of the 210 random keys, so we can only measure a bias of
about |ε?

a| > c · 2−12 (where c ≈ 10 for a reasonable estimation error). In our
experiments, the optimum is not reached with these computational possibilities
(see e.g. Tab. 2), and we note that the described complexities may be improved
by choosing a smaller γ.

Attack on 256-bit Salsa20/7. We use the differential ([∆4
1]14 | [∆0

7]31) with |ε?
d| =

0.131. The OD is observed after working three rounds backward from a 7-round
keystream block. To illustrate the role of the threshold γ, we present in Tab. 2
complexity estimates along with the number n of PNB’s, the values of |ε?

d| and
|ε?|, and the optimal values of α for several threshold values. For γ = 0.4, the
attack runs in time 2151 and data 226. The previous best attack in [16] required
about 2190 trials and 212 data.

Table 2. Different parameters for our attack on 256-bit Salsa20/7.

γ n |ε?
a| |ε?| α Time Data

1.00 39 1.000 0.1310 31 2230 213

0.90 97 0.655 0.0860 88 2174 215

0.80 103 0.482 0.0634 93 2169 216

0.70 113 0.202 0.0265 101 2162 219

0.60 124 0.049 0.0064 108 2155 223

0.50 131 0.017 0.0022 112 2151 226

Attack on 256-bit Salsa20/8. We use again the differential ([∆4
1]14 | [∆0

7]31) with
|ε?

d| = 0.131. The OD is observed after working four rounds backward from an 8-
round keystream block. For the threshold γ = 0.12 we find n = 36, |ε?

a| = 0.0011,
and |ε?| = 0.00015. For α = 8, this results in time 2251 and data 231. The list of
PNB’s is {26, 27, 28, 29, 30, 31, 71, 72, 120, 121, 122, 148, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 210, 211, 212, 224, 225, 242, 243, 244,
245, 246, 247}. Note that our attack reaches the same success probability and
supports an identical degree of parallelism as brute force. The previous attack

in [16] claims 2255 trials with data 210 for success probability 44%, but exhaustive
search succeeds with probability 50% within the same number of trials, with
much less data and no additional computations. Therefore their attack does not
constitute a break of Salsa20/8.

Attack on 128-bit Salsa20/7. Our attack can be adapted to the 128-bit version
of Salsa20/7. With the differential ([∆4

1]14 | [∆0
7]31) and γ = 0.4, we find n = 38,

|ε?
a| = 0.045, and |ε?| = 0.0059. For α = 21, this breaks Salsa20/7 within 2111

time and 221 data. Our attack fails to break 128-bit Salsa20/8 because of the
insufficient number of PNB’s.

Attack on 256-bit ChaCha6. We use the differential ([∆3
11]0 | [∆0

13]13) with |ε?
d| =

0.026. The OD is observed after working three rounds backward from an 6-round
keystream block. For the threshold γ = 0.6 we find n = 147, |ε?

a| = 0.018, and
|ε?| = 0.00048. For α = 123, this results in time 2139 and data 230.

Attack on 256-bit ChaCha7. We use again the differential ([∆3
11]0 | [∆0

13]13) with
|ε?

d| = 0.026. The OD is observed after working four rounds backward from an
7-round keystream block. For the threshold γ = 0.5 we find n = 35, |ε?

a| = 0.023,
and |ε?| = 0.00059. For α = 11, this results in time 2248 and data 227. The list
of PNB’s is {3, 6, 15, 16, 31, 35, 67, 68, 71, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
103, 104, 127, 136, 191, 223, 224, 225, 248, 249, 250, 251, 252, 253, 254, 255}.

Attack on 128-bit ChaCha6. Our attack can be adapted to the 128-bit version
of ChaCha6. With the differential ([∆3

11]0 | [∆0
13]13) and γ = 0.5, we find n = 51,

|ε?
a| = 0.013, and |ε?| = 0.00036. For α = 26, this breaks ChaCha6 within 2107

time and 230 data. Our attack fails to break 128-bit ChaCha7.

3.6 Discussion

Our attack on reduced-round 256-bit Salsa20 exploits a 4-round differential, to
break the 8-round cipher by working four rounds backward. For ChaCha, we
use a 3-round differential to break 7 rounds. We made intensive experiments for
observing a bias after going five rounds backwards from the guess of a subkey,
in order to attack Salsa20/9 or ChaCha8, but without success. Four seems to
be the highest number of rounds one can invert from a partial key guess, while
still observing a non-negligible bias after inversion, and such that the overall
cost improves from exhaustive key search. Can one hope to break further rounds
by statistical cryptanalysis? We believe that it would require novel techniques
and ideas, rather than the relatively simple XOR difference of 1-bit input and
1-bit output. For example, one might combine several biased OD’s to reduce the
data complexity, but this requires almost equal subsets of guessed bits; according
to our experiments, this seems difficult to achieve. We also found some highly
biased multibit differentials such as ([∆4

1]0⊕ [∆4
2]9 | [∆0

7]26) with bias εd = −0.60
for four rounds of Salsa20. However, exploiting multibit differentials, does not
improve efficiency either. Note that an alternative approach to attack Salsa20/7

is to consider a 3-round biased differential, and observe it after going four rounds
backward. This is however much more expensive than exploiting directly 4-round
differentials. Unlike Salsa20, our exhaustive search showed no bias in 4-round
ChaCha, be it with one, two, or three target output bits. This argues in favor of
the faster diffusion of ChaCha. But surprisingly, when comparing the attacks on
Salsa20/8 and ChaCha7, results suggest that after four rounds backward, key
bits are more correlated with the target difference in ChaCha than in Salsa20.
Nevertheless, ChaCha looks more trustful on the overall, since we could break
up to seven ChaCha rounds against eight for Salsa20. For the variants with a
128-bit key, we can break up to seven Salsa20 rounds, and up to six ChaCha
rounds.

4 Analysis of Rumba

This section describes our results for the compression function Rumba. Our goal
is to efficiently find colliding pairs for R-round Rumba, i.e. input pairs (M, M ′)
such that RumbaR(M)⊕RumbaR(M ′) = 0. Note that, compared to our attacks
on Salsa20 (where a single biased bit could be exploited in an attack), a collision
attack targets all 512 bits (or a large subset of them for near-collisions).

4.1 Collisions and Preimages in Simplified Versions

We show here the weakness of two simplified versions of Rumba, respectively an
iterated version with 2048-bit-input compression function, and the compression
function without the final feedforward.

On the Role of Diagonal Constants. Rumba20 is fed with 1536 bits, copied
in a 2048-bit state, whose remaining 512 bits are the diagonal constants. It is
tempting to see these values as the IV of a derived iterated hash function, and
use diagonal values as chaining variables. However, Bernstein implicitly warned
against such a construction, when claiming that “Rumba20 will take about twice
as many cycles per eliminated byte as Salsa20 takes per encrypted byte” [7]; in-
deed, the 1536-bit input should contain both the 512-bit chaining value and the
1024-bit message, and thus for a 1024-bit input the Salsa20 function is called
four times (256 bits processed per call), whereas in Salsa20 it is called once
for a 512-bit input. We confirm here that diagonal values should not be re-
placed by the chaining variables, by presenting a method for finding collisions
within about 2128/6 trials, against 2256 with a birthday attack: Consider the
following algorithm: pick an arbitrary 1536-bit message block M0, then com-
pute Rumba(M0) = H0‖H1‖H2‖H3, and repeat this until two distinct 128-bit
chunks Hi and Hj are equal—say H0 and H1, corresponding to the diagonal
constants of F0 and F1 in the next round; hence, these functions will be iden-
tical in the next round. A collision can then be obtained by choosing two dis-
tinct message blocks M1 = M1

0 ‖M1
1 ‖M1

2 ‖M1
3 and (M ′)1 = M1

1 ‖M1
0 ‖M1

2 ‖M1
3 , or

M1 = M1
0 ‖M1

0 ‖M1
2 ‖M1

3 and (M ′)1 = (M ′
0)

1‖(M ′
0)

1‖M1
2 ‖M1

3 . How fast is this

method? By the birthday paradox, the amount of trials for finding a suitable
M0 is about 2128/6 (here 6 is the number of distinct sets {i, j} ⊂ {0, . . . , 3}),
while the construction of M1 and (M ′)1 is straightforward. Regarding the price-
performance ratio, we do not have to store or sort a table, so the price is 2128/6—
and this, for any potential filter function—while performance is much larger than
one, because there are many collisions (one can choose 3 messages and 1 differ-
ence of 348 bits arbitrarily). This contrasts with the cost of 2256 for a serial
attack on a 512-bit digest hash function.

On the Importance of Feedforward. In Davies-Meyer-based hash functions
like MD5 or SHA-1, the final feedforward is an obvious requirement for one-
wayness. In Rumba the feedforward is applied in each Fi, before an XOR of
the four branches, and omitting this operation does not trivially lead to an
inversion of the function, because of the incremental construction. However, as
we will demonstrate, preimage resistance is not guaranteed with this setting. Let
Fi(Mi) = X20

i , i = 0, . . . , 3 and assume that we are given a 512-bit value H, and
our goal is to find M = (M0,M1,M2,M3) such that Rumba(M) = H. This can
be achieved by choosing random blocks M0, M1, M2, and set

Y = F0(M0)⊕ F1(M1)⊕ F2(M2)⊕H . (10)

We can find then the 512-bit state X0
3 such that Y = X20

3 . If X0
3 has the

correct diagonal values (the 128-bit constant of F3), we can extract M3 from X3
0

with respect to Rumba’s definition. This randomized algorithm succeeds with
probability 2−128, since there are 128 constant bits in an initial state. Therefore,
a preimage of an arbitrary digest can be found within about 2128 trials, against
2512/3 (= 2512/(1+log2 4)) with the generalized birthday method.

4.2 Differential Attack

To obtain a collision for RumbaR, it is sufficient to find two messages M and
M ′ such that

F0(M0)⊕ F0(M ′
0) = F2(M2)⊕ F2(M ′

2) , (11)

with M0 ⊕M ′
0 = M2 ⊕M ′

2, M1 = M ′
1 and M3 = M ′

3. The freedom in choosing
M1 and M3 trivially allows to derive many other collisions (multicollision). We
use the following notations for differentials: Let the initial states Xi and X ′

i have
the ID ∆0

i = Xi ⊕X ′
i for i = 0, . . . , 3. After r rounds, the observed difference is

denoted ∆r
i = Xr

i ⊕ (X ′
i)

r, and the OD (without feedforward) becomes ∆R
i =

XR
i ⊕ (X ′

i)
R. If feedforward is included in the OD, we use the notation ∇R

i =
(Xi + XR

i) ⊕ (X ′
i + (X ′

i)
R). With this notation, Eq. 11 becomes ∇R

0 = ∇R
2 ,

and if the feedforward operation is ignored in the Fi’s, then Eq. 11 simplifies to
∆R

0 = ∆R
2 . To find messages satisfying Eq. 11, we use an R-round differential

path of high-probability, with intermediate target difference δr after r rounds,
0 ≤ r ≤ R. Note that the differential is applicable for both F0 and F2, thus we
do not have to subscript the target difference. The probability that a random

message pair with ID δ0 conforms to δr is denoted pr. To satisfy the equation
∆R

0 = ∆R
2 , it suffices to find message pairs such that the observed differentials

equal the target one, that is, ∆R
0 = δR and ∆R

2 = δR. The naive approach is to
try about 1/pr random messages each. This complexity can however be lowered
down by:

– Finding constraints on the message pair so that it conforms to the difference
δ1 after one round with certainty (this will be achieved by linearization).

– Deriving message pairs conforming to δr from a single conforming pair (the
message-modification technique used will be neutral bits).

Finally, to have ∇R
0 = ∇R

2 , we need to find message pairs such that ∇R
0 = δR⊕δ0

and ∇R
2 = δR⊕ δ0 (i.e. the additions are not producing carry bits). Given a ran-

dom message pair that conforms to δR, this holds with probability about 2−v−w

where v and w are the respective weights of the ID δ0 and of the target OD δR

(excluding the linear MSB’s). The three next paragraphs are respectively dedi-
cated to finding an optimal differential, describing the linearization procedure,
and describing the neutral bits technique.

Remark 3. One can observe that the constants of F0 and F2 are almost similar, as
well as the constants of F1 and F3 (cf. Appendix A). To improve the generalized
birthday attack suggested in [7], a strategy is to find a pair (M0, M2) such that
F0(M0)⊕F2(M2) is biased in any c bits after R rounds (where c ≈ 114, see [7]),
along with a second pair (M1, M3) with F1(M1)⊕ F3(M3) biased in the same c
bits. The sum F0(M0)⊕F2(M2) can be seen as the feedforward OD of two states
having an ID which is nonzero in some diagonal words. However, differences in
the diagonal words result in a large diffusion, and this approach seems to be
much less efficient than differential attacks for only one function Fi.

Finding a High-Probability Differential. We search for a linear differential
over several rounds of Rumba, i.e. a differential holding with certainty when
additions are replaced by XOR’s, see [13]. The differential is independent of
the diagonal constants, and it is expected to have high probability for genuine
Rumba if the linear differential has low weight. An exhaustive search for suitable
ID’s is not traceable, so we choose another method: We focus on a single column
in Xi, and consider the weight of the input (starting with the diagonal element,
which must be zero). With a fixed relative position of the non-zero bits in this
input, one can obtain an output of low weight after the first linear round of
Rumba (i.e. using the linearized Eq. 3). Here is a list of the mappings (showing
the weight only) which have at most weight 2 in each word of the input and
output:

g1 : (0, 0, 0, 0)→ (0, 0, 0, 0) g8 : (0, 1, 2, 0)→ (1, 1, 1, 0)
g2 : (0, 0, 1, 0)→ (2, 0, 1, 1) g9 : (0, 1, 2, 2)→ (1, 1, 1, 2)
g3 : (0, 0, 1, 1)→ (2, 1, 0, 2) g10 : (0, 2, 1, 1)→ (0, 1, 0, 0)
g4 : (0, 1, 0, 1)→ (1, 0, 0, 1) g11 : (0, 2, 1, 2)→ (0, 0, 1, 1)
g5 : (0, 1, 1, 0)→ (1, 1, 0, 1) g12 : (0, 2, 2, 1)→ (0, 1, 1, 1)
g6 : (0, 1, 1, 1)→ (1, 0, 1, 0) g13 : (0, 2, 2, 1)→ (2, 1, 1, 1)
g7 : (0, 0, 2, 1)→ (2, 1, 1, 1) g14 : (0, 2, 2, 2)→ (2, 0, 2, 0)

The relations above can be used to construct algorithmically a suitable ID with
all 4 columns. Consider the following example, where the state after the first
round is again a combination of useful rows: (g1, g10, g1, g11) → (g1, g2, g4, g1).
After 2 rounds, the difference has weight 6 (with weight 3 in the diagonal words).
There is a class of ID’s with the same structure: (g1, g10, g1, g11), (g1, g11, g1, g10),
(g10, g1, g11, g1), (g11, g1, g10, g1). The degree of freedom is large enough to con-
struct these 2-round linear differentials: the positions of the nonzero bits in a
single mapping gi are symmetric with respect to rotation of words (and the re-
quired gi have an additional degree of freedom). Any other linear differential
constructed with gi has larger weight after 2 rounds. Let ∆i,j denote the dif-
ference of word j = 0, . . . , 15 in state i = 0, . . . , 3. For our attacks on Rumba,
we will consider the following input difference (with optimal rotation, such that
many MSB’s are involved):

∆0
i,2 = 00000002 ∆0

i,8 = 80000000
∆0

i,4 = 00080040 ∆0
i,12 = 80001000

∆0
i,6 = 00000020 ∆0

i,14 = 01001000

and ∆0
i,j = 0 for all other words j. The weight of differences for the first four

linearized rounds is as follows (the subscript of the arrows denotes the approxi-
mate probability pr that a random message pair conforms to this differential for
a randomly chosen value for diagonal constants):

0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

Round−→
2−4

0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

Round−→
2−7

0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

Round−→
2−41

2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6

Round−→
2−194

8 3 2 4
5 10 3 4
9 11 13 7
6 9 10 9

With this fixed ID, we can determine the probability that the OD obtained
by genuine Rumba corresponds to the OD of linear Rumba. Note that integer
addition is the only nonlinear operation. Each nonzero bit in the ID of an
integer addition behaves linearly (i.e. it does not create or annihilate a sequence
of carry bits) with probability 1/2, while a difference in the MSB is always
linear. In the first round, there are only four bits with associated probability 1/2,
hence p1 = 2−4 (see also the subsection on linearization). The other cumulative
probabilities are p2 = 2−7, p3 = 2−41, p4 = 2−194. For 3 rounds, we have
weights v = 7 and w = 37, thus the overall complexity to find a collision after
3 rounds is about 241+37+7 = 285. For 4 rounds, v = 7 and w = 112, leading
to a complexity 2313. The probability that feedforward behaves linearly can be
increased by choosing low-weight inputs.

Linearization. The first round of our differential has a theoretical probability of
p1 = 2−4 for a random message. This is roughly confirmed by our experiments,
where exact probabilities depend on the diagonal constants (for example, we
experimentally observed p1 = 2−6.6 for F0, and p1 = 2−6.3 for F2, the other two
probabilities are even closer to 2−4). We show here how to set constraints on the
message so that the first round differential holds with certainty, using methods
similar to the ones in [13].

Let us begin with the first column of F0, where c0,0 = x0,0 = 73726966. In
the first addition x0,0 + x0,12, we have to address ∆0

0,12, which has a nonzero
(and non-MSB) bit on position 12 (counting from 0). The bits of the constant
are [x0,0]12−10 = (010)2, hence the choice [x0,12]11,10 = (00)2 is sufficient for
linearization. This corresponds to x0,12 ← x0,12 ∧ FFFF3FFF. The subsequent
3 additions of the first column are always linear as only MSB’s are involved.
Then, we linearize the third column of F0, where c0,2 = x0,10 = 30326162. In
the first addition x0,10 + x0,6, we have to address ∆0

0,6, which has a nonzero bit
on position 5. The relevant bits of the constant are [x0,10]5−1 = (10001)2, hence
the choice [x0,6]4−1 = (1111)2 is sufficient for linearization. This corresponds
to x0,6 ← x0,6 ∨ 0000001E. In the second addition z0,14 + x0,10, the updated
difference ∆1

0,14 has a single bit on position 24. The relevant bits of the constant
are [x0,10]24,23 = (00)2, hence the choice [z0,14]23 = (0)2 is sufficient. Notice
that conditions on the updated words must be transformed to the initial state
words. As z0,14 = x0,14 ⊕ (x0,10 + x0,6) ≪ 8, we find the condition [x0,14]23 =
[x0,10 + x0,6]16. If we let both sides be zero, we have [x0,14]23 = (0)2 or x0,14 ←
x0,14 ∧ FF7FFFFF, and [x0,10 + x0,6]16 = (0)2. As [x0,10]16,15 = (00)2, we can
choose [x0,6]16,15 = (00)2 or x0,6 ← x0,6 ∧ FFFE7FFF. Finally, the third addition
z0,2 + z0,14 must be linearized with respect to the single bit in ∆1

0,14 on position
24. A sufficient condition for linearization is [z0,2]24,23 = (00)2 and [z0,14]23 =
(0)2. The second condition is already satisfied, so we can focus on the first
condition. The update is defined by z0,2 = x0,2 ⊕ (z0,14 + x0,10) ≪ 9, so we set
[x0,2]24,23 = (00)2 or x0,2 ← x0,2 ∧ FE7FFFFF, and require [z0,14 + x0,10]15,14 =
(00)2. As [x0,10]15−13 = (011)2, we can set [z0,14]15−13 = (101)2. This is satisfied
by choosing [x0,14]15−13 = (000)2 or x0,14 ← x0,14 ∧ FFFF1FFF, and by choosing
[x0,10 + x0,6]8−6 = (101)2. As [x0,10]8−5 = (1011)2, we set [x0,6]8−5 = (1111)2
or x0,6 ← x0,6 ∨ 000001E0. Altogether, we fixed 18 (distinct) bits of the input,
other linearizations are possible.

The first round of F2 can be linearized with exactly the same conditions.
This way, we save an average factor of 24 (additive complexities are ignored).
This linearization with sufficient conditions does not work well for more than
one round because of an avalanche effect of fixed bits. We lose many degrees of
freedom, and contradictions are likely to occur.

Neutral Bits. Thanks to linearization, we can find a message pair conforming to
δ2 within about 1/(2−7+4) = 23 trials. Our goal now is to efficiently derive from
such a pair many other pairs that are conforming to δ2, so that a search for three
rounds can start after the second round, by using the notion of neutral bits again

(cf. §3.3). Neutral bits can be identified easily for a fixed pair of messages, but
if several neutral bits are complemented in parallel, then the resulting message
pair may not conform anymore. A heuristic approach was introduced in [9],
using a maximal 2-neutral set. A 2-neutral set of bits is a subset of neutral
bits, such that the message pair obtained by complementing any two bits of the
subset in parallel also conform to the differential. The size of this set is denoted
n. In general, finding a 2-neutral set is an NP-complete problem—the problem
is equivalent to the Maximum Clique Problem from graph theory, but good
heuristic algorithms for dense graphs exist, see e.g. [10]. In the case of Rumba,
we compute the value n for different message pairs that conform to δ2 and
choose the pair with maximum n. We observe that about 1/2 of the 2n message
pairs (derived by flipping some of the n bits of the 2-neutral set) conform to
the differential5. This probability p is significantly increased, if we complement
at most ` ¿ n bits of the 2-neutral set, which results in a message space (not
contradicting with the linearization) of size about p · (n

`

)
. At this point, a full

collision for 3 rounds has a reduced theoretical complexity of 285−7/p = 278/p
(of course, p should not be smaller than 2−3). Since we will have p > 1

2 for a
suitable choice of `, the complexity gets reduced from 285 to less than 279.

4.3 Experimental Results

We choose a random message of low weight, apply the linearization for the first
round and repeat this about 23 times until the message pairs conforms to δ2. We
compute then the 2-neutral set of this message pair. This protocol is repeated a
few times to identify a message pair with large 2-neutral set:

– For F0, we find the pair of states (X0, X
′
0) of low weight, with 251 neutral

bits and a 2-neutral set of size 147. If we flip a random subset of the 2-
neutral bits, then the resulting message pair conforms to δ2 with probability
Pr = 0.52.

X0 =

73726966 00000400 00000080 00200001
00002000 6d755274 000001fe 02000008
00000040 00000042 30326162 10002800
00000080 00000000 01200000 636f6c62

– For F2, we find the pair of states (X2, X
′
2) of low weight, with 252 neutral

bits and a 2-neutral set of size 146. If we flip a random subset of the 2-
neutral bits, then the resulting message pair conforms to δ2 with probability
Pr = 0.41.

X2 =

72696874 00000000 00040040 00000400
00008004 6d755264 000001fe 06021184
00000000 00800040 30326162 00000000
00000300 00000400 04000000 636f6c62

5 In the case of SHA-0, about 1/8 of the 2n message pairs (derived from the orig-
inal message pair by complementing bits from the 2-neutral set) conform to the
differential for the next round.

Given these pairs for 2 rounds, we perform a search in the 2-neutral set by
flipping at most 10 bits (that gives a message space of about 250), to find pairs
that conform to δ3. This step has a theoretical complexity of about 234 for each
pair (which was verified in practice). For example, in (X0, X

′
0) we can flip the bits

{59, 141, 150, 154, 269, 280, 294 ,425} in order to get a pair of states (X̄0, X̄
′
0)

that conforms to δ3.In the case of (X2, X
′
2), we can flip the bits {58, 63, 141,

271, 304, 317, 435, 417, 458, 460} in order to get a pair of states (X̄2, X̄
′
2) that

conforms to δ3.

X̄0 =

73726966 08000400 00000080 00200001
04400000 6d755274 000001fe 02000008
01002040 00000002 30326162 10002800
00000080 00000200 01200000 636f6c62

X̄2 =

72696874 84000000 00040040 00000400
0000a004 6d755264 000001fe 06021184
00008000 20810040 30326162 00000000
00000300 00080402 04001400 636f6c62

At this point, we have collisions for 3-round Rumba without feedforward, hence
∆3

0⊕∆3
2 = 0. If we include feedforward for the above pairs of states, then∇3

0⊕∇3
2

has weight 16, which corresponds to a near-collision. Note that a near-collision
indicates non-randomness of the reduced-round compression function (we assume
a Gaussian distribution centered at 256). This near-collision of low weight was
found by using a birthday-based method: we produce a list of pairs for F0 that
conform to δ3 (using neutral bits as above), together with the corresponding
value of ∇3

0. The same is done for F2. If each list has size N , then we can
produce N2 pairs of ∇3

0 ⊕∇3
2 in order to identify near-collisions of low weight.

However, there are no neutral bits for the pairs (X̄0, X̄
′
0) and (X̄2, X̄

′
2) with

respect to δ3. This means that we cannot completely separate the task of finding
full collisions with feedforward, from finding collisions without feedforward (and
we can not use neutral bits to iteratively find pairs that conform to δ4). To find a
full collision after three rounds, we could perform a search in the 2-neutral set of
(X0, X

′
0) and (X2, X

′
2) by flipping at most 20 bits. In this case, the resulting pairs

conform to δ2 with probability at least Pr = 0.68, and the message space has a
size of about 280. The overall complexity becomes 278/0.68 ≈ 279 (compared to
285 without linearization and neutral bits). Then, we try to find near-collisions
of low weight for 4 rounds, using the birthday method described above. Within
less than one minute of computation, we found the pairs (¯̄X0,

¯̄X ′
0) and (¯̄X2,

¯̄X ′
2)

such that ∇4
0 ⊕ ∇4

2 has weight 129. Consequently, the non-randomness of the
differential is propagating up to 4 rounds.

¯̄X0 =

73726966 00020400 00000080 00200001
00002400 6d755274 000001fe 02000008
00000040 00220042 30326162 10002800
00000080 00001004 01200000 636f6c62

¯̄X2 =

72696874 00001000 80040040 00000400
00008804 6d755264 000001fe 06021184
00000000 80800040 30326162 00000000
00000300 00000450 04000000 636f6c62

5 Conclusions

We presented a novel method for attacking reduced-round Salsa20 and ChaCha,
inspired by correlation attacks and by the notion of neutral bits. This allows to
give the first attack faster than exhaustive search on the stream cipher Salsa20/8
with a 256-bit key. For the compression function Rumba the methods of lin-
earization and neutral bits are applied to a high probability differential to find
collisions on 3-round Rumba within 279 trials, and to efficiently find low weight
near collisions on 3-round and 4-round Rumba.

Acknowledgments

The authors would like to thank Dan Bernstein for insightful comments on a
preliminary draft, the reviewers of FSE 2008 who helped us to improve the
clarity of the paper, and Florian Mendel for his proofreading. J.-Ph. Aumasson
is supported by the Swiss National Science Foundation (SNF) under project
number 113329. S. Fischer is supported by the National Competence Center in
Research on Mobile Information and Communication Systems (NCCR-MICS),
a center of the SNF under grant number 5005-67322. W. Meier is supported
by Hasler Foundation (see http://www.haslerfoundation.ch) under project
number 2005. C. Rechberger is supported by the Austrian Science Fund (FWF),
project P19863, and by the European Commission through the IST Programme
under Contract IST-2002-507932 ECRYPT.

References

1. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond
linear cryptanalysis? In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of LNCS,
pages 432–450. Springer, 2004.

2. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Walter Fumy, editor, EUROCRYPT, volume
1233 of LNCS, pages 163–192. Springer, 1997.

3. Daniel J. Bernstein. ChaCha, a variant of Salsa20. See http://cr.yp.to/chacha.

html. See also [8].
4. Daniel J. Bernstein. Salsa20 and ChaCha. eSTREAM discussion forum, May 11,

2007.
5. Daniel J. Bernstein. Salsa20. Technical Report 2005/025, eSTREAM, ECRYPT

Stream Cipher Project, 2005. See also http://cr.yp.to/snuffle.html.
6. Daniel J. Bernstein. Salsa20/8 and Salsa20/12. Technical Report 2006/007, eS-

TREAM, ECRYPT Stream Cipher Project, 2005.

7. Daniel J. Bernstein. What output size resists collisions in a XOR of independent
expansions? ECRYPT Workshop on Hash Functions, 2007. See also http://cr.

yp.to/rumba20.html.
8. Daniel J. Bernstein. ChaCha, a variant of Salsa20. In SASC 2008 – The State of

the Art of Stream Ciphers. ECRYPT, 2008. See also http://www.ecrypt.eu.org/

stvl/sasc2008.
9. Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew K. Franklin,

editor, CRYPTO, volume 3152 of LNCS, pages 290–305. Springer, 2004.
10. Samuel Burer, Renato D.C. Monteiro, and Yin Zhang. Maximum stable set formu-

lations and heuristics based on continuous optimization. Mathematical Program-
ming, 64:137–166, 2002.

11. Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. In
SASC 2006 – Stream Ciphers Revisited, 2006.

12. ECRYPT. eSTREAM, the ECRYPT Stream Cipher Project. See http://www.

ecrypt.eu.org/stream.
13. Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew

J. B. Robshaw. Non-randomness in eSTREAM candidates Salsa20 and TSC-4.
In Rana Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of LNCS,
pages 2–16. Springer, 2006.

14. Pascal Junod and Serge Vaudenay. Optimal key ranking procedures in a statistical
cryptanalysis. In Thomas Johansson, editor, FSE, volume 2887 of LNCS, pages
235–246. Springer, 2003.

15. Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext only.
IEEE Transactions on Computers, 34(1):81–85, 1985.

16. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki
Nakashima. Differential cryptanalysis of Salsa20/8. In SASC 2007 – The State
of the Art of Stream Ciphers, 2007.

17. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO,
volume 2442 of LNCS, pages 288–303. Springer, 2002.

A Constants

Here are the diagonal constants for Salsa20 and ChaCha (function Round) and
for Rumba (functions F0 to F3).

Round F0 F1 F2 F3

c0 61707865 73726966 6f636573 72696874 72756f66
c1 3320646E 6d755274 7552646e 6d755264 75526874
c2 79622D32 30326162 3261626d 30326162 3261626d
c3 6B206574 636f6c62 6f6c6230 636f6c62 6f6c6230

