
Guess-and-determine Algebraic Attack
on the Self-Shrinking Generator?

Blandine Debraize1,2 and Louis Goubin2

1 Gemalto, Meudon, France
blandine.debraize@gemalto.com

2 Versailles Saint-Quentin-en-Yvelines University, France
Louis.Goubin@prism.uvsq.fr

Abstract. The self-shrinking Generator (SSG) was proposed by Meier
and Staffelbach at Eurocrypt’94. Two similar guess-and-determine at-
tacks were independently proposed by Hell-Johansson and Zhang-Feng
in 2006, and give the best time/data tradeoff on this cipher so far. These
attacks do not depend on the Hamming weight of the feedback polyno-
mial (defining the LFSR in SSG).
In this paper we propose a new attack strategy against SSG, when the
Hamming weight is at most 5. For this case we obtain a better tradeoff
than all previously known attacks (including Hell-Johansson and Zhang-
Feng). Our main idea consists in guessing some information about the in-
ternal bitstream of the SSG, and expressing this information by a system
of polynomial equations in the still unknown key bits. From a practical
point of view, we show that using a SAT solver, such as MiniSAT, is the
best way of solving this polynomial system.
Since Meier and Staffelbach original paper, avoiding low Hamming weight
feedback polynomials has been a widely believed principle. However this
rule did not materialize in previous recent attacks. With the new attacks
described in this paper, we show explicitly that this principle remains
true.

Keywords: stream cipher, guess-and-determine attacks, multivariate qua-
dratic equations, SAT solver, self-shrinking generator, algebraic crypt-
analysis.

1 Introduction

The self-shrinking generator (SSG) was proposed by W. Meier and O.
Staffelbach at Eurocrypt’94 in [12]. It is a variant of the original Shrinking
Generator proposed by Coppersmith, Krawczyk and Mansour in [4, 10].
In their paper, they proposed an attack of time complexity O(20.75n), and
? This work has been partially supported by the French Agence Nationale de la

Recherche (ANR) under the Odyssee project

2 Blandine Debraize and Louis Goubin

O(20.69n) when the Hamming weight of the feedback polynomial is 3. In
[13], Mihaljević proposed a cryptanalysis with minimal time complexity
O(20.5n), with data complexity O(n20.5n). The amount of keystream is
not realistic for large values of the key size n. An attack on SSG requiring
very few keystream data (2.41n) is the BBD cryptanalysis proposed in [9]
with time complexity nO(1)20.656n and equivalent memory complexity. The
best tradeoff between time, memory and data complexity today is the Hell
and Johansson guess-and-determine cryptanalysis of [8]. A very similar
attack has been independently proposed by Zhang and Feng in [14]. For
instance the time complexity of this latter attack varies from O(20.5n) to
O(n320.666n) and data complexity ranges from O(n20.5n) to O(n) accord-
ingly. For example with a reasonable amount of keystream of O(20.161n),
it is possible with this attack to recover the key in time O(n320.556n). The
complexity of this attack is independent from the Hamming weight of the
feedback polynomial.

In this paper we show that a low Hamming weight for the feedback
polynomial defining the LFSR makes the self-shrinking generator even
more vulnerable against guess-and-determine attacks. To show this we
propose a new type of guess-and-determine attack. We guess some infor-
mation and then write a system of polynomial equations over GF(2) that
we solve by using the SAT solver algorithm MiniSAT. We describe a large
family of attacks. Thus as the Hell-Johansson and Zhang-Feng attacks,
we can handle with different conditions of attack and data requirements.
Our simulations show that for small Hamming weight feedback polyno-
mial, the complexity of our time/data tradeoff is noticeably better.

In Section 2, we briefly describe SAT solvers, the design of the SSG
and the principle of our attack. In Section 3 we analyse previous work on
this cipher. In Section 4, we describe a special case of our new attack, and
in Section 5, we generalize the principle to a family of attacks. Finally in
Section 6, we look for the best time/data tradeoff cryptanalysis.

2 Preliminaries

2.1 SAT Solvers

In cryptography the use of SAT solvers to solve polynomial systems over
GF(2) has been recently introduced by Bard, Courtois and Jefferson in
[1, 2]. The method consists of converting the multivariate system into
a conjunctive normal form satisfiability (CNF-SAT) problem, and then
applying a SAT solver algorithm. It has been used in [3] to cryptanalyse

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 3

the block cipher Keeloq and in [11] to analyse the reduced version Bivium
of the stream cipher Trivium.

The other well-known methods to solve algebraic systems of equations
over GF(2) are XL ([5]) and Gröbner bases algorithms like F4 and F5 ([6,
7]). Both are linear algebra based methods, their drawback is that they
need to store big matrices during the computations and then require a
huge amount of memory. Moreover it is unclear how much the sparsity of
the initial system helps to reduce the running time of the solving.

SAT solvers behave in a completely different way. Most of them try
to find more directly a solution to the system by recursively choosing a
variable, first trying to assign it a value and then the other. The important
parameters for SAT solvers are the number of clauses, the total length of
all the clauses, and the number of variables.

In this paper we use the conversion from algebraic normal form to
conjunctive normal form method described in [2], and the SAT solver
MiniSAT also proposed in [2]. This conversion method transforms linear
equations in long CNF expressions made of long clauses. That is why the
method works much better if the linear expressions are short, and, more
generally, if the systems are sparse.

2.2 Trade-off between Guessing and Exploiting Information

In this Section, we specifically consider the case of stream ciphers based
on one Linear Feedback Shift Register (LFSR), since the self-shrinking
generator belongs to this category. However, the notions defined below
can be extended to stream ciphers based on several LFSRs.

Let us suppose the state of the LFSR has length n. At each clock t,
the LFSR outputs a bit st. The bits s0, · · · , sn−1 are the bits of the initial
state of the LFSR. Here we consider that the initial state of the LFSR is
the n-bit key of the cipher.

We call internal sequence at clock t the sequence of bits St = s0s1...st.
At each clock t, the compression function outputs one bit or an empty
word C(St). The compression ratio η is the average number of output
bits generated by one bit of random internal sequence. For the SSG the
compression ratio is η = 1

4 .

Definition 1. The information rate (per bit), which a keystream reveals
about the first m bits of the underlying internal bitstream, is denoted by
α(m), and defined by α(m) = 1

mI(Z(m), Y), where Z(m) denotes a random
z ∈ {0, 1}m and Y a random keystream.

4 Blandine Debraize and Louis Goubin

Then α(m) can be computed as:

α(m) =
1
m

I(Z(m), Y) =
1
m

(
H(Z(m))−H(Z(m)|Y)

)
= 1− 1

m
H(Z(m)|Y)

We prove in appendix A that the information rate is constant for the
self-shrinking generator and that its value is 1

4 .

For a stream cipher based on one LFSR with a constant information
rate and a constant compression ratio, there is always a better attack
than exhaustive search, by exploiting the leakage of information given
by the keystream. For m keystream bits, this leakage is an amount of
αm/η bits of information. The entropy of the guess to recover the m/η
first internal sequence bits is then H(Z(m)|Y) = (1 − α)m

η . Recovering
the n key bits requires then a complexity O(2(1−α)n). This attack has
been described in [12]. One way to improve this attack is to decrease the
amount of information we guess. In this case we cannot recover directly
all the consecutive bits of the initial state of the LFSR, but only part of
them. If we guess an amount of information h on the internal sequence per
keystream bit, what we obtain is an amount of h+α/η per keystream bit.
The ratio “guessed information”/“total information known per keystream
bit” is then

h

h + α
η

where α
η is a constant (here equal to 1). Therefore the smaller h gets,

the smaller this ratio becomes. This means that when h decreases, the
amount of “guessed information” staying the same, the obtained “total
information” increases.

Decreasing the amount of information on the internal sequence we
guess per keystream bit seems then to be a good strategy. It is the adopted
strategy throughout this paper. The greatest issue is the following: once
we have obtained enough information, how to exploit it to recover the
key. This will be discussed in detail in this paper for the case of the
self-shrinking generator.

2.3 Description of the Self-Shrinking Generator

The self-shrinking generator consists of one LFSR, and a shrinking com-
ponent that uses a compression function C. Let K = (K0, · · · ,Kn−1) be a
secret key, and let s0 = K be the initial state of the LFSR. At each clock

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 5

t = 0, 1, 2, · · · , the new state st is computed as st = L(st−1), with L being
the multivariate linear transformation corresponding to the connection
polynomial of the LFSR. Therefore st = Lt(K0, · · · ,Kn−1), and every bit
st
i of the state at time t can be written as a known linear combination of

the key bits K0, · · · ,Kn−1.
Now we define the compression function. Let f be a function defined

as follows :
f : {0, 1}2 −→ {0, 1, ε}

such that f(a, b) = b if a = 1, and f(a, b) = ε (the empty word) if a = 0.
This compression function can be extended to compress sequences of bits
of arbitrary length as follows. Let x0 x1 · · ·xr−1 be a bitstream of length
r generated by the LFSR. The output keystream of the SSG generator will
be C(x0 x1 · · ·xr−1), which is defined as f(x0, x1) f(x2, x3) · · · f(xr−2, xr−1)
with the computation being done in the free monoid {0, 1}∗ (which means
that we simply concatenate these strings of bits). The resulting com-
pressed sequence C(x0 x1 · · ·xr−1) has length at most d r

2e. This length is
hard to predict and depends on the number of pairs of consecutive bits
such that f(xi, xi+1) = ε (i.e. xi = 0 and no bit is output).

3 Previous Work and Known attacks

3.1 The Meier and Staffelbach Attack

The attack described in [12] is the attack we refereed to in Section 2.2.
It consists of guessing all the consecutive bits of an internal sequence s
of length n that are not revealed by the keystream. As the compression
ratio is 1

4 , the amount of unknown bits is on average 3n
4 . As announced

in Section 2.2, the complexity of this attack is 2
3
4
n.

Two completely different attacks were proposed in 2001 [15] of com-
plexity O(20.694n), and in 2002 [9] of complexity nO(1)20.656n, for which
we will not go into detail in this paper.

There are two ways of improving Meier and Staffelbach attack. The
first one consists of reducing the amount of information we guess, as we
describe in Section 3.2. The second one consists in looking for the best
case through the keystream, as we briefly describe in Section 3.3.

3.2 Improvement

It is easy to improve this attack by decreasing the amount of information
we guess. The known method we explain here can be found in [8]. Each

6 Blandine Debraize and Louis Goubin

bit xi of the pseudo-random sequence corresponds to two consecutive bits
1 and xi in the internal sequence s. Then it is possible, instead of guessing
the values of all the bits of the internal sequence, to guess only the values
of the subsequence s′ made of the even bits of s (x0, x2, · · · , x2n, · · ·). It is
equivalent to guessing the position of the pairs (1, xi) in s. We show now
that this decreases the amount of information we guess per bit. Let us
suppose that x0 = 1. The probability for the number of “0” to be k before
the next “1” in s′ is 1

2k+1 . Consequently the entropy for this information
is

H(L) =
+∞∑

j=0

j + 1
2j+1

= 2

Let us suppose we get a sequence of m bits of keystream. The entropy
for guessing the values of the corresponding internal sequence s′ (bits
in even positions) is then 2m. Therefore we can guess all these values
with an average about 22m guesses. We have seen that the i-th bit of the
keystream is equal to the odd bit following the i-th even “1” of s. Once
we get the positions of the “1”s in the internal bitstream, we know the
values and positions of 2m + m = 3m bits on average. Therefore m must
be about n

3 , assuming there is no redundancy in the information.
How to exploit this information? Here it is very simple, as each in-

ternal sequence bit equals a linear expression of the key bits. We have
then obtained a system of linear equations. The non-redundancy of the
information obtained by our guess is expressed by the consistency of this
linear system.

We observe that in this attack the ratio “information guessed”/“infor-
mation obtained” is 2

3 .

3.3 Mihaljević Attack

This attack is described in [13]. Let us consider again the subsequence
s′ of the internal bitstream made of the even bits. When we know that
n
2 consecutive bits of s′ are “1”s, we know n consecutive bits of s. The
attack consists in looking for this case through the keystream. To each
keystream subsequence of n

2 bits corresponds an n-bit internal bitstream
sequence. If by running the stream cipher on this sequence we do not
obtain right values for the keystream, we try on the following n

2 bits
sequence of keystream, etc.

Of course the drawback of this attack is the huge amount of necessary
keystream bits: about n

2 ·2
n
2 . This is why [13] describes a family of attacks

with time complexity varying from O(2
n
2) (this attack) to O(2

3n
4) (the

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 7

attack of Section 3.1), and the required keystream length ranging from
2

n
2 to 2

n
4 accordingly.

The other tradeoff between the attack allowing the best complexity
estimation and the attack described at Section 3.2 is studied in [14] and
[8]. The attack strategy is the same in both papers, but in [8], an improve-
ment is proposed when the available keystream is very short (less than
20.05n). As our final attack will only focus on larger keystream amounts,
we will only take into account the common part of [14] and [8] in this
paper. We will briefly describe it in Section 6.

4 Principle of Our Attack

Our aim is to generalize the method described at Section 3.2. In this
attack we guess some bit values and solve the system of linear equations
by a Gaussian elimination when the system of linear equations has rank
n.

To adopt a more general point of view on this attack, we can say that
we exploit the information we have obtained when its amount is sufficient,
i.e. when we have obtained n bits of information on the key (recall that
the key is the initial state of the LFSR). In Section 3.2 we exploit this
information by a linear algebra method. Each linear equation in the key
bits represents one bit of information. Here the non-redundancy of the
information obtained is guaranteed by the independence of the linear
equations.

In the following, we keep this point of view. We guess some informa-
tion on the internal sequence and directly compute the total amount of
information we have obtained. The second step consists then in exploiting
this information by completely describing it by a system of polynomial
equations and solving this system with algebraic techniques.

4.1 Guessing Information

In the attack of Section 3.1, the amount of information that is guessed
per keystream bit is 3. In the attack of Section 3.2, it is 2. What we want
to do here is to further decrease this amount of guessed information per
bit. Instead of guessing the positions of the “1”s of the subsequence s′

made of the even bits of the internal sequence, such as in the attack of
Section 3.2, we guess the positions of one such bit out of two.

Let us consider a sequence of keystream bits xi, xi+1, · · · , xi+k, · · · .
Each of these bits xj correspond to a pair (1, xj) in the internal bit-
stream s. Then we guess the positions of the corresponding pairs for

8 Blandine Debraize and Louis Goubin

xi, xi+2, xi+4, · · · , xi+2k′ , · · · . Thus for example the precise position of the
pair corresponding to xi+1 is unknown but ranges between the position
of the pair corresponding to xi and the position of the pair corresponding
to xi+2.

Let us define for this attack a “block” of internal sequence bits: each
block contains two pairs beginning by 1 and the pairs beginning by “0”
until the next “1” in the sequence. This means that each block begins by
a “1”. For example, if the internal sequence is :

01 10 00 01 10 00 10 00 · · · ,

the first block we find for this sequence is 10 00 01 10 00.
To know the position of one 1 out of two in s′, it is enough to guess

the size of consecutive blocks of s, i.e. to guess the number of pairs be-
ginning by 0 in each block. The probability to have k pairs beginning by
0 in a block is the number of ways of distributing k bits among 2 places
multiplied by 1

2k+2 . For any q, the number of possibilities to distribute k

bits among q places is
(
q−1+k

k

)
. The probability is then here k+1

2k+2 . The
entropy of the information guessed by keystream bit is:

H = −1
2

∑

k≥0

(
k+1

k

)

2k+2
log(

(
k+1

k

)

2k+2
) ≈ 1.356

This information describes the fact that we know that the first even bit
of the block is “1”, and that the other even bits are all “0” but one. The
total amount of information we know on this block comes from this infor-
mation and from the fact that we know the values of the keystream bits
corresponding to the even “1”s of the block, i.e. two bits of information.
The average information we know about one block is then 2× 1.356 + 2,
and the known information per keystream bit is 1.356 + 1 = 2.356. Thus
for m bits of keystream, we get 2.356m bits of information if there is
no redundancy. Then m must be approximately n

2.356 and the average
complexity for the guessing part of the attack is 2

1.356n
2.356 = 20.575n.

4.2 Exploiting the information

The next stage of the attack consists in exploiting the information we
have obtained. This information cannot be expressed only by linear GF(2)
relations any more. But as we will see now, it is possible to describe it
by quadratic equations. To ease the understanding, we call “subblock” all
the pairs of a block but the first one. What we have to describe for each
block is:

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 9

1. The fact that the first and second bits of the block are known. This
can still be described by linear relationships.

2. The fact that only one pair among the pairs of the subblock begins
by “1”. This information can be divided into two parts:
– There is at most one “1” among the even bits of the subblock. This

means that for each even bit of the subblock xi, if xj is another
even bit of the subblock, we have:

(xi = 1) ⇒ (xj = 0)

This is equivalent to : xixj = 0. Then this part of the informa-
tion can be described by

(
k
2

)
quadratic equations in the internal

sequence bits.
– There is at least one “1” among the even bits ot the subblock.

This is described by a linear equation:
k+1⊕

j=1

xij = 1

where the xij are all the even bits of the subblock.
3. The fact that the bit of the pair beginning by “1” in the subblock is

known. This is described by the fact that for each even bit xj of the
subblock,

(xj = 1) ⇒ (xj+1 = e)

where e is the corresponding keystream bit. It can be translated by
k + 1 quadratic boolean equations:

xj(xj+1 + e) = 0

As the composition of linear functions with quadratic equations is still
quadratic, those equations can be written as quadratic equations in the
key bits. We have then obtained a system of quadratic equations over the
field GF(2), completely describing the key.

When the blocks are short, it is possible to find some other equations
describing the information. It is interesting to have the most overdefined
possible system of equations if programs like Gröbner basis algorithm or
XL are used to solve the system. But in this paper we use SAT solver
algorithms for which working on very overdefined systems is not the best
strategy. That is why we do not add these additional equations in our
systems.

We give here the results of our computations on these systems of
equations for different sizes of LFSR state n and three different Hamming
weights hw for the feedback polynomial of the LFSR:

10 Blandine Debraize and Louis Goubin

Table 1. MiniSAT computations on quadratic systems of equations

hw = 5 hw = 6 hw = 7

n = 128 0.02s 0.03s 0.05s

n = 256 0.025s 0.046s 62s

n = 512 0.127s > 24h > 24h

n = 1024 122.25s > 24h > 24h

5 Generalisation of the Attack

5.1 Guessing Information

This method can be generalized. In Section 4, we have chosen to guess
the position of one even “1” in the internal sequence out of q = 2. Now
we can choose to guess the position of one 1 out of q bits, with q ≥ 2.
This is again equivalent to guessing the length of the “blocks” made of
the consecutive bits of the internal sequence containing q pairs of bits
beginning by “1” and the other pairs beginning by “0” until the next
even “1”.

Each such block correspond to q keystream bits. The average entropy
per keystream bit to guess the length of consecutive blocks is then:

H(q) = −1
q

∑

k≥1

(
q−1+k

k

)

2q+k
log(

(
q−1+k

k

)

2q+k
)

For example, when q = 3, H(q) = 1.0385.
As explained in Section 2.2, the total amount of information we obtain

per keystream bit is 1+H(q). If there is no redundancy, it is then necessary
to guess the length of the blocks corresponding to n

1+H(q) keystream bits

and the average complexity of the guess is 2
H(q)

1+H(q)
n.

Table 2. Average complexity of the guess for various values of q

q = 2 q = 3 q = 4 q = 5

Complexity 20.575n 20.509n 20.458n 20.417n

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 11

5.2 Solving the Polynomial System - Computational Results

As in Section 4.2, we need to completely describe the amount of informa-
tion we have, by means of polynomial GF(2) equations. It is possible to
describe it with equations of degree at most q, in a way very similar to
the one proposed at Section 4.2. We give details in Appendix B.

Moreover, it is possible to show that for small blocks, the degree of
the equations decreases. If Gröbner bases are used, it is well known that
the smaller the degree is, the faster the attack is also. With SAT solvers,
even if this correlation is not so clear, our computations showed that the
complexity gets smaller when the degree of polynomials gets smaller. This
tends to show that the shorter the blocks are, the faster the complexity
of solving the system is. We will exploit this at Section 6.

We have written the systems of equations for q = 3 and q = 4 for
values of n ranging from 128 to 512. We fixed the value of the Hamming
weight of the feedback polynomial to 5 as greater values seem to lead to
much slower attacks. We then applied our SAT solver algorithm on these
systems. We give the results of the computations in table 3.

Table 3. MiniSAT computations on quadratic systems of equations for q=3 and q=4

n = 128 n = 256 n = 512

q = 3 2.28s 80s 2716s

q = 4 14s 1728s > 24h

6 Improvement of the General Attack

In the previous Sections, we have seen that the basic attack of [12] can
be extended in two directions. The first one (first proposed by Mihal-
jević in [13]) looks for a tradeoff between time complexity and required
keystream length. The second one, especially studied in this paper, looks
for a tradeoff between the cost of guessing information and the cost of
exploiting this information. The best attack consists then of choosing the
best tradeoff in both directions at the same time.

In [14] and [8], an attack is proposed that is already a tradeoff be-
tween a similar attack as the one described in Section 3.2 and the best
time complexity attack proposed in [13], when the length of keystream is
maximal. The authors guess all the even bits of a sequence of the internal

12 Blandine Debraize and Louis Goubin

bitstream of length l, assuming that the rate of “1”s in these even bits is
at least α (with a fixed α > 1

2). They choose the value l, depending on
α, in order to have enough information to recover the key by a Gaussian
elimination once they have guessed all the even bits of the sequence. In
order to find such a sequence, they go through the keystream. The time
and data complexity completely depend on the value chosen for α. For
instance, the authors of [14] Zhang and Feng obtain a time complexity of
O(n32

n
1+α).

In Section 5, we denoted by q the number of even “1”s in a block,
and considered guessing the position of one even “1” out of q in the
internal sequence. In this model, Hell-Johansson and Zhang-Feng attacks
correspond to q = 1. Our aim in this Section is to find the best tradeoff
for q > 1.

In order to achieve this, we choose to limit the length of the blocks to
a value k′ = 2k, where k ≥ q. The probability for a block to have length

2k is
(k−1

q−1)
2k , where

(
k−1
q−1

)
is the number of possibilities for the even bits,

assuming the first even bit is “1” and there are q − 1 other “1”s among
the even bits of the block. Thus the probability for a block to have length
at most 2k is:

pq,k =
k∑

j=q

(
j−1
q−1

)

2j

If the number of blocks for which we guess the position is l, then the
probability for all the blocks to have length at most 2k is (pq,k)l.

To compute this value l, we need to know the amount of information
we have obtained when all the lengths of the blocks are fixed. The entropy
leakage provided by the keystream gives q bits of information per block.
Then if we call h the amount of information we guess for one block, the
total amount of information we then know is h + q.

Let us compute hq,k, that is h for a block of length 2k. This information
only concerns the even bits of the block. The number of possibilities for
the even bits is

(
k−1
q−1

)
, i.e. the number of manners to distribute the q − 1

even 1s among the k − 1 even bits of the subblock made of all the pairs
of the block but the first one. This leads to an entropy of log(

(
k−1
q−1

)
).

This quantity is the information we still need to guess to have the full
knowledge about the even bits of the block, that is k bits of information.
Thus the amount we already know (i.e. what we have guessed on the even
bits) is

hq,k = k − log(
(

k − 1
q − 1

)
)

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 13

Then for each q we need to find hq,min, i.e. the minimum of hq,k over all k.
We found that for q = 2, the minimum of the function holds when k = 2,
for q = 3 when k = 4 and for q = 4 when k = 6. We give the values of
these minima in table 4.

Table 4. Minimal information known for the even bits of one block

q = 2 q = 3 q = 4 q = 5

hq,min 2 2.415 2.678 2.87

The minimal information we know about one block is hq,min + q. We
need an information of n bits to recover the key. We still suppose that
there is no redundancy in this information. We now can compute the
number of blocks l for which we guess the positions, as we know that

l(hq,min + q) = n

and we obtain l = n
hq,min+q .

Our attack is described in algorithm 6.1.

Algorithm 6.1 Our Attack
INPUT : q,k, and a sequence of keystream of length N

OUTPUT: values of the n key bits
PROCESSING:
compute l depending on q and k

For all the kl possibilities for the length of the l blocks:
For j = 0 to N − kl:

¦ Write the system of equations of degree q corresponding to the
keystream indexed from xj

¦ Solve the system of equations by running MiniSAT on it.
¦ Run the SSG forward on the candidate(s) key(s).
¦ If the candidate key is the right one, output it and break the loop.

Now let us compute the amount of keystream necessary for this at-
tack. We have computed the probability that all the l blocks have length
at most 2k, that is (pq,k)l. Thus the keystream length N should satisfy
(N − kl) · (pq,k)l ≥ 1 if we want to find at least one match pair between
the real internal sequence and our guess. Then we must have:

N ≥ 1
(pq,k)l

14 Blandine Debraize and Louis Goubin

At each step we try (k−q+1)l possibilities for the length of the blocks.
As the worst case for this attack is a number of steps N , the worst case
complexity is:

 k − q + 1

∑k
j=q

(j−1
q−1)
2j

n
q+h

where h stands for hq,min.
This complexity is true if the information obtained is not redundant.

We made simulations by choosing a number of blocks of exactly d 1
(pq,k)l e

and we always obtained the right key. If the key space given by the SAT
solver is larger, we just perform an exhaustive search at small scale.

Now we give the results of our computations. The details of the com-
putations are in appendix C. In this Section, instead of choosing random
keys for our simulations, we chose keys such that the blocks in the initial
state of the LFSR have length at most k. To achieve this, when generating
randomly each block inside the initial state, we test (once it has reached
length k) whether the number of “1”s among the even bits is at least q.
If not, we start again from the beginning of the block. When the number
of “1”s is as expected, we do it for the following block, until we find a
compliant key.

We try many such compliant keys in order to limit also the length
of the other blocks in the sequence but when k is very small (k = q + 1
or k = q + 2) we could not achieve the real conditions of the attack due
to our limited computational power. Of course the running time would
be shorter in the exact case described in the attack as, as we can see it
in table 10 and 11 (appendix C), the shorter the blocks are, the faster
MiniSAT is for these system of equations.

In table 5 and table 6, we give the total complexities of our attacks, for
different block lengths. The Hamming weight of the feedback polynomials
are 5 for both LFSR state length 256 and 512. The memory requirements
during the MiniSAT computations are never more than 100Mb for this
systems.

Finally Table 7 provides a performance comparison between Mihal-
jević attack, Hell-Johansson attack and our new method, for various sizes
of n and of the amount of available keystream. For our attack, the re-
sults are bounded by our computational power and would have probably
been better if we could have performed all the computations for q = 4
and n = 512. Anyway the obtained (heuristical) complexities show that

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 15

for this feedback polynomial Hamming weight, our attack gives the best
time/data tradeoff against the self-shrinking generator.

Table 5. Total complexity and data complexity for n = 256

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2146.2 264 2154.2 234.6 2170.9 219.2 2181.4 210.7

q = 3 2151.4 279.3 2147.2 247.3 2150 228.7 2157.2 217.5

q = 4 2153.6 292.6 2146.3 259 2147.2 238.3 2151.5 225

Table 6. Total time complexity and data complexity for n = 512

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2279.2 2128 2295.7 269.2 2318.8 238.3 2343.8 221.4

q = 3 2277.4 2158.7 2269.6 294.6 2279.3 257.5 2293.5 235

q = 4 2284.9 2185 2278.1 2118.1 2268.8 276.7 > 2293 249.9

Table 7. Time complexity comparisons between Mihaljević, Hell et al. and our attack
for the same data complexities

n = 256 n = 512

data 265.3 249.2 239.1 217.5 2128 294.6 257.5 238.6

Mihaljević attack 2153 2160 2165.5 2182 2297 2311 2331 2335

Hell et al attack 2160.2 2164.8 2167.8 2176.4 2300 2308.3 2320 2328

Our attack 2146.2 2147.2 2147.2 2157.2 2268.8 2268.8 2279.3 2293.5

7 Conclusion

In [8] and [14], where the best known time/data tradeoffs are proposed on
the self-shrinking generator, the authors show that their attack is indepen-
dent from the value of the Hamming weight of the feedback polynomial
defining the LFSR. However, the new algebraic guess-and-determine at-
tack described here suggests that the security of SSG does depend on this
Hamming weight. This new attack is very flexible concerning keystream
requirement. As we use SAT solvers to solve our algebraic systems, it is

16 Blandine Debraize and Louis Goubin

not possible to compute a precise time complexity for our attack. How-
ever for small Hamming weight values (i.e. at most 5), this attack has a
noticeably better complexity than the attacks of [8] and [14] and is even
the best heuristical time/data tradeoff known so far on the self-shrinking
generator.

Since Meier and Staffelbach original paper, avoiding low Hamming
weight feedback polynomials has been a widely believed principle. How-
ever this rule did not materialize in previous recent attacks. With the
new attacks described in this paper, we show explicitly that this principle
remains true.

References

1. G. Bard, Algorithms for Solving Linear and Polynomial Systems of Equations over
Finite Fields, with Applications to Cryptanalysis. Ph.D. Dissertation, University
of Maryland, 2007.

2. Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson: Efficient Methods for
Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomi-
als over GF(2) via SAT-Solvers, http://eprint.iacr.org/2007/024

3. Gregory V. Bard and Nicolas T. Courtois: Algebraic and Slide Attacks on KeeLoq,
preproceedings of FSE 2008, pp. 89-104.

4. Don Coppersmith, Hugo Krawczyk and Yishay Mansour: The Shrinking Generator,
In Crypto’93, Springer LNCS 773, pp. 22-39, 1994.

5. Nicolas Courtois, Adi Shamir, Jacques Patarin, Alexander Klimov: Efficient Algo-
rithms for solving Overdefined Systems of Multivariate Polynomial Equations, , In
Advances in Cryptology, Eurocrypt’2000, Springer LNCS 1807, pp. 392-407, 2000.

6. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases (F4),
Journal of Pure and Applied Algebra 139 (1999) pp. 61-88. See www.elsevier.com/
locate/jpaa

7. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5), Workshop on Applications of Commutative Algebra,
Catania, Italy, 3-6 April 2002, ACM Press.

8. Martin Hell, Thomas Johansson: Two New Attacks on the Self-Shrinking Genera-
tor IEEE Transactions on Information Theory, Vol. 52, no. 8, pp. 3837- 3843, Aug.
2006.

9. Matthias Krause: BBD-based Cryptanalysis of Keystream Generators, In Euro-
crypt 2002, Springer LNCS 2332, pp. 222-237, 2002.

10. Hugo Krawczyk: Practical Aspects of the Shrinking Generator, in FSE’94, Springer
LNCS 809, pp. 45-46, 1993.

11. Cameron McDonald, Chris Charnes and Josef Pieprzyk: Attacking Bivium with
MiniSAT, http://eprint.iacr.org/2007/040

12. Willi Meier and Othmar Staffelbach: The Self-Shrinking Generator, In Eurocrypt
94, Springer LNCS 950, pp. 205-214, 1994.

13. Miodrag J. Mihaljević: A faster cryptanalysis of the self-shrinking generator,
ACISP 1996, Springer LNCS 1172, pp. 182-189, 1996.

14. Bin Zhang, Dengguo Feng: New Guess-and-determine Attack on the Self-Shrinking
Generator, Asiacrypt 2006, Springer LNCS 4284, pp. 54-68, 2006.

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 17

15. Erik Zenner, Matthias Krause, Stefan Lucks: Improved Cryptanalysis of the Self-
Shrinking Generator, ACISP 2001, Springer LNCS 2119, pp. 21-35, 2001.

A Computation of the Information Rate for the
Self-Shrinking Generator

We have seen in Section 2.2 that the information rate that the keystream
y reveals on the first m bits of internal sequence z is defined as

α(m) = 1− 1
m

H(Z(m)|Y)

We have:

H(Z(m)|Y) =
∑
y,z

Proba(Z(m) = z, Y = y) log(Proba(Z(m) = z|Y = y))

=
∑

y

Proba(Y = y)
∑

z

Proba(Z(m) = z|Y = y)×

log(Proba(Z(m) = z|Y = y))

The self-shrinking generator has the property that for m ≥ 1 the prob-
ability that C(z) is prefix for y for a randomly chosen and uniformly
distributed z ∈ {0, 1}m is the same for all keystream y. This implies that

∑
z

Proba(Z(m) = z|Y = y) log(Proba(Z(m) = z|Y = y))

is the same for all y and

H(Z(m)|Y) =
∑

z

Proba(Z(m) = z|Y = y) log(Proba(Z(m) = z|Y = y))

Let us call Z0 the random variable of the first pair of bits of the internal
sequence, Z1 the second pair, etc. We have:

H(Z0|Y) =
∑
z0

Proba(Z0 = z0|Y = y) log(Proba(Z0 = z0|Y = y)) =
3
2

Let us now show by recursion that H(Z(2k)|Y) = (3
2)k.

H(Z(2k)|Y) =
∑

zk,··· ,z0

Proba(Zk = zk, · · · , Z0 = z0|Y = y)×

log(Proba(Zk = zk, · · · , Z0 = z0|Y = y))

18 Blandine Debraize and Louis Goubin

And as

Proba(Zk = zk, · · · , Z0 = z0|Y = y) =
Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y)×

Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y)

we have:

H(Z(2k)|Y) =
∑

zk−1,··· ,z0

Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y)×
∑
zk

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y)×

log(Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y))

+
∑

zk−1,··· ,z0

Proba(Zk−1 = zk−1, · · · , Z0 = z0|Y = y)×

log(Proba(Zk−1 = zk−1, · · · , Z0 = z0|Y = y))×∑
zk

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y).

We know that∑
zk

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y) = 1

and by recursion
∑

zk−1,··· ,z0

Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y)×

log(Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y)) =
3
2
(k − 1).

Once the first k − 1 internal sequence pairs are fixed, let r be the
number of 1s among the first bits of the k − 1 pairs. Let us call y′ the
keystream sequence where the first r bits of y have been removed. Then
the pair Zk can be seen as the first pair of the internal sequence where
C(Zk) is prefix for y′. Thus:

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y) = Proba(Zk = zk|Y = y′)

and the first part of H(Z(2k)|Y) is
∑
zk

Proba(Zk = zk|Y = y′) log(Proba(Zk = zk|Y = y′)) =
3
2
.

We have obtained H(Z(2k)|Y) = 3
2k and α(2k) = 1− 3

2 · 1
2k · k = 1

4 .

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 19

B Equations for the general case

This information can still be divided into three parts:

1. The first two bits of the block are known, this can be described by
two linear equations.

2. The fact that the even bits of the subblock made of all the pairs of
the block but the first one are all “0” but q − 1 of them is described
by :
–

(
k−1

q

)
degree q polynomials of the form x2i0x2i1 · · · x2iq−1 = 0

where 2k is the length of the block and the x2ij are even bits of
the subblock. This describes the fact that there is at most one “1”
among the even bits of the subblock.

– One equation of degree q − 1:
∑

xi0xi1 · · ·xiq−2 = 1, where the
xi0xi1 · · ·xiq−2 are all the monomials of degree q − 1, describing
the fact that there are at least q − 1 “1”s among the even bits of
the subblock.

3. The fact that the first keystream bit corresponding to this subblock
follows the first even “1” of the subblock is described by

(
k−1
q−1

)
degree

q equations of the form x2i0x2i1 · · ·x2iq−2(x2i0+1 + e0) = 0, the fact
that the second keystream bit corresponding to this subblock follows
the second even one of the subblock is described by

(
k−1
q−1

)
degree q

equations of the form x2i0x2i1 · · · x2iq−2(x2i1+1 + e1) = 0, etc,
where the e0, e1 · · · , eq−2 are the keystream bits corresponding to the
subblock.

The known information on one block of length 2k is completely defined
by the equations given above.

C Simulations Details

In tables 8 and 9, we give the complexity of the guess and the data
complexity for our attack when the size of the LFSR is 256 or 512.

In tables 10 and 11, we give the time complexity of the MiniSAT
solving part of the attack. We first give the running time in seconds, and
then we give an estimation of the complexity of the form 2a for each case
to be able to compare our attack with the Hell and Johansson attack of
[8]. This means that 2aE is the running time of the solving, where En3

would be the running time of the Gaussian elimination in the Hell and
Johansson attack on the same machine. Concerning the Mihaljević attack,
we just consider that testing the found key (by running the generator on
it), is about n operations, where n is the size of the key.

20 Blandine Debraize and Louis Goubin

We measured E ≈ 2−40 hours. With this convention, a running time
of one hour corresponds to a complexity of 240.

Table 8. Complexity of the guess and data complexity for n = 256

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2128 264 2136 234.6 2147.2 219.2 2159.3 210.7

q = 3 2126.6 279.3 2122.2 247.3 2123.3 228.7 2127.3 217.5

q = 4 2128 292.6 2119.8 259 2115 238.3 2114 225

Table 9. Complexity of the guess and data complexity for n = 512

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2256 2128 2272 269.2 2294.3 238.3 2318.6 221.4

q = 3 2253.2 2158.7 2244.4 294.6 2246.6 257.5 2254.6 235

q = 4 2256 2185 2239.6 2118.1 2230 276.7 2228 249.9

Table 10. MiniSAT Computations for n = 256

k = q + 1 k = q + 2 k = q + 3 k = q + 4

q = 2 < 0.001s 218.2 < 0.001s 218.2 0.046s 223.7 0.015s 222.1

q = 3 0.093s 224.8 0.109s 225 0.359s 226.7 3.39s 229.9

q = 4 0.171s 225.6 0.311 226.5 15.6 232.2 616s 237.5

Table 11. MiniSAT Computations for n = 512

k = q + 1 k = q + 2 k = q + 3 k = q + 4

q = 2 0.031s 222.2 0.046s 223.7 0.078s 224.5 0.125s 225.2

q = 3 0.06s 229.2 0.17s 230.6 22.3s 237.7 1641s 238.9

q = 4 1.171s 228.9 1308.5s 238.5 1613 238.8 > 24h > 245

