
Improving the Security of MACs via
Randomized Message Preprocessing

Yevgeniy Dodis1 and Krzysztof Pietrzak2

1 New York University, Email: dodis@cs.nyu.edu
2 CWI Amsterdam, Email: k.z.pietrzak@cwi.nl

Abstract. “Hash then encrypt” is an approach to message authentica-
tion, where first the message is hashed down using an ε-universal hash
function, and then the resulting k-bit value is encrypted, say with a
block-cipher. The security of this scheme is proportional to εq2, where
q is the number of MACs the adversary can request. As ε is at least
2−k, the best one can hope for is O(q2/2k) security. Unfortunately, such
small ε is not achieved by simple hash functions used in practice, such as
the polynomial evaluation or the Merkle-Damg̊ard construction, where ε
grows with the message length L.
The main insight of this work comes from the fact that, by using random-
ized message preprocessing via a short random salt p (which must then
be sent as part of the authentication tag), we can use the “hash then
encrypt” paradigm with suboptimal “practical” ε-universal hash func-
tions, and still improve its exact security to optimal O(q2/2k). Specif-
ically, by using at most an O(log L)-bit salt p, one can always regain
the optimal exact security O(q2/2k), even in situations where ε grows
polynomially with L. We also give very simple preprocessing maps for
popular “suboptimal” hash functions, namely polynomial evaluation and
the Merkle-Damg̊ard construction.
Our results come from a general extension of the classical Carter-Wegman
paradigm, which we believe is of independent interest. On a high level, it
shows that public randomization allows one to use the potentially much
smaller “average-case” collision probability in place of the “worst-case”
collision probability ε.

1 Introduction

Hash then Encrypt. A popular paradigm to message authentication is “hash
then encrypt”, where the authentication tag for a message m is computed as
f(h(m)) where h is a hash function and f a pseudorandom permutation (say
AES). This approach is appealing for several reasons: (1) it is stateless, (2) h
needs not to be a cryptographic hash function, but only ε-universal3 and (3) the
“slow” cryptographic f is then only applied on a short input (i.e. on the range
of h).

3 A family of hash functions H is ε-universal, if for any x 6= x′, Prh←H[h(x) = h(x′)] ≤
ε.

As f is indistinguishable from a uniformly random permutation, everything
an attacker learns about h(m1), h(m2), . . . from the authentication tags f(h(m1)),
f(h(m2)), . . . is whether there is a collision (as f(h(mi)) = f(h(mj)) iff h(mi) =
h(mj)). Since h is not cryptographic, finding such a collision is usually enough
for an adversary to come up with a forgery for a new message. If f is over {0, 1}k

(say, f is AES-128 where k = 128) then by the birthday bound the best security
we can hope for is something in the order of q2/2k where q = qmac + qforge is the
number of MAC queries and forgery attempts the adversary is allowed to make.
More precisely, assuming that f is ideal (i.e. a uniform random permutation),
the probability of a successful forgery can be upper bounded by4

ε · q2
mac + ε · qforge

As ε ≥ 1/2k the best one can hope for by the “hash then encrypt” approach is
O(q2/2k) security. In the sequel, we will call this optimal security.

Using Suboptimal Hash Functions. Unfortunately, hash functions used in
practice, such as polynomial evaluation and the cascade (aka Merkle-Damg̊ard)
construction5, do not yield optimal security, since the value ε they achieve grows
linearly with the length of the message. There are several ways to improve the
exact security with such hash functions. Most obviously, one can increase the
security parameter k. However, this does not regain the optimal security relative
to this larger k (although the absolute exact security is improved). More crit-
ically, increasing k is typically not an option in practice, since k is tied to the
block length of the block cipher which is usually fixed (say, to 128 bits for AES)
and pretty inflexible to any changes.6 Another option is to design a different ε-
universal hash function achieving optimal ε = O(1/2k). For one thing, replacing
existing and popular implementations is not so easy in practice, so this option
is usually ruled out anyway. More importantly, and this is part of the reason
practical hash functions are not “optimally universal”, O(1/2k)-universal hash
functions tend to be much less efficient or convenient than their slightly sub-
optimal counter-parts. For example, achieving perfect ε = 1/2k requires a key
of size L [23], where L is the length of the message, which is very impractical.
In theory, one can achieve ε = 2/2k by composing a “practical” δ-universal hash
function from L to k + ` bits, where ` is chosen large enough to bring δ below
1/2k (typically δ = O(L)/2k+` which gives ` = log(L) + O(1)), with the per-
fectly universal hash function from k + ` to k bits, whose key is then only k + `

4 If f is not ideal but a pseudorandom permutation, then there should also be a term
counting the insecurity of f . However, since this term is always the same and is
independent of the hash component, we will omit it from all our bounds.

5 This construction uses a fixed input length shrinking function iteratively in order
to get a function for arbitrary long inputs. In this paper we always assume that the
iterated function is ideal, i.e. a uniformly random function.

6 Though, if one is willing to make two invocations to the block-cipher, one can use
it in CBC-mode in order to get a {0, 1}2k → {0, 1}k PRF, which can then be used
instead of the block-cipher. This mode of operation should not be called “hash then
encrypt”, as the application of the (shrinking) PRF is not invertible, i.e. not an
encryption scheme.

bits long. In practice, however, this composition is quite inconvenient to imple-
ment. Aside from the obvious inefficiency that the key size is at least doubled
compared to using practical hash functions, the latter are usually optimized to
operate on a specific value of k, and do not extend easily to larger outputs k + `,
even if ` is very small. For example, the polynomial evaluation function with
k = 128 corresponds to performing fast field operations over GF (2128), which
could be implemented in hardware. In contrast, evaluating field operations over
GF (2128+`) would be much slower even for ` = 1, since a 129-bit element would
not fit into a register. Similarly, the cascade construction typically uses a very
specific compression function with fixed k, which is usually undefined for larger k.

To summarize, in practice the “hash then encrypt” paradigm does not achieve
optimal exact security O(q2/2k).

The question addressed in this paper is whether one can reclaim — with
little extra cost — the optimal exact security of the “hash then encrypt” MAC
when using such popular but sub-optimal ε-universal hash functions. Moreover,
we would like a solution which does not change the value of k and does not
modify the internals of the underlying hash function, so that our solution can be
easily applied to existing implementations. Finally, the solution should remain
stateless. Quite surprisingly, we answer this question in the affirmative for the
popular polynomial evaluation and the cascade constructions, by using random-
ized message preprocessing before applying the actual MAC. We motivate our
approach below.

Using Randomization. Recall, a hash function is ε-universal if the collision
probability of two messages is at most ε for all possible message pairs. But the
actual collision probability could be much smaller for most pairs. To illustrate
this on an example, let us consider the polynomial-based ε-universal hash func-
tion: here the message m ∈ {0, 1}Lk is viewed as a degree (L − 1) polynomial
fm over GF (2k), the secret key s is an element of GF (2k), and hs(m) is the
value of the polynomial fm at s. Given two distinct messages m1 and m2, their
probability of collision is r/2k, where r is the number of roots of the non-zero
polynomial g = fm1 − fm2 . Although g can have up to (L − 1) roots for some
pairs (m1,m2), Hartman and Raz [11] showed that the fraction of polynomials
(of any degree) with t roots decays proportional to 1/t!, which means that a
vast majority of polynomials have at most a constant number of roots. Thus, a
vast majority of pairs (m1,m2) have collision probability O(1/2k) rather than
the worst-case bound (L− 1)/2k.

This brings up the following idea to improve the security of a MAC based
on the “hash then encrypt” paradigm: apply some randomized preprocessing
function m′ = Pre(m, p) to the message m (where p is a fresh random salt), and
return (p, f(hs(m′))) as the randomized MAC of m. The hope is that prepro-
cessing should thwart the attempts of the adversary to choose messages which
have a large collision probability and thus increase the security of the MAC. To
put it differently, by designing a clever randomized message preprocessing, we
will try to ensure that two processed messages cannot collide with probability
more than O(1/2k), even if the worst-case ε is much larger. Another advantage

of preprocessing comes from the fact that the original “suboptimal” MAC is
used in a “black-box” manner, while suddenly becoming more secure!

Of course, there is a price we need to pay for regaining optimal exact security:
we need to tell the receiving party how we randomized the message. Thus, aside
from showing that randomized message preprocessing can always yield optimal
exact security, — which is a non-obvious statement we will prove later, — the
secondary objective is to minimize the number of random bits needed to avoid
“bad” message pairs in a given ε-universal family.

The Salted Hash Function Paradigm. To capture the intuition just de-
scribed, we introduce the concept of salted (εforge, εmac)-universal hash func-
tions. As the name suggests, the key of such a function has two parts, a “secret”
part and a “public” salt. If the salt is empty, then εforge = εmac and we have a
usual ε-universal hash function with ε = εforge. Here εforge is an upper bound
on the probability (over a choice of the secret key) that the hash values of two
messages collide when the adversary can choose the messages and the public salt
for both hashes, and εmac is the same probability but where at least one of the
two public salts is chosen at random (clearly we always have εforge ≥ εmac).

From such a salted hash function we can construct a MAC-scheme like from
the usual ε-universal hash function (i.e. “hash then encrypt”), but where for
every message to be authenticated the public salt is chosen at random and must
be sent as a part of the authentication tag. As our first result, we generalize
the standard “one-key” hash then encrypt MAC and show that the generalized
MAC has security εmac · q2

mac + εforge · qforge
In particular, to get optimal O(q2/2k) security here it is sufficient to have εmac

in the order of 1/2k, while εforge can be considerably larger.
We also remark that the above salted hash paradigm is strictly more general

than the “randomized preprocessing paradigm” advertised earlier. In particular,
the latter corresponds to the salted hash functions of the form hs(Pre(m, p)),
where Pre(m, p) is the preprocessing map. However, we find it more intuitive
to state some of results for the general salted hash paradigm (which also makes
them more general).

Salted Hash Functions with Short Salt. In this paper we propose ran-
domized preprocessing mechanisms for several ε-universal hash functions and
show that this turns them into (εforge, εmac)-universal ones with εforge ≈ ε and
εmac = O(1/2k). Moreover, in each case we use a very short public salt p.

Our first result is very general. In §4 we show (non-constructively) that for
every balanced ε-universal hash function (where ε = ε(L) can grow polynomially
in the length of the messages L; i.e., ε(L) = Lc/2k for some constant c) there
is a randomized preprocessing using only O(log L) random bits which gives an
(εforge, εmac)-universal hash function with εforge ≈ ε and εmac = O(1/2k).
Although this result is non-constructive (i.e., the preprocessing map is inefficient
and is only shown to exist), we believe the result is interesting given its generality.

Our next results involve simple and efficient implementations of the above
generic result for popular ε-universal hash functions, such as the polynomial

evaluation (denoted poly in the sequel) and the cascade (aka. Merkle-Damg̊ard)
construction. We describe these results in more details in §5 and §6, but mention
that in each case we manage to design extremely simple preprocessing maps using
an O(log L)-bit public salt promised by the generic existence result: roughly, in
the cascade construction we simply append a random string, and for poly the
map consists of prepending a string chosen from a small set. Unfortunately the
construction for poly is only non-uniform, i.e. we prove that maps with a succinct
description (of length O(L3)) exist, but do not give a specific map that works.
Fortunately, we can show that almost all such succinct descriptions yield a good
map, so one can just sample and “hardwire” a random string which will then
define a good map almost certainly.

As our final result in §7, for hash functions which satisfy the slightly stronger
property of being ε-∆ universal [16], we also show a constructive general result
stating that we can always regain the optimal security by doing O(log L)-bit
postprocessing instead of preprocessing. By this we mean randomizing the hash
value hs(m), rather than the message m, with an O(log L)-bit public salt p.
Moreover, we do not need the hash function to be balanced (which is necessary
for the general result with preprocessing).

Figure 1 summarizes our results (see future sections for some of the notation).
In Section §8 we give a numerical example to illustrate what security can be
gained by using “salted” hash then encrypt. In Section §9 we review some related
work and give some open problems.

2 Notation and Basic Definitions

For any integer x ≥ 0 we denote by 〈x〉k its binary representation padded
with leading 0’s to length k, e.g. 〈7〉5 = 00111. For two strings A,B we de-
note with A‖B their concatenation. For k ∈ N we define Bk

def= {0, 1}k and
B≤i

k
def= ∪j=1...iB

j
k to be the set of all strings of length at most i k-bit blocks. For

a set X we denote with x ← X that x is sampled uniformly at random from X .

Definition 1 (ε-almost 2-universal hash function) A hash function H :
S × X → Y is ε-almost 2-universal if for all x, y ∈ X ,x 6= y and hs(.)

def= H(s, .)

Pr[s ← S; hs(x) = hs(y)] ≤ ε

To save on notation we only write “ε-universal” for “ε-almost 2-universal”. We
also often consider the case where ε = ε(X) can be a function of the message
space X .

3 Salted Hashing and MACs

In this section we first review the “hash then encrypt” approach for message
authentication. We then define salted universal hash functions, which are a ran-
domized version of normal ε-universal hash functions. Based on such hash func-
tions, we propose a randomized version of “hash then encrypt” and show that

Construction ε length length of domain

εforge εmac hash key public salt

(εforge, εmac)-universal hash functions from ε-universal ones

Generic: for each balanced H(.) as below there is a permutation g(.) such that

H(.) Lc/2k key for H − {0, 1}L

? H(g(.)) (L + `)c/2k 2/2k key for H ` ≈ (2c+1) log(L) {0, 1}L

Construction based on polynomial evaluation over GF (2k)

poly (L−1)/2k k − ({0, 1}k)≤L

polyGF (2k) L/2k 1/2k k k ({0, 1}k)≤L

¦ polyP L/2k 2/2k k 3 log(L)+log(k) ({0, 1}k)≤L

Cascade (Merkle-Damg̊ard) based on function func : {0, 1}k+b → {0, 1}k

MD L/2k key for func − {0, 1}bL

MDR (L + 1)/2k 2/2k key for func log(L) {0, 1}bL

(εforge, εmac)-∆ universal hash functions from ε-∆ universal ones

Generic: for each H(.) as below there is a “small” set P such that

H(.) Lc/2k key for H − {0, 1}L

¦ generic HP(.) (L + `)c/2k 2/2k key for H ` ≈ (2c+1) log(L) {0, 1}L

Fig. 1. Parameters for the hash functions considered in this paper. A leading ? denotes
a non-constructive, and a leading ¦ a non-uniform result. The bounds for the cascade
construction assume that func is a uniform random function, also the higher order
terms that appear in the bounds for this construction are omitted in this table.

its security is mainly bounded by the “average-case” collision probability of the
salted hash function, which can be much smaller than the “worst-case” proba-
bility which appears in the bound of the standard hash then encrypt approach.
We now define what we mean by (the security of) a randomized MAC. Let us
note that the definition given below becomes the standard definition for (deter-
ministic) MACs when R is a singleton set.

Definition 2 (Randomized MAC) A randomized message authentication
scheme MAC is a function S ×X ×P → Y. P is the randomness-space, S is the
(secret) key-space, X the message domain and Y the tag-space.

We denote with FRGMAC(qmac , qforge) the advantage of any adversary A in
finding an existential forgery for MAC where A is allowed to ask for at most
qmac MACs and make qforge forgery attempts. More formally we consider the
following experiment: first s ← S is sampled, then A may query the MACing
oracle, which

on input m outputs (MAC(s,m, p), p) where p ← P

at most qmac times and a verification oracle which

on input (m, a, p) outputs 1 if MAC(s,m, p) = a and 0 otherwise.

at most qforge times. Now FRGMAC(qmac , qforge) is an upper bound on the proba-
bility that any A succeeds in receiving 1 from the verification oracle on an input
(m, a, p) where he did not already receive the output (a, p) on input m from the
MACing oracle. Note that the adversary may choose the salt p when querying
the verification oracle, but the MACing oracle chooses the p at random.

This definition is an information theoretic one as we did only bound the number
of queries A is allowed to make but we make no other computational assumption.
We can do this as we will consider only MACs which as a final step involve an ap-
plication of a uniform random permutation. In reality one would have to replace
this uniform random permutation (URP) with a pseudorandom permutation
(PRP), as otherwise the construction is not practical, and to restrict the above
definition to computationally bounded adversaries (as unbounded adversaries
can distinguish a PRP from a URP). The security of such a computational MAC
then can be upper bounded by FRGMAC(qmac , qforge) + AdvPRP where AdvPRP is
the distinguishing advantage for the pseudorandom permutation of the adver-
sary considered. From now on, we will no longer mention this simple fact. The
following proposition is well known.

Proposition 1 (Security of hash then encrypt) Let H : S × X → Y be
ε-universal and f(.) a uniform random permutation over Y.

If 1/(|Y|− qmac) ≤ ε, then the MAC scheme with secret key s ← S where the
authentication tag for a message m ∈ X is computed as

MAC(s,m) = f(hs(m))

has security
FRGMAC(qmac , qforge) ≤ ε · q2

mac + ε · qforge
We do not prove this proposition, as it is just a special case of Theorem 1 below.

We now define the concept of salted hash functions described in the intro-
duction.

Definition 3 ((εforge, εmac)-almost 2-universal salted hash function)
A hash function H : S×X ×P → Y is (εforge, εmac)-universal if (below x1, x2 ∈
X , p1, p2 ∈ P and hs(., .)

def= H(s, ., .))

εforge ≥ max
(x1,p1)6=(x2,p2)

Pr[s ← S; hs(x1, p1) = hs(x2, p2)]

εmac ≥ max
x1,x2,p1

Pr[s ← S; p2 ← P; hs(x1, p1) = hs(x2, p2) ∧ (x1, p1) 6= (x2, p2)]

Every ε-universal hash function is an (ε, ε)-universal salted hash function with
P = ∅. We can now generalize the hash then encrypt paradigm to salted hash
functions.

Theorem 1 (Security of salted hash then encrypt) Let H : S ×X ×P →
Y be (εforge, εmac)-universal and f(.) a uniform random permutation over Y.

If 1/(|Y| − qmac) ≤ εforge,7 then the MAC scheme with secret key s ← S
where the authentication tag for a message m ∈ X is computed by first sampling
p ← P and then setting

MAC(s,m, p) = (f(hs(m, p)), p)

has security

FRGMAC(qmac , qforge) ≤ εmac · q2
mac + εforge · qforge

Proof. Instead of bounding FRGMAC(qmac , qforge) we bound the (larger) probabil-
ity P that any adversary A can forge a MAC or he finds a collision. By a collision
we mean that two outputs (a1, p1),(a2, p2) from the MACing oracle on two (not
necessarily distinct) queries m1 and m2, satisfy a1 = a2 and (m1, p1) 6= (m2, p2).

Let Pcol denote the probability that a collision occurs before A found a
forgery, and Pfrg be the probability that A found a forgery before any collision
occurred, so P = Pcol + Pfrg. Below we bound Pcol ≤ εmac · q2

mac and Pfrg ≤
εforge · qforge which then proves the theorem.

We can bound Pcol ≤ εmac · q2
mac as follows: first, we can assume that A

makes no forgery attempts (as trying to forge can only lower the probability of
finding a collision before there was a successful forgery). Now we will show that
for any 1 ≤ i < j ≤ qmac , the probability that the first collision is amongst the
i’th and j’th query is at most εmac: as we are interested in the first collision,
we can assume that i = 1 and j = 2, as making any intermediate queries
can only lower the success probability (to see this, note that because of the
application of the uniform random permutation, all the adversary learns about
the outputs of the hash function is whether there were collisions or not). Next,
for an adversary which makes only two queries, εmac is a trivial upper bound
on the collision probability (even if we allow A to choose the salt for the first
query). Applying the union bound we get that the probability that there are
any i, j, 1 ≤ i < j ≤ qmac such that the i’th and j’th output collide, is at most
εmac · qmac · (qmac − 1)/2, which thus is an upper bound for Pcol.

We will now prove the bound Pfrg ≤ εforge · qforge . For any j, 1 ≤ j ≤ qforge ,
let Pj denote the probability that the j’th forgery query is the first successful
forgery and there was no collision before this forgery attempt. We will show
Pj ≤ εforge, this proves Pfrg ≤ εforge · qforge as Pfrg =

∑qforge

j=1 Pj . To upper
bound Pj we can assume that A skips the j − 1 first forgery attempts (this can
only increase the success probability of the considered forgery attempt to be the
first successful forgery). Moreover we allow A to chose all the salts for his (up

7 This is satisfied if the hash function is input shrinking and εforge is at least slightly
bigger than the optimal 1/|Y|, which is the setting that interests us. To see that
the restriction is necessary, consider a hash function which is a permutation on
X ×P ≡ Y, then εforge = εmac = 0, but the forgery probability is not 0 as a random
guess will always be successful with prob. 1/|Y|.

to qmac) MACing queries he can ask before his forgery attempt. Again, this can
only increase his success probability.

So we must upper bound (by εforge) the probability of any A winning the
following game: A gets σi = f(hs(xi)) for i = 1, . . . , k (with k ≤ qmac) and xi’s
of his choice. Then he must come up with a σ, x (where x 6= xi for all 1 ≤ i ≤ k).
He wins if f(hs(x)) = σ and σi 6= σj for all 1 ≤ i < j ≤ k.

If A chooses a σ where σ 6= σi for all i = 1, . . . , k, then the success prob-
ability (even conditioned on all σi being distinct), is at most 1/(|Y| − k) ≤
1/(|Y| − qmac) ≤ εforge (the last step by assumption), as then Pr[f(hs(x)) =
σ] ≤ Pr[f(hs(x)) = σ|∀i, 1 ≤ i ≤ k : hs(xi) 6= hs(x)] = 1/(|Y| − k), here the
first step used that if hs(xi) = hs(x), then σ = σi, and the second used that
f is a uniform random permutation and thus if hs(x) is new, then f(hs(x)) is
uniformly random over Y \ {σi, . . . , σk}.

Now consider the other case, i.e. when A chooses a σ where for some i :
σ = σi. From this A we construct an adversary A′ which has at least the same
probability of winning as follows. A′ runs A and answers each of A’s queries
x1, . . . , xk with uniformly random but distinct σ′1, . . . , σ

′
k. When now A outputs

his forgery attempt (σ = σ′i, x), A′ makes the single MACing query xi, gets σi

and outputs the forgery attempt (σ = σi, x). It’s not hard to verify that A′

success probability is at least the one of A (it can be larger as A′ will never lose
the game due to collisions amongst the σ1, . . . , σk, as he only asks one for each
σi). Moreover A′’s success probability is at most εforge as A′ just chooses two
values x, xi before even using any oracle, and then wins if hs(x) = hs(xi). ut

4 A Generic Construction

In this section we show that for every balanced ε-universal hash function H,
where ε can even grow polynomially in the message length L, there exists a
preprocessing using only O(log L) random bits, which makes the hash function
(εforge, εmac)-universal where εforge ≈ ε and εmac is of the smallest possible
order.

Let H : S×{0, 1}∗ → {0, 1}k be ε(.)-almost 2-universal, by this we mean that
for all x1, x2 ∈ {0, 1}∗ where x1 6= x2, ` = max{|x1|, |x2|} and hs(.)

def= H(s, .)

Pr[s ← S; hs(x1) = hs(x2)] ≤ ε(`)

Definition 4 A hash function H as above is balanced if for all ` ≥ k, s ∈ S
and y ∈ {0, 1}k

Pr[x ← {0, 1}`; hs(x) = y] = 2−k

The following lemma states that from any such hash function H which is ε(.)-
almost 2-universal and balanced we can get (non-constructively) a (εforge, εmac)
salted hash function (with domain {0, 1}L for any L > k) where εmac = O(2/2k)
and εforge = ε(L + r). Here r is the length of the public salt and if ε(L) =
O(Lc/2k) we will get r ≈ (2c + 1) log(L).

The construction is very simple, the salted hash function with key s ∈ S,
salt p ∈ {0, 1}r and message x is computed as hs(g(p‖x)) for some permutation
g (we show that a random permutation is appropriate with high probability).

Lemma 1 Let H : S × {0, 1}∗ → {0, 1}k be a balanced ε(.)-almost 2-universal
hash function. Fix some integer L ≥ k and let r be the smallest integer satisfying

2r ≥ 22k · ε(L + r)2 · (2L + r)
log(e)

(1)

then there exists a permutation g over {0, 1}L+r s.t. the salted hash function
H ′ : S × {0, 1}L × P → {0, 1}k with P = {0, 1}r defined as

H ′(s, m, p) def= H(s, g(p‖m))

is (εforge, εmac)− universal with εforge = ε(L + r) εmac = 2/2k.

Proof. Let R
def= 2r and gi(m) def= g(i‖m). The bound on εforge is straightforward:

εforge = max
x1,x2∈{0,1}L,p1,p2∈{0,1}r,(p1,x1) 6=(p2,x2)

Pr[s ← S; hs(gp1(x1)) = hs(gp2(x2))]

= max
y1,y2∈{0,1}L+r,y1 6=y2

Pr[s ← S; hs(y1) = hs(y2)]

= ε(L + r)

Above we used that (p1, x1) 6= (p2, x2) implies y1 6= y2 which holds as y1 =
g(p1‖x1) and y2 = g(p2‖x2) and g is a permutation.

The proof for εmac is by the probabilistic method. We will show that a
permutation g chosen at random has the desired property with probability > 0.
For any a, b ∈ {0, 1}L and i, j ∈ {0, 1}r let Ci,j,a,b denote the random variable
(the probability is over g)

Ci,j,a,b = Pr[s ← S;hs(gi(a)) = hs(gj(b))]

As hs is balanced we have for any (i, a) 6= (j, b) : E[Ci,j,a,b] ≤ 1/2k, and as hs is
ε(.)-almost 2-universal and |gi(a)| = |gj(b)| = L + r

Ci,j,a,b ≤ ε(L + r)

Let
Ci,a,b =

∑

j∈{0,1}r,(i,a) 6=(j,b)

Ci,j,a,b (2)

As the sum ranges over R terms (resp. R− 1 if a = b) we have E[Ci,a,b] ≤ R/2k.
We can apply Hoeffding’s inequality (see Appendix A), for the case a 6= b (then
the sum in eq.(2) has exactly R terms, if a = b then we have only R − 1 terms
and can use the same bound as proven below) we get

Pr [Ci,a,b ≥ 2 · E[Ci,a,b]] < exp
(
− 2 · (R/2k)2

R · ε(L + r)2

)
≤ 2−2L−r

Where in the last step we used (1) (recall that R
def= 2r). So there is a g such

that Ci,a,b ≤ 2 · E[Ci,a,b] ≤ 2R/2k for all i ∈ {0, 1}r and a, b ∈ {0, 1}L, for this g

εmac = max
i∈{0,1}r

a,b∈{0,1}L

Pr[j ← {0, 1}r; s ← S; hs(gi(a)) = hs(gj(b)) ∧ ((i, a) 6= (j, b))]

= max
i∈{0,1}r,a,b∈{0,1}L

R−1
∑

j∈{0,1}r,(i,a)6=(j,b)

Ci,j,a,b

= R−1 max
i∈{0,1}r,a,b∈{0,1}L

Ci,a,b

≤ 2−k+1

ut

5 poly: Hashing by Polynomial Evaluation

A popular way of ε-almost universal hashing is to parse the message into coef-
ficients of a polynomial over some field (we will use GF (2k)) and evaluate it on
a random point. We propose a simple randomized preprocessing for this hash
function: just set the constant coefficient at random. If this coefficient is set uni-
formly at random, this gives a salted hash function with an optimal εmac = 1/2k.
We then show that one can also sample the coefficient from a small set, thus
using fewer randomness, and still achieve an almost optimal εmac ≤ 2/2k. We
will come back to this construction later in Section 7, where we prove some
generic results which imply Lemma 3 and Lemma 4 from this section (though
with somewhat worse parameters).

Definition 5 For M = (M1, . . . , Mm) (each Mi ∈ GF (2k) ∼= Bk) we denote
with fM (.) the polynomial of degree m− 1 over GF (2k) given by

fM (x) =
m∑

i=1

Mi · xi−1

Definition 6 With poly we denote the hash function which on input M ∈
GF (2k)∗ ∼= B∗

k with key s ← GF (2k) is computed as polys(M) = fM (s).

Lemma 2 (see [22]) poly with domain B≤L
k is ε-almost universal with ε =

(L− 1)/2k.

Definition 7 polyGF (2k) is the salted hash function with secret key part s ←
GF (2k) and public salt p ← GF (2k) which on input M ∈ B∗

k is computed as

polyGF (2k)
s,p (M) = f(p,M)(s)

Lemma 3 polyGF (2k) with domain B≤L
k is (εforge, εmac)-universal where

εforge = L/2k (3)
εmac = 1/2k (4)

The bound on εforge follows from Lemma 2, and the bound on εmac is obvious.
We now consider another salted version of the poly hash function which is similar
to polyGF (2k) but where the public salt is not chosen from the whole of GF (2k)
but only from a subset P ⊂ GF (2k).

Definition 8 For any P ⊂ GF (2k) we denote with polyP the salted hash func-
tion with secret key part s ← GF (2k) and public salt p ← P which on input
M ∈ GF (2k)∗ ∼= B∗

k is computed as

polyPs,p(M) = f(p,M)(s)

We will show (constructively, but “non-uniformly”) that there is a “small” P
such that the construction is (εmac, εforge)-universal with εmac = 2/2k. Namely,
a random “small” P works with all but negligible probability (in particular,
once such P is chosen once, it can be fixed forever and “hardwired” into the
implementation).

Lemma 4 For any L ∈ N and a random subset P ⊂ GF (2k) of size |P| =
k(L+2)L2

log(e) , with probability 1−2−k (over the choice of P) the hash function polyP

with domain B≤L
k is (εforge, εmac)-universal with

εforge = L/2k (5)
εmac = 2/2k (6)

Proof. The bound (5) on εforge follows from Lemma 2 (and holds for any P).
To prove the bound (6) on εmac we must show that a P chosen at random has

the claimed property with probability 1− 2−k. For a polynomial f over GF (2k)
we denote with z(f) = |{x ∈ GF (2k) : f(x) = 0}| the number of zeros of f . Let
f be any polynomial over GF (2k) of degree at most L and (for some m to be
defined) let P = (p1, . . . , pm) denote a subset of GF (2k) sampled uniformly at
random (with repetition).

Xi denotes the random variable z(fi) where fi is f + pi (i.e. f with pi added
to the constant coefficient). As pi is random we have Pr[fi(x) = 0] = 1/2k for
any x ∈ GF (2k) and thus

E[Xi] =
∑

x∈GF (2k)

Pr[fi(x) = 0] = 1

and as any polynomial of degree L has at most L roots

0 ≤ Xi ≤ L

Let S = X1 + X2 + . . . + Xm, we have E[S] = m and by the Hoeffding bound
[12]

Pr[S − E[S] ≥ m] = Pr[S ≥ 2m] ≤ exp
(
− m2

m · L2

)
(7)

which for m = k(L+2)L2

log(e) is less than 2−k(L+2). Taking the union bound over all
2k(L+1) polynomials of degree ≤ L, we get the probability that (7) is not satisfied
for at least one of them is at most 2−k(L+2) · 2k(L+1) = 2−k.

To conclude the proof we must still show that any P which satisfies (7)
for all polynomials of degree ≤ L also satisfies (6). εmac is the maximum over
M ∈ GF (2k)L+1 (with the first element from P, but we will not use that) and
M ′ ∈ GF (2k)L of

εmac ≥ Prs←GF (2k),p←P [fM (s) = f(p,M ′)(s)]

Which for f = f(0k,M ′) − fM and fi = f + pi we can write as

Prs←GF (2k),p←P [f(s) + p = 0] =
m∑

i=1

Pr[p = pi]z(fi)/2k ≤ 2/2k

In the last step we used that we chose our P such that
∑m

i=1 z(fi) ≤ 2m for all
f and Pr[p = pi] = 1/m. ut

6 Cascade Construction

In his section we consider the Merkle-Damg̊ard construction. Here a preprocess-
ing which simply appends a few random bits to the message gives a salted hash
function with good parameters.

For a function ξ : {0, 1}k×{0, 1}b → {0, 1}k we denote with MDξ : B∗
b → Bk

the cascade (aka. Merkle-Damg̊ard) construction based on ξ which on input
M = M1‖ . . . ‖Mm, each Mi ∈ Bb, outputs Xm which is recursively defined as
X0 = 0k, and Xi = ξ(Xi−1,Mi).

Definition 9 (MDR) For k, b, L ∈ N where b ≥ log(L) we denote with MDRL :
BL−1

b → Bk the salted hash function whose secret key part is a uniformly random
function ξ : {0, 1}k × {0, 1}b → {0, 1}k and the public salt is r ← {0, 1}dlog(L)e.
The randomized hash value on input M ∈ B∗

b is computed as

MDRL(M) = MDξ(M‖〈r〉b)

Lemma 5 MDRL : BL−1
b → Bk is (εforge, εmac)-universal with

εmac =
2
2k

+ O(L3/22k) (8)

εforge =
L

2k
+ O(L3/22k) (9)

Proof. The proof follows almost directly form Propositions 1 and 2 from [8].
Proposition 2 from [8] states that for a random ξ and any M 6= M ′ ∈ BL

b

Prξ[MDξ(M) = MDξ(M ′)] ≤ L/2k + O(L3/22k)

which directly gives the bound (9) on εforge. Proposition 1 from [8] states that
if M and M ′ differ in the last b-bit block, then an even better bound

Prξ[MDξ(M) = MDξ(M ′)] ≤ 1/2k + O(L2/22k)

applies. To bound εmac we can use that MDR adds a random last block r ←
{0, 1}dlog(L)e to the message, which then will be equivalent to the last block of
the other message with prob. at most φ ≤ 1/L and we get

εmac ≤ (1− φ) · 1
2k

+ φ · L

2k
+ O(L3/22k) ≤ 2

2k
+ O(L3/22k).

ut

7 A Generic Construction from ε-∆ Universal Hash
Functions

In this section we consider hash functions which are not only ε-universal, but
satisfy the stronger notion of ε-∆ universality.

Definition 10 (ε-∆ universal hash function [16]) A hash function H : S×
X → Y, where Y is an additive Abelian group, is ε-∆ universal if for all x, y ∈
X ,x 6= y and c ∈ Y

Pr[s ← S; hs(x)− hs(y) = c] ≤ ε

It is easy to see (and stated as Proposition 2 below) that adding a value chosen
uniformly at random to the output of a ε-∆ universal hash function gives a
(εforge, εmac)-universal hash function with εforge = ε and an optimal εmac =
1/|Y|.

The main result of this section is a theorem which states that for every ε-∆
universal hash function, there always exists a randomized postprocessing, which
only uses a logarithmic number of random bits and makes the hash function
(εforge, εmac)-universal where εforge = ε and εmac is close to optimal. By post-
processing we mean that only the hash value of the message, but not the message
itself, must be randomized.

Let us remark that the polynomial construction from Section 5 is L/2k-∆
universal if the constant coefficient (i.e. the first message block) is fixed, say
0k. With this observation Lemma 3 follows directly from Proposition 2, and
Lemma 4 (with somewhat worse parameters) follows from Theorem 2 we prove
below.

Definition 11 ((εforge, εmac)-∆ universal hash function)
For an ε-∆ universal hash function H : S × X → Y and a set P ⊆ Y we say
that HP is (εforge, εmac)-∆ universal if for any p1, p2 ∈ P, x1, x2 ∈ X where
(p1, x1) 6= (p2, x2)

εforge ≥ Pr[s ← S; hs(x1) + p1 = hs(x2) + p2]

and

εmac ≥ Pr[s ← S; p ← P; hs(x1) + p1 = hs(x2) + p ∧ (p1, x1) 6= (p, x2)]

Proposition 2 If H : S × X → Y is ε-∆ universal, then HY is (ε, 1/|Y|)-∆
universal.

Theorem 2 If H : S × X → Y is ε-∆ universal, then there exists a P ⊂ Y of
size m = |P| such that

m ≤ ln(|X |2 ·m) · |Y|2 · ε2 (10)

and HP is (ε, 2/|Y|)-∆ universal.

Proof. The proof is by the probabilistic method. We show that a random subset
P = {p1, . . . , pm} of Y of size m which satisfies (10) has the claimed property
with probability > 0 and thus exists.

For i, j : 1 ≤ i, j ≤ m and a, b ∈ X where (i, a) 6= (j, b) let let Ci,j,a,b denote
the random variable (the probability is over the choice of P)

Ci,j,a,b = Pr[s ← S;h(a) + pi = h(b) + pj]

and for (i, a) = (j, b) we set Ci,j,a,b = 0. Clearly for (i, a) 6= (j, b)

E[Ci,j,a,b] = 1/|Y|
Now consider the random variable

Ci,j,b =
∑

j∈X
Ci,j,a,b

We have E[Ci,a,b] ≤ m/|Y| and for a 6= b we get by the Hoeffding bound (see
Appendix A) an upper bound for the probability that Ci,a,b is more that twice
its expected value (for a = b the bound is even slightly better)

Pr [Ci,a,b ≥ 2 · E[Ci,a,b]] < exp
(
−2 · (m/|Y|)2

m · ε2

)

≤ exp
(
− m

|Y|2 · ε2

)

≤ 1
|X |2 ·m

So there is a P such that Ci,a,b ≤ 2 ·E[Ci,a,b] ≤ 2 ·m/|Y| is satisfied for all i ∈ [m]
and a, b ∈ X . For this P we get

εmac = max
i∈[m],a,b∈X

Pr[j ← [m]; s ← S;hs(a) + pi = h(b) + pj) ∧ ((pi, a) 6= (pj , b))]

= m−1 max
i∈[m],a,b∈X

∑

j∈[m]

Ci,j,a,b

= m−1 max
i∈[m],a,b∈X

Ci,a,b

≤ 2/|Y|
ut

To get an intuition what eq. (10) means, assume we start with a hash function
which maps L-bit strings to k-bit strings and which is Lc/2k-∆ universal for
some c > 0, so |X | = 2L and |Y| = 2k. Now (10) means

m ≤ (2 · L + log m) · L2c

log e

or assuming log(m) ≤ L

log(m) ≤ log 3− log e + (2c + 1) log L < 2 + (2c + 1) log L (11)

The assumption log(m) ≤ L holds for all L ≥ 2 + (2c + 1) log L, thus for such L
also (11) is satisfied. So to sample from P we need O(1) + (2c + 1) log L random
bits.

8 Numerical Example

In this section we give a numerical example to illustrate how the classical upper
bound ε ·q2

mac +ε ·qforge for the forging probability from Proposition 1 compares
to the εmac · q2

mac + εforge · qforge upper bound (for salted hash then encrypt)
given in Theorem 1. We will use polynomial hashing poly and its salted version
polyP as considered in Section §5. We take a (standard) tag-length of k := 128
bits and the messages to be signed are of size 128MB (so each message has
L := 223 blocks of size 128 bits). Now consider an adversary which can request
qmac := 240 MACs and make up to qforge := 240 forgery attempts. For these
parameters, poly is ε-universal with ε = (L − 1)/2128 ≈ 2−105, and the bound
from Proposition 1 gives an upper bound on the forging probability for poly of

ε · q2
mac + ε · qforge ≈ 280

2105
+

240

2105
≈ 2−25. (12)

For the salted version polyP , which as shown in Lemma 4 has εforge = L/2128 =
2−105 and εmac = 2−127, we get with Theorem 1 an upper bound of

εmac · q2
mac + εforge · qforge =

280

2127
+

240

2105
≈ 2−47. (13)

So, compared to the classical bound (12), the security guarantee is better by a
factor of ≈ 222 ≈ 4 · 106. Note that this gap is basically L/2, this will always
be the case for (the most interesting) range of parameters where εmac · q2

mac À
εforge ·qforge . The length of the random salt used in this construction (with these
parameters) is 3 log(L) + log(k) = 3 · 23 + 7 = 76 bits.

For the cascade construction MD and its salted version MDR as considered
in Section §6 (with b = k = 128), we get the same bounds (12) and (13) re-
spectively,8 but the length of the random salt needed for this construction is
considerably shorter, log(L) = 23 bits compared to the 76 bits needed for polyP .
8 The reason is that the bounds on εforge, εmac for MDR as given in Lemma 5 are

identical to the bounds for polyP from Lemma 4 up to a O(L3/2k) term, which for
the parameters considered here will be irrelevant.

9 Related Work and Open Problems

Following the initial papers of Carter and Wegman [7, 26], foundations of uni-
versal hash function-based authentication were laid by [23, 16, 19, 24].

The analysis of the folklore polynomial construction is well known (see [5] for
some history). The Merkle-Damg̊ard functions was analyzed as an ε-universal
hash function by [2, 8], the latter proving a bound of ε ≈ L/2k for hashing an
Lb-block input using the compression function ξ : {0, 1}k × {0, 1}b → {0, 1}k

(modeled as a truly random function; here L < 2k/2).
It is also interesting to compare the “hash then encrypt” approach we study

here with a variant of this approach studied by [26, 16], which actually led to the
introduction of ε-∆ universal hash functions. Here one replaces a block cipher
by a “fresh one-time pad”. In modern terminology, the MAC has a tag of the
form (r, hs(m) ⊕ ft(r)), where ft is a pseudorandom function with a new key
t, and r is a fresh “nonce” which is not supposed to repeat. In practice, this
means that r is either a counter, or a fresh random value. In the first case,
we get perfect security (aside from the insecurity of f).9 However, maintaining a
counter introduces state, and stateful MACs are extremely inconvenient in many
situations (see [21, 15] for several good reasons). Correspondingly, to make a fair
comparison we should only consider the case when r is a fresh random salt (in
which case the MAC is indeed stateless, but r has to be part of the tag). To make
such a comparison, let us fix the output of the hash function hs to {0, 1}k, and
replace the PRF by a truly random function. Then, we get that the length of the
tag in the “XOR-scheme” is |r|+k, while its exact security is ε+O(q2/2|r|) (where
the last term comes from the birthday bound measuring collisions on r). Thus,
to get to the desired overall security of O(q2/2k), this randomized MAC must
use |r| = Ω(k) random bits and increase the tag length by this amount as well.
On the other hand, we demonstrated that our randomized MACs can achieve
the same level of security using only |p| = O(log L) bits of randomness, which is
asymptotically smaller than k. In other words, although using the one-time pad
has other advantages over using the block cipher,10 it is provably inferior to our
method for achieving O(q2/2k) security (via stateless MACs).

We also mention that message preprocessing has been used previously in
other contexts. For example, we already mentioned the work of Jaulmes et al.
[15] on RMAC. Semanko [21] investigated the security of iterated MACs (like
the cascade or CBC construction), which are randomized by prepending a ran-
dom string. Here finding collisions does not necessarily imply a new forgery, but
Semanko showed some non-obvious forgery attacks. In particular, even when
prepending up to k/2 random bits one can find a forgery after 2k/2 queries (and
not just a collision, which by the birthday bound is trivial). Let us stress that in

9 Bernstein [4] investigates how much security one loses when f is a permutation (like
AES).

10 E.g., it can go below the O(q2/2k) barrier, even when the hash function output is
fixed to k.

our case, the length of random salt is small enough so that the above distinction
between collisions and forgeries does not play any significant role.

Bellare et al. [2] also used randomness to improve the security of the cascade
construction for a (stronger than ours) task of domain extension of a pseudoran-
dom function (in which case there is no need to add the encryption step at the
end). In particular, the message preprocessing used there is different from ours
(prepend instead of append), and the exact security is weaker as well. The same
paper also considers changing the cascade construction by appending a fixed
but random secret string t to each message (instead of choosing a fresh public
t per each message). However, this is done for a different purpose of achieving
“prefix-freeness” of messages.

Recently, Halevi and Krawczyk [9] also proposed to use randomized mes-
sage preprocessing in the design of signature schemes. Their goal is to lower
the computational assumptions on the hash function used in signature schemes.
In particular, they show that randomized versions of some signature schemes
based on hash functions only require second-preimage resistance while the orig-
inal scheme needed (the stronger) collision resistance. This works continues and
optimizes the more general direction of replacing a fixed collision-resistant hash
function in the “hash then sign” paradigm by a universal one-way hash function
[13] chosen at random for each new message signed (and appended to the mes-
sage before signing). Notice, while the main goal of [9] is to reduce the needed
computational assumption on the hash function (and not the length of the salt
or the actual exact security), our setting is information-theoretic with the pri-
mary goal of improving the exact security while simultaneously minimizing the
salt length.

Amortized Collision Probability. Another possibility to get better bounds
on the exact security of the “hash then encrypt” paradigm is to consider “amor-
tized” collision probability. For any q messages x1, . . . , xq and a ε-universal hash-
function, the probability that h(xi) = h(xj) for any i 6= j is in O(εq2). This
O(εq2) bound is proven by applying the union bound to all

(
q
2

)
pairs of authen-

ticated messages, which introduces some slackness: even if there are some pairs
of messages with collision probability ε, it is not clear whether there exist q À 2
messages where each (or most) pairs collide with probability Ω(ε), and, more-
over, the collision probabilities for distinct pairs are sufficiently independent.11

Thus, it is possible that the actual collision probability is much less than O(εq2).
We know of one example where this has been proven to be the case, namely the
CBC-function (based on uniformly random permutations). This function is ε-
universal with ε = Θ(L1/ ln ln L) [3], but using the amortized approach described
above (assuming q ≥ L2 and L ≤ 2k/8) one can prove [18] an optimal O(q2/2k)
security bound, despite ε = ω(1/2k).

Of course, this raises the question if the other constructions we consider
also already achieve O(q2/2k) security (for a non-trivial range of parameters)

11 To see why those probabilities must be independent, consider an h where either all
or none of the messages collide, then the collision probability for all q messages is
only O(ε) and not O(εq2).

without randomization. As to the cascade construction, this is easily seen not to
be the case, as there are q messages of length L where the collision probability
is Θ(Lq2/2k). As to the polynomial construction, we do not know the answer,
but conjecture that one cannot achieve the optimal security O(q2/2k) (as we do
with randomization).

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In CRYPTO, pp. 1–15, 1996.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revis-
ited: The cascade construction and its concrete security. In FOCS, pp. 514–523,
1996.

3. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Anal-
yses for CBC MACs. In Advances in Cryptology — CRYPTO ’05, August 2005.

4. Daniel J. Bernstein, Stronger Security Bounds for Wegman-Carter-Shoup Authen-
ticators. In EUROCRYPT, pp. 164–180, 2005.

5. Daniel J. Bernstein, The Poly1305-AES Message-Authentication Code. In FSE,
pp. 32–49, 2005.

6. Antoon Bosselaers and Bart Preneel, editors. Integrity Primitives for Secure In-
formation Systems, Final Report of RACE Integrity Primitives Evaluation RIPE-
RACE 1040, volume 1007 of Lecture Notes in Computer Science. Springer, 1995.

7. Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences (JCSS), 18:143–154, 1979.

8. Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin.
Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC
Modes. In CRYPTO, pages 494–510, 2004.

9. Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized
hashing. In CRYPTO, 2006.

10. G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 1980.

11. Tzvika Hartman and Ran Raz. On the distribution of the number of roots of
polynomials and explicit weak designs. Random Struct. Algorithms, 23(3):235–
263, 2003.

12. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
J. Amer. Statist. Assoc., vol. 58:13–30, 1963.

13. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pages 33–43, 1989.

14. Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Graphs. Wiley,
2000.

15. Éliane Jaulmes and Antoine Joux and Frédéric Valette, On the Security of Ran-
domized CBC-MAC Beyond the Birthday Paradox Limit: A New Construction. In
FSE, pp. 237–251, 2002.

16. Hugo Krawczyk. LFSR-Based Hashing and Authentication. In CRYPTO, pp.
129–139, 1994.

17. Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. Journal
of Cryptology, pages 315–338, 2000.

18. Krzysztof Pietrzak. A tight bound for EMAC. In ICALP (2), pages 168–179, 2006.

19. Phillip Rogaway. Bucket Hashing and Its Application to Fast Message Authenti-
cation. In CRYPTO, pp. 29–42, 1995.

20. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties.. J. ACM, 27(4):701–717, 1980.

21. Michael Semanko. L-collision Attacks against Randomized MACs. In CRYPTO,
pp. 216–228, 2000.

22. Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005.

23. Douglas R. Stinson. Universal Hashing and Authentication Codes. Designs, Codes
and Cryptography, 4:369–380, 1994.

24. Douglas R. Stinson. On the connections between universal hashing, combinatorial
designs and error-correcting codes. In Congressus Numerantium 114:7–27, 1996.

25. Douglas R. Stinson. Personal Communication, 2005.
26. Mark N. Wegman and Larry Carter. New hash functions and their use in au-

thentication and set equality. Journal of Computer and System Sciences (JCSS),
22(3):265–279, 1981.

A Hoeffding Bound

Let X1, . . . , Xn be independent random variables. Further assume the Xi are
bounded, i.e. for each i = 1, . . . , n there are ai, bi such that

Pr[ai ≤ Xi ≤ bi] = 1

then for the sum S = X1 + . . . Xn we have for any t ≥ 0

Pr[S − E[S] ≥ nt] ≤ exp
(
− 2n2t2∑n

i=1(bi − ai)2

)

We will only use the case where the Xi are identically distributed such that
0 ≤ Xi ≤ ε and are only interested in the probability that S ≥ 2E[S], so if γ is
an upper bound on E[S] we use

Pr[S ≥ 2 · E[S]] ≤ Pr[S − E[S] ≥ γ] ≤ exp
(
− 2 · γ

n · ε2

)
(14)

In our applications the Xi’s are not completely independent, but chosen at
random from some finite set without repetition. Fortunately the Hoeffding bound
also applies in this case as proven in section 6 of the original paper [12] (see also
Theorem 2.10 of [14]).

