An Analytical Model
for Time-Driven Cache Attacks

Kris Tiri!, Onur Aciicmez®*, Michael Neve!, and Flemming Andersen?

! Platform Validation Architecture
2 Visual Computing Group
Intel Corporation
2111 NE 25th Avenue, Hillsboro Oregon 97124, USA
{kris.tiri,michael.neve.de.mevergnies,flemming.l.andersen}@intel.com
3 Computer Science Lab
Samsung Information Systems America, USA

o.aciicmez@samsung.com

Abstract Cache attacks exploit side-channel information that is leaked
by a microprocessor’s cache. There has been a significant amount of re-
search effort on the subject to analyze and identify cache side-channel
vulnerabilities since early 2002. Experimental results support the fact
that the effectiveness of a cache attack depends on the particular im-
plementation of the cryptosystem under attack and on the cache archi-
tecture of the device this implementation is running on. Yet, the precise
effect of the mutual impact between the software implementation and the
cache architecture is still an unknown. In this manuscript, we explain the
effect and present an analytical model for time-driven cache attacks that
accurately forecasts the strength of a symmetric key cryptosystem based
on 3 simple parameters: (1) the number of lookup tables; (2) the size
of the lookup tables; (3) and the length of the microprocessor’s cache
line. The accuracy of the model has been experimentally verified on 3
different platforms with different implementations of the AES algorithm
attacked by adversaries with different capabilities.

1 Introduction

Exploiting cache behavior was presumed possible by early works [7,8]. Yet, Page
was the first to study the cache-based side-channel attacks. In a theoretical work
[14], he classified the cache attacks based on the method of leakage observation
into two types of attacks: trace-driven and time-driven cache attacks.

In trace-driven attacks (e.g. [1,4,9]), the adversary observes the succession
of cache hits and cache misses during a cryptographic cipher operation. Given
(some of) the implementation details of the cipher, she is then able to derive
key material from whether a particular key-dependent memory access results
in a cache hit or a cache miss. In time-driven attacks (e.g. [2, 3,5, 16]), the
adversary observes the total execution time of a cryptographic cipher operation.

* Work done while being with Intel Corporation for an internship.

She is then able to derive key material as the execution time depends on the
number of key-dependent memory accesses that result in cache misses. Since
the cache behavior is only one of the many elements that affect the overall
execution time of a cryptosystem, time-driven attacks require statistical analysis
using a large number of samples to infer key material. However, they are more
generic and easier to apply than trace-driven attacks, because simple and pure
software methods are sufficient to carry out time-driven attacks. On the other
hand, the current trace-driven attacks are based on power analysis and mandate
physical access and alteration of the processing device, and thus their use is very
restricted. To the best of our knowledge, trace-driven attacks have not been
demonstrated in practice.

Recently, another type of cache attack has been demonstrated: the access-
driven cache attacks [11,13,15]. In this attack type, the adversary observes
the individual cache lines accessed by the cryptographic cipher operation. She
derives key material from knowing which cache lines and thus also which table
entries have been touched during the key-dependent memory accesses. A single
observation caries a lot of information and access-driven attacks generally require
a significantly lower number of measurements than other cache attacks.

Numerous mitigations have been proposed alongside and as a reaction to
the cache-attacks (e.g. [3,5,6,9,13,14]). Most of them are software based and
alter the size or the deployment of the lookup tables. For instance, with compact
lookup tables [6], where a cache line contains relatively more table entries, or
with dynamic lookup table permutations [6], where a cache line contains different
table entries over time, less information is disclosed through knowledge of a
cache line access. Yet, it is never specified how strong these mitigations are.
The mitigations appear to be ad hoc and we are unaware of any formal proofs
attesting their effectiveness.

Limited experimental results, however, do exist to support the mitigations [5,
6]. Yet the results are not available for all microprocessors, are only valid for a
single algorithm and are unclear with respect to the actual strength of the mit-
igation. In this manuscript, we will present an analytical model that allows to
quickly evaluate any mitigated or non-mitigated implementation on any micro-
processor of any symmetric key encryption algorithm using lookup tables that
are being exploited in time-driven cache attacks. The model provides a strict
lower bound on the required number of measurements for a successful time-
driven cache attack. The analytical model allows further to modify the threat
level: it can incorporate adversaries with a sampling resolution as small as a
single encryption round or as large as several complete encryptions.

The remainder of this document is organized as follows. The next section
briefly describes time-driven attacks and illustrates them with the last round
correlation attack. Section 3 first derives the analytical model and then shows
that it is universal and valid for any time-driven cache attack as the resulting
metric is based on the signal-to-noise ratio present in the measurements. In
section 4, the analytical model is experimentally verified on different platforms

using the unmitigated OpenSSL and several mitigated implementations of the
AES algorithm. Finally a conclusion will be formulated.

2 Time-Driven Cache Attacks

The cache is a processor component that stores recently used data in a fast
memory block close to the microprocessor. Whenever the processor tries to re-
trieve data from the main memory, it can be delivered more quickly if this data
is already stored in the cache (a.k.a. cache hit). On the other hand, if the data is
not available in the cache (a.k.a. cache miss), it has to be fetched from the main
memory (or a higher level of cache), which has a much larger latency compared
to the cache. The difference between both cache access events, i.e. a cache hit
and a cache miss, is measurable and provides the attacker with information on
the state and the execution of the algorithm to extract secret key material.

Observing each single cache access event, however, is extremely hard when
performing a local attack and even impossible for remote attacks. Hence in a
time-driven cache attack, the adversary observes the aggregated effect of all the
memory accesses in a cryptographic operation, i.e. the total number of cache
misses and hits or at least its effect on the execution time of the operation. To
infer key material, she then analyzes cache collisions in a lookup table of interest.

In this paper, we define a cache collision as the situation involving two differ-
ent memory accesses attempting to access the same memory location or different
but very close memory locations that are stored in the same cache line. A cache
line, aka. cache block or entry, is the smallest unit of memory that can be trans-
ferred between the main memory and the cache. The effect is ideally that the
first access ensures that the data is in the cache such that the second access
results in a cache hit. The attack is based on the assumption that when there
is a cache collision between two particular table lookup operations, the total
number of cache misses tends to be lower. On the other hand, if there is no
collision between these two table lookup operations, then the overall number of
cache misses tends be higher.

Note that even when there is no cache collision between the two particular
table lookup operations under investigation, the second cache access might still
result in a cache hit because of a cache collision with another table lookup oper-
ation. However, if enough observations are taken into account, the distribution
of the number of cache misses when the cache collisions are always correctly pre-
dicted will be different from the distribution obtained when they are not. Hence,
the resistance against an attack is measured as the required number of samples
for a successful attack or in other words the number of samples that must be
analyzed to distinguish the correct key guess from the incorrect key guesses.

An adversary tries to estimate whether a cache collision occurs between two
particular table lookup operations by examining the indices of the lookup oper-
ations. She computes these indices based on the known and observable data and
also based on a guess on a fragment of the secret key. Note that the secret key
fragment is relatively small and that the computational complexity of a cache

attack is significantly reduced compared to a brute-force attack on the entire
secret key. The complete secret key is revealed by finding all of the composing
key fragments.

Several statistical techniques are available to decide on the correct key value.
For instance, Bonneau et al. suggest the t-test to find statistical significant differ-
ent averages between distributions [5]. We use the correlation coefficient between
the measurements and the estimations. This method is common practice in side-
channel analysis, and especially in power analysis. This method allows us to
deduce our analytical model for time-driven cache attacks that can be used to
compute the strength of a given implementation on a given platform instead of
relying on cumbersome empirical assessments to estimate the required number
of measurements for a successful attack.

With the correlation coefficient method, the secret key fragment Kgecpet is
found by evaluating the following cost function:

Kecret = maxK(|COTT(M7 EK)D (1)

The vector M consists of the measurement scores that represent the number
of cache misses that occur during the cryptographic cipher operation on the mes-
sages in a sample set. To be more precise, a measurement score is a value that
approximates the number of cache misses realized during the operation such as
the execution time of the operation or the cache miss count obtained via the use
of performance counters. The vector Ex consists of the corresponding estima-
tions of the adversary on the actual number of cache misses. As mentioned above,
she computes these estimations by using the known values of the ciphertext or
the plaintext and her guess K on a portion of the secret key.

2.1 Last round correlation attack

For a better understanding, we now describe the correlation attack on the last
round of AES-128. We successfully mounted this attack on 10 different platforms
(2 servers and 8 PCs) from 3 different processor manufacturers with 7 different
operating systems.

Figure 1 shows a snippet of the last round of the OpenSSL AES implemen-
tation [12]. This implementation uses four lookup tables Te0, Tel, Te2, and Te3
for the first 9 rounds and a single table Te4 for the 10" (i.e. last) round. Each
table contains 256 4-byte words. The input to the tables is a single byte output
of the preceding key addition.

The attack will estimate a single cache miss of the last round accesses and
compare it with the measurement score for the total number of cache misses of
the complete AES encryption. The estimation assumes that if 2 inputs to the
table of interest Te4 point to the same cache line, there is a cache hit; while if
they point to different cache lines, there will be a cache miss. The table indexes
—i.e. (£0>>24), (£t1>>16)&0xff, (t2>>8)&0xff), etc. in figure 1— are a single
byte of the input to the last encryption round. The model thus estimates whether

< pgm) > equals < pi'% 510) is the " byte input to the 10" and

;. >, where p

void AES_encrypt(const unsigned char *in,
unsigned char *out, const AES_KEY *key) {

// apply last round and
// map cipher state to byte array block:

sO =
(Te4[(t0 >> 24) 1 & 0xf£f000000) ~
(Teda[(t1 >> 16) & Oxff] & 0x00£f0000) ~
(Te4[(t2 >> 8) & Oxff] & 0x0000ff00) ~
(Te4[(t3) & Oxff] & 0x000000ff) ~
rk[0];

PUTU32(out , s0);

sl =
(Ted[(t1 >> 24)] & 0xf£000000) ~
(Te4a[(t2 >> 16) & Oxff] & 0x00££f0000) ~
(Te4[(t3 >> 8) & Oxff] & 0x0000£f00) ~
(Te4[(tO) & Oxff] & 0x000000ff) ~
rk[1];

Figure 1. Last round snippet of OpenSSL AES_encrypt function [10].

last encryption round and where the <> operator selects the most significant
bits to account for the fact that a cache line contains several table elements
ordered in function of the table index. The values < pglo) > and < p§10) >

can be calculated as < sbox_l(RKi(lO) ®C;) > and < sbox_l(RK;lo) ®Cj) >
based on the ciphertext bytes C; and C}, which are known to the attacker, and

a guess on the last round key bytes RK i(lo) and RK](10). The correct values of

RK i(lo) and RKJ(-lo) are the ones that result in the highest correlation coefficient
between the measurements and the estimations. The key search space equals 2'6
to find the 2 initial key bytes and 14 - 28 to find the remaining 14 key bytes. In
the remainder of this manuscript, we will refer to this attack as the cache line
estimation (CLE) attack. The attack can be simplified if the estimation neglects
the fact that a cache line contains several table elements and simply assumes
that only when two inputs to the table Te4 are equal, there is a cache hit; while
if they are different, there will be a cache miss. In that case, the model estimates
if pglo) equals p;lo) or not. The substitution box is a nonlinear bijection and can
be removed from the equality estimation. The model thus estimates whether

RKi(lO) @ C; equals RKJOO) @ C}, which can be simplified further to estimating
whether C; equals RK i(jlo) ®C; with RK, i(jm) = RK" o RK ;- The correct value

3
of RK, 1(11 9 is the one that results in the highest correlation coefficient between
the measurements and the estimations. The key search space now equals 15 - 28
to find the 15 offsets RKi(jlo) from RKi(lo) and 2% to brute-force RKi(lo). In the
remainder of this manuscript, we will refer to this attack as the table index
estimation (TIE) attack. Note that the idea behind the last round correlation
attack is universal and can be applied to any implementation of a symmetric key
encryption algorithm using lookup tables. In the remainder of this manuscript,

we will refer to the lookup table of which the collisions are analyzed as the lookup
table of interest.

3 Analytical Model

For a correlation attack, Mangard derived that the number of measurements NV
required for a successful attack can be computed as follows [10]:

2

Za 2.72
N=3+8- ~ e (2)
m(i2))

The parameter p is the correlation coefficient between the measurement vec-
tor M and the vector Fk_, . .,, which is the estimation vector computed from
the correct secret key fragment Keerer. The parameter « is the probability to
discover the secret key, while Z, is the quantile of the standard normal distri-
bution for a probability a. With a probability of 0.99 to discover the secret key
fragment, N can be approximated as 11/p?.

Given equation 2, the attack resistance of an implementation can be deter-
mined by (1) modeling the measurements; and by (2) computing the correlation
coefficient between the estimations and the modeled measurements:

E(EK.cerer = M) — B (Ek...,..) - E (M)

p oy
VE(E2) —E(Ex....)°\/E(M?) ~E(M)?

We will construct the analytical model of the measurements based on the
following 5 assumptions:

secret

3)

1. The cache does not contain any data related to the cryptographic cipher op-
eration until the operation begins. In other words, the cache is assumed to be
“clean” before the operation starts. Note that this is a valid assumption as
in order for the adversary to analyze the observed side-channel information
she must hypothesize a known initial state of the cache.

2. There are no collisions between different tables used in the cryptographic ci-
pher operation. The cache areas on which each table maps to are mutually
disjoint. Note that this is a valid assumption as the cache size of contempo-
rary platforms is large enough to store all the tables of nearly all common
symmetric key algorithms.

3. The cache accesses during the cryptographic cipher operation are random and
independent from each other. Note that this is a valid assumption because
of the avalanche effect of cryptographic algorithms.

4. The cryptographic cipher operation operates uninterrupted. There is no out-
side effect on the operation and its cache access pattern. Note that this is
a valid assumption as the model models a cryptographic cipher operation.
The operation can be a single encryption for a normal adversary; multiple
encryptions for a limited adversary; and a single round or even a more atomic
operation for a powerful adversary.

5. The ezecution time of the cryptographic cipher operation is proportional to
the number of cache misses. Note that this is the foundation for time-driven
cache attacks. Figure 2 shows the linear relationship between the encryption
time and the total number of cache misses for the AES algorithm on an arbi-
trary platform. The results were computed based on 100 million encryptions
of random data and averaging the encryption times of those that yield the
same number of cache misses. The non-linear effects of the outliers are due
to an insufficient number of those events.

210 T T
900
890
880

870

encryption time - [clock cycle]

860
50 55 60 65 70 75 80 85

number of cache misses

Figure 2. Linear relationship between number of cache misses and execution time.

Since the execution time is proportional to the number of cache misses, the
analytical model can draw on the number of cache misses instead of on the
execution time. Furthermore, using the exact number of cache misses will assure
a lower bound on N since any practical measurement score for the number of
cache misses will be noisier than the actual number as can be observed from the
outliers in figure 2 for which insufficient samples were available to average out
the noise.

We will now derive the individual components of equation 3. Since the cache
accesses are independent, the 15 and 2"% moment of the number of cache misses
equal the sum of the moments of the T tables used in the cryptographic cipher
operation, as shown in equation 4. M; denotes the number of cache misses due
to accesses to table ¢.

E(M)=> E(M) ; E(M?*)=>) E(M) (4)

As a result, we can concentrate on calculating the moments for a single
lookup table and combine them afterwards. It can be shown that the probability
Py, 1(j) that of a table occupying ! cache lines exactly j cache lines are accessed
after k accesses to the table is expressed by equation 5, where C7 : is the binomial
coefficient expressing the number of combinations of r items that can be selected
from a set of n items.

cy (i(—l)j—ic;iik)

Pea(j) = = " (5)

Using these probabilities, the expected value of the number of cache misses
E(M) and the variance on the number of cache misses E(M?) — E(M)? for k
accesses to a table occupying [cache lines can be calculated as in equations 6
and 7 respectively. A simple expression for the expected value can be derived by
noting that the probability of a single cache line not being loaded into the cache
after k accesses to [cache lines is (1 —1/1)*. As a result, the expected number of
cache lines that are not loaded becomes [— (1 — 1/1)* and the expected number
of lines that are loaded pas(k,1) equals I —1- (1 — 1/1)F.

l I—1*
(k,0) =D J-Pupl)=1-1-{—— (6)
M]Z::l] (k,1)\J (I)

l
ok 1) =Y 5 Puyy(5) — mis (k1) (7)

j=1

For ease of calculation, we now adjust the estimation to output a 1 if a
cache hit has been predicted and a 0 if a cache miss has been predicted. This
only changes the sign of the correlation coefficient with respect to our earlier
assumption that the estimation outputs a 0 for a cache hit and a 1 for a cache
miss as p(4A — X,Y) = —p(X,Y) with X, Y random variables and A constant.

To find the 1%* and 2" moment of the estimations, we note that the estima-
tion is either a 1 or a 0. Only the 1 value will contribute to the moments, which
are thus equal to 1- P(E = 1) and 12- P(E = 1), with P(E = 1) the probability
of having an estimation equal to 1. To find P(E = 1), we need to differentiate
between the 2 estimation models. For the table index estimation, the probability
that 2 independent accesses to a table use the same table index is equal to 1/r,
with r the number of elements in the table. For the cache line estimation, the
probability that 2 independent accesses use the same cache line is equal to 1/1,
with [the number of cache lines occupied by the table. The expected value of
the estimated number of cache misses E(E) and the variance on the estimated
number of cache misses E(E?) —E(E)? can be calculated as in equations 8 and 9
respectively.

1 1
/uE|T1E = ;) ME|CLE = 7 (8)

0% = hE — [()
Finally, to find E(E.M), we need to differentiate between the table of interest
and the other tables that are part of the cryptographic cipher operation. For
the tables that are not of interest, the estimation and the measurements are
independent and E(E - M) is simply E(E) - E(M). For the table of interest, only
the estimation with value 1 will contribute to the moment and E(E - M) is equal
to P(E=1)-1-pug(k,1) where pg(k,1) is the expected number of cache misses
with k accesses to [cache lines when a cache hit is correctly estimated. Since
a cache hit will occur we can ignore the first access and the expected number
of cache misses is the expected number of cache misses for the remaining k& — 1
accesses:

Using the previous equations and derivations, the correlation coefficient be-
tween the estimations and the measurement score observing the cache misses of
T tables, with table T the table of interest, is equal to:

rE: (i pona (K, 1) + H'H(kTalT)> —HE - (i MM(th,lt))
t=1

t=1

p= (11)

T
OB Z o (ke lt)
=1

. kp,l
_ _#e_polkr,lr) where up(kr,lr) = pu(kr,lr) — par (b, lr)

C(lr—1 kp—1
= I

Combining equation 2 and equation 11 results in the analytical model for
time-driven cache attacks:

2.72

by pp(krlr)

2
oL T

> ot (ki)
t=1

As an example, for the last round correlation attack using the cache line
estimation to attack the OpenSSL AES implementation running on a processor
with cache lines of length 64 bytes, N can be found by noting that in addition
to the 16 accesses to the table of interest Te4, which occupies 16 cache lines,
there are 36 accesses to each of the other 4 tables Te0, Tel, Te2 and Te3, which
each also occupy 16 cache lines. With a probability for success equal to 0.99,

(12)

the resulting expected number of measurements for success N is forecasted to
be 6592:

11
Nlacoso = —7102 610 = 6592 (13)
1/16—1/162 ~ 4.53,(36,16)+02,(16,16)

Equation 14 tells us that for the same implementation on the same platform,
the cache line estimation attack is about /I times more effective than the table
index estimation attack. This means for instance that in order to attack a regular
OpenSSL implementation on a platform with 64 byte cache lines 16 times less
measurements are needed when the cache miss estimation is based on cache
collisions instead of internal collisions.

2
HKEE
]]\\[7|TIE _ ZJ2§|CLE z; (14)
|CLE £|TIE

Equation 15 tells us that the analytical model is based on the signal-to-noise
ratio that is present in the measurements and hence is independent of the actual
method a time-driven attack with a given estimation model uses to select the
secret key fragment. Indeed, for the same attack on two different implementations
A and B on the same platform, the increase in resistance can be expressed as
follows:

wh (kb))
Ta
Z U%J(ktA7ltA)
& _ ta=1 _ SNR4
Ny - 1 (kg iy) - SNRg
T
Z 012\4(kt37lt3)

tp=1

As can be seen in figure 3, up is the distance between the distributions of
the expected number of cache misses and the expected number of cache misses
when a cache hit is correctly predicted. This is the signal that the adversary
tries to observe and p% is the power that is present in this signal. The noise
of the measurements is the variance of the expected number of cache misses of
all tables which is equal to > o3,. The increase in resistance Np/N, is thus
SNR4/SNRg, which is the ratio between the signal-to-noise ratios of the two
implementations.

4 Experimental Results

The following 5 AES implementations or attack scenarios have been used to
experimentally verify the correctness of the analytical model:

cache miss Hp

% distribution cache miss
&| of all tables distribution
with cache of all tables

collision in
table of
interest

Suvin S cache misses

Figure 3. Cache miss probability distribution (not drawn to scale).

— OSSL (OpenSSL): The original OpenSSL implementation of the AES algo-
rithm using 5 lookup tables Te0, Tel, Te2, Te3, and Te4, each of length 1024
bytes.

— CLR (Compact Last Round): OSSL but the last round employs a single
compact S-box table of length 256 bytes instead of table Te4.

— NOT4 (NO table Te4): OSSL but the last round is implemented without the
use of table Te4. Instead tables Te0, Tel, Te2, and Te3 are used.

— 2ENC (2 ENCryptions): OSSL observed by a limited adversary that is only
able to observe the aggregated effect of 2 encryptions.

— OT4 (observe Ouly table Ted): OSSL observed by a powerful adversary who
is able to observe a single round. Note that the same effect can be obtained
by only cleaning out table Te4 but leaving tables Te0, Tel, Te2, and Te3 in
the cache.

All experiments have been repeated on 3 different platforms from 2 different
processor manufacturers with 2 different operating systems. Platform A and
platform B each have L1 cache lines of length 32 bytes, while platform C has
L1 cache lines of length 64 bytes. The length of the cache line is important as
it specifies the number of cache lines that a lookup table occupies. If perfectly
aligned in a processor with cache lines of length 32 bytes, a table of 1024 bytes
occupies 32 lines, while a table of 256 bytes occupies 8 cache lines. With 64 byte
cache lines, these tables occupy 16 and 4 cache lines respectively.

Since we are only interested in validating the correctness of the analytical
model, the last round correlation attack of section 2.1 has been mounted in a
single process setup and not with a spy and target process as would be the case
for an actual attack. In the process, the cache is cleaned before the encryption
of random plaintext data and the state of the performance counters, which have
been programmed to count the L1 cache misses, is read just before and just after
the encryption. A single measurement output consists of the ciphertext and the
measurement score for the number of L1 cache misses.

Unlike the timestamp counter, the performance counters are only accessible in
a high-privilege mode. Yet, a device driver and an application program interface
can be installed to use the counters at any privilege level. Hence, the security
evaluation of an implementation should be based on the measurement scores
provided by the performance counters as this is the worst case scenario. If an

adversary with access to the performance counters cannot succeed, then a more
realistic adversary cannot succeed either.

Table 1 shows the required number of measurements for a successful table
index estimation attack, in which the cache miss estimation is based on the table
index of 2 table lookup operations. Table 2 shows the experimental results for
the cache line estimation attack, in which the cache miss estimation is based
on the cache line of 2 table lookup operations. The predicted results have been
computed with a probability of 0.99 to discover the secret key. The measure-
ment results are based on 100 assessments, except those that required a massive
amount of measurement and processing time, which have been marked with a
double dagger. For each assessment a new and random key has been generated.
Note that each table entry contains 2 results: the minimum and the median re-
quired number of measurements over the 100 assessments to successfully extract
the full 128-bit key. Figures 4 and 5 in the appendix are a graphic representation
of the data in tables 1 and 2.

The results attest that the model accurately predicts a strict lower bound
on the required number of measurements. Independent of the platform or the
implementation or the adversary’s observation capability, the prediction is lower
than but very close to the minimum required number of measurements. Note that
in order to obtain a prediction for the median required number of measurements,
the confidence level, or in other words Z, in equation 2 should be increased to
account for the fact that in the majority of the experiments the correct key
fragment would be extracted. Increasing the probability to discover the secret
key fragment to 0.999 returns an approximate number for the median required
number of measurements.

32 byte cache line 64 byte cache line
- - T T - T
predicted mea:ured (mln/medéan) predicted measured (rgln/medlan)

OSSL 105K 150K/230K 140K/220K 112K 160K/270K

CLR 2.06M 2.23M/3.85M | 2.03M/4.00M 66.8M 109M/160M*
NOT4 430K 420K/880K 440K/830K 1.52M 1.64M/3.30M
2ENC 234K 290K/520K 340K/510K 278K 450K/825K

OT4 12.4K 15.0K/26.0K | 17.0K/26.0K 30.1K 38.0K/79.0K

Thased on 100 experiments
*pased on 10 experiments

Table 1. Required number of measurements for a successful table index estimation
attack.

Given that the analytical model accurately predicts the required number
of measurements, it is now possible to evaluate mitigated implementations for
which experimental results can not be obtained as too many measurements would
be required to extract the full 128-bit key. For instance the model forecasts that
changing the OpenSSL implementation to use a single compact S-box table of
length 256 bytes in the first and the last round increases the required number

32 byte cache line ; 64 byte cache line -

predicted mea;ured (mln/mecli?:an) predicted measured (r(r:un/medlan)
OSSL 12.7K 21.1K/35.6K | 20.0K/32.5K 6.59K 10.0K/17.5K
CLR 56.5K 55.0K/125K | 82.0K/148K 787K 1.23M/2.18M*
2ENC 28.5K | 35.0K/75.6K | 33.7K/75.0K 16.3K 28.7K/49.4K
OT4 1.50K 1.87K/3.75K | 2.12K/3.75K 1.77K 4.12K/7.00K

Thased on 100 experiments
based on 25 experiments

Table 2. Required number of measurements for a successful cache line estimation
attack.

of measurements to 9 - 10% (= 233) for an adversary that is capable to observe
a single encryption on contemporary platforms with 64 byte cache lines, while
using an implementation that uses a single compact table in each round increases
the required number of measurements to 10?3 (=~ 27).

5 Conclusions

We have provided cryptographers and software developers with a tool to evaluate
the strength of their encryption algorithm or software implementation against
time-driven cache attacks. The analytical model accurately forecasts the strength
of a symmetric key cryptosystem based on a few simple parameters that describe
the adversary’s observation capabilities, the software implementation, and the
platform the algorithm is running on. The accuracy of the model has been con-
firmed with concrete measurement results for different implementations, attack
scenarios and platforms.

References

1. Onur Aciigmez, Werner Schindler, and Cetin K. Kog. Trace Driven Cache Attack
on AES. e-print of the IACR, 2006. Available online at http://eprint.iacr.org/
2006/138. pdf.

2. Onur Aciigmez, Werner Schindler, and Cetin K. Kog. Cache based remote timing
attack on the aes. Cryptographers’ Track - RSA Conference (CT-RSA 2007), LNCS
4377:271-286, 2007.

3. Daniel J. Bernstein. Cache-timing attacks on AES, 2004. Available online at
http://cr.yp.to/papers.html\#cachetiming.

4. Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gian-
luca Palermo. AES Power Attack Based on Induced Cache Miss and Countermea-
sure. In ITCC (1), pages 586-591. IEEE Computer Society, 2005.

5. Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against aes. In
Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of Lecture Notes
in Computer Science, pages 201-215. Springer, 2006.

10.

11.

12.

13.

14.

15.

16.

Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software
mitigations to hedge AES against cache-based software side channel vulnerabilities.
Cryptology ePrint Archive, Report 2006/052, 2006. Available online at http:
//eprint.iacr.org/.

John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel crypt-
analysis of product ciphers. Journal of Computer Security, 8(2/3), 2000.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 104-113. Springer, 1996.

Cédric Lauradoux. Collision attacks on processors with cache and countermeasures.
In Christopher Wolf, Stefan Lucks, Po-Wah Yau (eds.) Proceedings of Western Fu-
ropean Workshop on Research in Cryptplogy (WeWorc 2005). GI-Edition - Lecture
Notes in Informatics (LNI), P-74, Bonner Kéllen Verlag (2005), 2005.

Stefan Mangard. Hardware countermeasures against dpa ? a statistical analysis of
their effectiveness. In CT-RSA, pages 222-235, 2004.

Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache attacks on
aes. Selected Areas of Cryptography — SAC 2006.

OpenSSL. OpenSSL: the Open-source toolkit for SSL / TLS. Available online at
http://wuw.openssl.org/.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermea-
sures: The Case of AES. In David Pointcheval, editor, CT-RSA, volume 3860 of
Lecture Notes in Computer Science, pages 1-20. Springer, 2006.

Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR~02-003, Department of Computer Science, University of Bristol,
June 2002.

Colin Percival. Cache missing for fun and profit, 2005. Available online at http:
//wuw.daemonology.net/hyperthreading-considered-harmful/.

Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES Implemented on Computers with Cache. In
Colin D. Walter, Cetin Kaya Kog, and Christof Paar, editors, CHES, volume 2779
of Lecture Notes in Computer Science, pages 62-76. Springer, 2003.

Appendix

Figures 4 and 5 show the required number of measurements for a successful time-
driven cache attack obtained through the analytical model and obtained through
experimental results for the table index estimation and the cache line estimation
attack respectively. Note that these figures are a graphic representation of the
data in tables 1 and 2. For completeness, the description of the attack scenarios
is repeated below:

OSSL: OpenSSL implementation of the AES algorithm.

CLR: OSSL with compact S-box table in last round.

NOT4: OSSL without table Te4 in last round.

2ENC: OSSL attacked by a limited adversary observing 2 encryptions.
OT4: OSSL attacked by a powerful adversary observing only last round.

100M : : : : :

mode! 64 byte cache line |
% -#4- experimental | |
T 10M L results
E T
g
>
2]
P 1 1 1 !
| i
"'5 | | v s |
@
2 3
§100K —————————— b
< ;
10K N
A oV éo &V &
O O% qf</ éo @)

Figure 4. Required number of measurements for a successful table index estimation
attack.

1M T T T /l
—e— model 64 byte cache line
o) -4- experimental
S results \
e ! ! i i
© 100K |- A — A — M —
=] : : : !
0
@
(O]
-
B | 1” |
R s S R A e .
E | | |
> ; ;
= | 3
32 byte cache line
O O@ r{f/ O

Figure 5. Required number of measurements for a successful cache line estimation
attack.

