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Abstract. We investigate the security of n-bit to m-bit vectorial Boolean
functions in stream ciphers. Such stream ciphers have higher through-
put than those using single-bit output Boolean functions. However, as
shown by Zhang and Chan at Crypto 2000, linear approximations based
on composing the vector output with any Boolean functions have higher
bias than those based on the usual correlation attack. In this paper, we
introduce a new approach for analyzing vector Boolean functions called
generalized correlation analysis. It is based on approximate equations
which are linear in the input x but of free degree in the output z = F (x).
Based on experimental results, we observe that the new generalized cor-
relation attack gives linear approximation with much higher bias than
the Zhang-Chan and usual correlation attacks. Thus it can be more ef-
fective than previous methods.
First, the complexity for computing the generalized nonlinearity for this
new attack is reduced from 22m×n+n to 22n. Second, we prove a theoret-
ical upper bound for generalized nonlinearity which is much lower than
the unrestricted nonlinearity (for Zhang-Chan’s attack) or usual non-
linearity. This again proves that generalized correlation attack performs
better than previous correlation attacks. Third, we introduce a gener-
alized divide-and-conquer correlation attack and prove that the usual
notion of resiliency is enough to protect against it. Finally, we deduce
the generalized nonlinearity of some known secondary constructions for
secure vector Boolean functions.

Keywords. Vectorial Boolean Functions, Unrestricted Nonlinearity, Re-
siliency.

1 Introduction

In this paper, we consider n-bit to m-bit vectorial Boolean functions when they
are used in stream ciphers. There are two basic designs for such stream ciphers
based on linear feedback shift registers (LFSR). One is a combinatorial generator
[12] which consists of n LFSR’s and a vector function F (x). At each clock, one
bit is tapped from the secret state of each LFSR as an input bit of F (x) to



produce m bits of output keystream. This keystream is then XORed with the
plaintext to form the ciphertext. The other model is the filter function generator
[12] where n bits are tapped from one LFSR as input to F (x) to produce the
keystream output. The advantage of using vector Boolean functions is that the
stream ciphers have higher throughput, i.e. the encryption and decryption speed
is m times faster than single output Boolean functions. However, we need to
study its security when compared to the single-bit output case.

Basic attacks on these stream ciphers are the correlation attack by Siegen-
thaler [14] and its improvements (see e.g. [2]). In the case of the filter function
model, a linear approximation is formed between the LFSR state bits and output
keystream. If the approximation has probability p 6= 1/2, then we can recover
the secret LFSR bits when enough keystream bits are known. In the case of the
combinatorial model, an approximation of the output is made by the combina-
tion of t out of the n input bits produced by the LFSRs and it is shown in [2] that
the attack is optimal with the linear combination of these t bits. Siegenthaler’s
attack was described for single-output Boolean functions but it can be general-
ized naturally to the vector output case where we take any linear combination
of output bits [3].

This attack can be improved as shown by Zhang and Chan at Crypto 2000
[15] where they consider linear approximation based on any Boolean function
of the output vector (instead of just linear combination of the output vector).
Since there are 22m+n linear approximations to choose from in the Zhang-Chan
approach compared to just 2n+m linear approximations in the usual approach, it
is easier to choose one with higher bias, i.e. where probability p is further away
from 1/2.

In Section 2, we introduce the generalized correlation attack by considering
linear approximations which are linear in the input x and of free degree in the
output z = F (x). Now there are 22m×(n+1) linear approximations from which we
can choose one with even higher bias than the Zhang-Chan and usual correlation
attack. However, choosing the best linear approximation out of that many choices
is infeasible. Therefore in Section 3, we reduce the complexity of choosing the
best linear approximation for generalized correlation attack from 22m×(n+1)+n

to 22n, which is much more manageable.
The generalized nonlinearity is an analogue of the usual nonlinearity, which

measures the effectiveness of a function against generalized correlation attack.
Based on efficient computation for finding the best generalized linear approxima-
tion, we computed the generalized nonlinearity of highly nonlinear vector func-
tions and randomly generated vector functions in Section 3.2. We observe that
the generalized nonlinearity is much lower than the usual nonlinearity and unre-
stricted nonlinearity (corresponding to Zhang-Chan’s attack) for these functions.
For example, when the inverse function on GF (28) is restricted to 5, 6, 7 output
bits, the usual and unrestricted nonlinearities are non-zero while the generalized
nonlinearity is already zero. That means the stream cipher can be attacked as a
deterministic linear system while the Zhang-Chan and usual correlation attack
are still probabilistic. Theoretical results on the generalized nonlinearity are also



studied. In Section 4, we derive an upper bound for generalized nonlinearity
which is much lower than the upper bound for usual correlation attack (covering
radius bound [3]) and that for Zhang-Chan’s attack (unrestricted nonlinearity
bound [4]). Thus it gives further evidence that generalized correlation attack is
more effective than the other correlation attacks on vector Boolean functions.

The Siegenthaler divide-and-conquer attack on combinatorial stream ciphers
[14] resulted in the notion of t-th order correlation immune function (called t-
resilient when the function is balanced, which is necessary). To protect against
this attack, we require the combining function F (x) to be t-resilient for large
t. In Section 5.1, we introduce the concept of generalized divide-and-conquer
correlation attack and generalized resiliency to protect against it. We observe
that usual resiliency is equivalent to generalized resiliency and thus is sufficient
to protect the cipher against the generalized divide-and-conquer attack.

In Section 6, we investigate the generalized nonlinearity of two secondary
constructions for vector Boolean functions that are resilient and/or possess high
nonlinearity. We conclude output composition (e.g. dropping output bits) of
balanced vector functions may increase generalized nonlinearity. For a concate-
nated function to possess high generalized nonlinearity, we require all component
functions to possess high generalized nonlinearity.

2 Generalized Correlation Analysis of Vector Output
Stream Ciphers

We consider a stream cipher where the state bits of one or more linear feedback
shift registers are filtered by a vector Boolean function F : GF (2)n → GF (2)m

to form keystream bits. The keystream bits will be XORed with the plaintext
to form the ciphertext. Traditionally, an adversary who wants to perform cor-
relation attack on this stream cipher tries to find an approximation of a linear
combination of output bits by a linear combination of input bits u ·F (x) ≈ w ·x.
For correlation attack to be successful, we require that the bias defined by:

Bias = |Pr(u · F (x) = w · x)− 1/2|, u ∈ GF (2)m, w ∈ GF (2)n,

is large. Conversely, if all linear approximations of u · F (x) have small bias,
then it is secure against correlation attack. A concept related to the correlation
attack is the Hadamard transform f̂ : GF (2)n → R of a Boolean function f :
GF (2)n → GF (2) which is defined as f̂(w) =

∑
x∈GF (2)n(−1)f(x)+w·x. Based

on the Hadamard transform, we can define the nonlinearity [3, 10] of F (x) as:

NF = 2n−1 − 1/2 max
0 6=u∈GF (2)m,w∈GF (2)n

|û · F (w)|. (1)

From the above equation, we deduce that a high nonlinearity ensures protection
against correlation attack. It is well known that 0 ≤ NF ≤ 2n−1 − 2n/2−1 [3].

At Crypto 2000, Zhang and Chan [15] observed that instead of taking linear
combination of the output bit functions u ·F (x), we can compose F (x) with any



Boolean function g : GF (2)m → GF (2) and consider the probability:

Pr(g(z) = w · x) where z = F (x). (2)

Because z = F (x) corresponds to the output keystream which is known, then
g(z) is also known. Therefore g(z) ≈ w ·x is a linear approximation which can be
used in correlation attacks. Since we are choosing from a larger set of equations
now, we can find linear approximations with larger bias |Pr(g(z) = w ·x)−1/2|.
Let us define the unrestricted nonlinearity [4] which measures the effectiveness of
the Zhang-Chan attack. Denote by wt(f) the number of ones among the output
of f : GF (2)n → GF (2).

Definition 1. Let F : GF (2)n → GF (2)m and let G = Set of m-bit Boolean
functions g : GF (2)m → GF (2). We define the unrestricted nonlinearity as:

UNF = min{ min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )), nonlinUNF}

where
nonlinUNF = 2n−1 − 1

2
max

w 6=0,g∈G
ĝ ◦ F (w). (3)

Remark 1. If w = 0 in equation (2), then it does not involve the input x and it is
not useful for correlation attack. Thus we let w 6= 0 when computing nonlinUNF
which gauge the effectiveness of equation (2) for correlation attack. The other
part minu6=0(wt(u · F ), 2n − wt(u · F )) ensures that F (x) is close to balanced
when UNF is high.

From equation (3), we deduce that a high unrestricted nonlinearity is required
for protection against correlation attack on g ◦ F (x).

In this paper, we introduce a linear approximation for performing correlation
attack, which is more effective than the Zhang-Chan attack [15]. The idea is to
consider implicit equations which are linear in the input variable x and of any
degree in the output variable z = F (x). In the pre-processing stage, we compute

Pr(g(z) + w1(z)x1 + w2(z)x2 + · · ·+ wn(z)xn = 0), (4)

where z = F (x) and wi : GF (2)m → GF (2). In other words, we consider the
probability Pr(g(F (x)) + w1(F (x))x1 + w2(F (x))x2 + · · · + wn(F (x))xn = 0),
where x uniformly ranges over Fn

2 . Then in the attack, because z = F (x) corre-
sponds to the output keystream which is known, g(z) and wi(z) are known for
all i = 1, . . . , n. This means that we can substitute the known values z = F (x)
and treat equation (4) as a linear approximation.

We call the attack based on this linear approximation the generalized corre-
lation attack. This attack can be considered as a generalization of Zhang-Chan’s
correlation attack because if we let wi(z) constant for i = 1 . . . n, equation (4)
becomes equation (2). Since we are choosing from a larger set than that of
Zhang and Chan, it is easier to find a linear approximation with larger bias
|Pr(g(z) + w1(z)x1 + w2(z)x2 + · · ·wn(z)xn = 0)− 1/2|.

In relation to the approximation of equation (4), we make the following def-
inition:



Definition 2. Let F : GF (2)n → GF (2)m. The generalized Hadamard trans-
form F̂ : (GF (2)2

m

)n+1 → R is defined as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑

x∈GF (2)n

(−1)g(F (x))+w1(F (x))x1+···wn(F (x))xn ,

where the input is an (n+1)-tuple of Boolean functions g, wi : GF (2)m → GF (2),
i = 1, . . . , n.

Let G be defined as in Definition 1 and let

W = Set of all n-tuple functions {w(·) = (w1(·), . . . , wn(·))|wi ∈ G}
such that w(z) = (w1(z), . . . , wn(z)) 6= (0, . . . , 0) for all z ∈ GF (2)m.

The generalized nonlinearity is defined as:

GNF = min{ min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )), nonlingenF},

where
nonlingenF = 2n−1 − 1

2
max

g∈G,w∈W
F̂ (g(·), w1(·), . . . , wn(·)). (5)

Remark 2. We introduce the set W to give a meaningful definition to the gen-
eralized nonlinearity. This is because if there exists z ∈ GF (2)m such that
(w1(z), . . . , wn(z)) = (0, . . . , 0), then the equation (4) resulting from this value
of z will not involve the input x and will therefore not be useful in the at-
tack stage. Thus we let w ∈ W when computing nonlingenF . The other part
minu 6=0(wt(u · F ), 2n − wt(u · F )) ensures that F (x) is close to balanced when
GNF is high.

From equation (5), we deduce that a high generalized nonlinearity is required
for protection against generalized correlation attack.

In Proposition 1, we show that the generalized nonlinearity is lower than the
other nonlinearity measures and thus provides linear approximations with better
bias for correlation attack. The proof follows naturally from the definitions of
the various nonlinearities.

Proposition 1 Let F : GF (2)n → GF (2)m. Then the nonlinearity, unrestricted
nonlinearity and generalized nonlinearity are related by the following inequality:

GNF ≤ UNF ≤ NF . (6)

I.e., the generalized correlation attack is more effective than the Zhang-Chan’s
correlation attack, which itself is more effective than the usual correlation attack.

Remark 3. A vector function F : GF (2)n → GF (2)m is said to be balanced if
|F−1(z)| = 2n−m for all z ∈ GF (2)m. It can be deduced that wt(u · F ) = 2n−1

for all u ∈ GF (2)m − {0} if and only if F is balanced [3]. Thus

GNF = min{ min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )), nonlingenF}

= min(2n−1, nonlingenF ) = nonlingenF,



because GNF ≤ NF ≤ 2n−1 − 2(n−1)/2 [3]. Therefore GNF = nonlingenF if F
is balanced. In a similar way, UNF = nonlinUNF if F is balanced.

3 Efficient Computation of the Generalized Nonlinearity

To compute the generalized nonlinearity GNF , we first compute minu 6=0(wt(u ·
F ), 2n−wt(u ·F )) with complexity 2m+n. Then we need to compute nonlingenF
which requires computation of the generalized Hadamard transform over all in-
put. But the complexity of computing F̂ (g(·), w1(·), . . . , wn(·)) directly for all
possible (n+1)-tuple of m-bit functions is ≈ 2n×22m×(n+1). This is because for
each fixed (g(·), w1(·), . . . , wn(·)), we sum over 2n elements x to compute F̂ and
there are approximately1 22m×(n+1) tuples of functions g, wi : GF (2)m → GF (2),
i = 1, . . . , n. This computation quickly becomes unmanageable even for small
values of n,m. Since the bulk of the computational time comes from nonlingenF ,
we need to make it more efficient to compute. Theorem 1 below gives an efficient
way to compute nonlingenF .

Theorem 1 Let F : GF (2)n → GF (2)m and let w(·) denote the n-tuple of
m-bit Boolean functions (w1(·), . . . , wn(·)). Then

nonlingenF = 2n−1 − 1/2
∑

z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)w(z)·x

∣∣∣∣∣∣
.

Because of editorial constraints, the proof of Theorem 1 can be found in the
Appendix, Section 7.2.

Remark 4. The proof of Theorem 1 also provides the functions g(·), wi(·), i =
1, . . . , n, for the best generalized linear approximation. At each z, the opti-
mal g(z) is the one that makes the inner sum positive while the optimal tuple
(w1(z), . . . , wn(z)) is the n-bit vector that maximizes the inner sum.

3.1 Reduction in Complexity

To compute nonlingenF based on Theorem 1, we first perform a pre-computation
to identify the sets {x : x ∈ F−1(z)} with complexity 2n and store them with
memory of size n×2n. This is needed in computing the sum

∑
x∈F−1(z)(−1)w(z)·x.

To compute nonlingenF , we consider the 2m elements z ∈ GF (2m). For each

z, we find w(z) ∈ GF (2)n which maximizes the sum
∣∣∣∑x∈F−1(z)(−1)w(z)·x

∣∣∣.
Thus the computational complexity is:

Complexity =
∑

z∈GF (2)m

2n × |{x : x ∈ F−1(z)}| = 2n
∑

z∈GF (2)m

|{x : x ∈ F−1(z)}|

= 2n × |Domain(F )| = 2n × 2n = 22n.

1 We say approximately 22m×(n+1) functions because we do not range over all tuples
of functions (w1(·), . . . , wn(·)) but only over those in the set W of Defintion 2



Together with a complexity of 2m+n to compute min0 6=u∈GF (2)m(wt(u·F ), 2n−
wt(u · F )), the total complexity for computing GNF is:

Precomputation = 2n, Memory = n× 2n, Time Complexity = 2m+n + 22n.

This is much less than a time complexity of 2m+n + 2n+2m×(n+1) by the direct
approach.

3.2 Experimental Results

Based on Theorem 1, we can compute the generalized nonlinearity of some highly
nonlinear functions. We also computed the unrestricted nonlinearity of these
functions for comparison. We shall apply Proposition 6 (in Section 7.3 of the
Appendix) to help us compute nonlinUNF efficiently. First, let us look at bent
functions, which have the highest nonlinearity.

Example 1. Consider the bent function F : GF (2)4 → GF (2)2 (i.e. the function
whose component functions u·F , u 6= 0, are all bent) defined by F (x1, x2, x3, x4) =
(z1, z2) = (x1+x1x4+x2x3, x1+x1x3+x1x4+x2x4). The truth table of F (which
lists the output F (0000), F (0001), . . . , F (1111) where every number represents
its binary representation) is as follows.

0 0 0 0 0 1 2 3 3 0 2 1 3 1 0 2

The various nonlinearity and bias take the following values:

Usual nonlinearity NF = 6 ⇒ Bias = 0.125
unrestricted nonlinearity UNF = 5 ⇒ Bias = 0.1875
Generalized nonlinearity GNF = 2 ⇒ Bias = 0.375.

From Remark 4, we deduce that the following approximation holds with bias
0.375.

Pr(z1 + z2 = (z1 + 1)(z2 + 1)x2 + z1x3 + z2x4) =
14
16

,

where x = 0100, 1110 are the only two points not satisfying the relation.

Next we look at the inverse S-box on GF (28) with truncated output.

Example 2. Let GF (28) be the finite field defined by the relation α8 +α4 +α3 +
α2 + 1 = 0. Consider the S-box Inv : GF (2)8 → GF (2)8 defined by Inv(0) = 0
and Inv(x) = x−1 if x 6= 0. We use the correspondence:

(x1, x2, x3, x4, x5, x6, x7, x8) ↔ x1α
7 + x2α

6 + · · ·+ x7α + x8

Consider Inv(x) restricted to the least significant m bits. Then the nonlinearity,
unrestricted nonlinearity and generalized nonlinearity are given by Table 1. We
see that the generalized nonlinearity for the inverse function restricted to m
output bits is lower than the usual and unrestricted nonlinearities. Therefore
generalized correlation attack works better in this case. Moreover, for m ≥ 5
output bits, the generalized nonlinearity is already 0 which means the system
can be broken by linear algebra with very few keystream bits.



Table 1. Nonlinearities for x−1 on GF (28) restricted to m least significant output bits.

m 1 2 3 4 5 6 7

NF 112 112 112 112 112 112 112

UNF 112 108 100 94 84 70 56

GNF 112 80 66 40 0 0 0

Example 3. Lastly in Table 2, we tabulate the average nonlinearity measures for
100 randomly generated balanced functions F : GF (2)n → GF (2)m, n = 2m, for
various n. Again, we see that the average generalized nonlinearity is much lower

Table 2. Average nonlinearity for randomly generated balanced functions, n = 2m

n 6 8 10 12 14

NF 18 100 443 1897 7856

UNF 16 88 407 1768 7454

GNF 6 36 213 1101 5224

than the unrestricted and usual nonlinearities. Therefore generalized correlation
attack can be more effective.

4 Upper Bound on Generalized Nonlinearity

In this Section, we prove an upper bound for the generalized nonlinearity. This
allows us to gauge theoretically the effectiveness of the generalized correlation
attack.

Theorem 2 Let F : GF (2)n → GF (2)m. Then the following inequality holds.

nonlingenF ≤ 2n−1 − 1
4

∑

z∈GF (2)m

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

Furthermore if F (x) is balanced, then we have:

GNF ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1

Proof. According to Theorem 1, we have:

nonlingenF = 2n−1 − 1/2
∑

z∈GF (2)m

max
a∈GF (2)n−{0}

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)a·x

∣∣∣∣∣∣
.



Let φz(x) be the indicator function of F−1(z). I.e., φz(x) = 1 if F (x) = z else
φz(x) = 0.

∑

x∈F−1(z)

(−1)a·x =
∑

x∈GF (2)n

φz(x)(−1)a·x =
∑

x∈GF (2)n

1− (−1)φz(x)

2
(−1)a·x

= −1
2

∑

x∈GF (2)n

(−1)φz(x)+a·x = −1
2
φ̂z(a), when a 6= 0.

Thus
nonlingenF = 2n−1 − 1/4

∑

z∈GF (2)m

max
a∈GF (2)n−{0}

∣∣∣φ̂z(a)
∣∣∣ .

In a similar way to the computation of
∑

x∈F−1(z)(−1)a·x, we can prove that

|F−1(z)| =
∑

x∈F−1(z)(−1)0·x = 2n−1 − 1
2 φ̂z(0). This implies φ̂z(0) = 2n −

2|F−1(z)|.
By Parseval’s relation,

∑

a∈GF (2)n−{0}
φ̂z(a)2 = 22n − φ̂z(0)2

= 22n − (2n − 2|F−1(z)|)2 = 2n+2|F−1(z)| − 4|F−1(z)|2.
By the pigeon hole principle, we deduce that

max
a∈GF (2)n−{0}

φ̂z(a)2 ≥ 2n+2|F−1(z)| − 4|F−1(z)|2
2n − 1

.

and therefore

nonlingenF ≤ 2n−1 − 1
4

∑

z∈GF (2)m

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

When F (x) is balanced, nonlingenF = GNF , |F−1(z)| = 2n−m for all z ∈
GF (2)m and we deduce:

GNF ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1 ut

This upper bound is much lower than the covering radius bound 2n−1−2n/2−1

and the upper bound for UNF deduced in [4]:

UNF ≤ 2n−1 − 1
2


22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+

(
22m − 2m

2n − 1
− 1

)2

− 1


 .

when F : GF (2)n → GF (2)m is balanced. Thus Theorem 2 provides further
evidence that generalized correlation attack can be more effective than the usual
and Zhang-Chan correlation attacks on vector Boolean functions.



5 Spectral Characterization and Generalized Correlation
Immunity

In Theorem 3, we express the generalized correlation in terms of the Hadamard
transform (also called the spectrum) of F (x). This allows us to deduce general
correlation properties based on the spectral distribution.

Theorem 3 Let F : GF (2)n → GF (2)m and wi : GF (2)m → GF (2). Let
w(·) denote the n-tuple of m-bit Boolean functions (w1(·), . . . , wn(·)). Then the
generalized Hadamard transform can be expressed as:

F̂ (g(·), w1(·), . . . , wn(·)) =
1

2m

∑

z∈GF (2)m

(−1)g(z)
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)).

The proof of Theorem 3 is easy and can be found in the Appendix, Section 7.4.

Remark 5. Based on Theorem 3 and equation (5), we get

nonlingenF = 2n−1− 1
2m+1

∑

z∈GF (2)m

max
0 6=w(z)∈
GF (2)n

∣∣∣∣∣∣
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z))

∣∣∣∣∣∣
. (7)

If the Hadamard transform distribution of F (x) is known, then we can have a
more efficient computation of GNF . By equation (7), we compute nonlingenF
by an outer sum over 2m elements z, each of which finds the maximum inner sum
(over 2m elements v) for 2n choices of w(z). Thus the complexity of computing
nonlingenF is 2n+2m. Together with a complexity of 2m+n for determining the
balanceness of F (x), the complexity for computing GNF is 2m+n + 2n+2m. This
is more efficient than the computation of Theorem 1 because usually, m is much
smaller than n in applications. Furthermore, we do not need pre-computation
and memory to store the sets {x : x ∈ F−1(z)} as in Theorem 1. Some examples
of vector functions with known spectral distribution is the Maiorana-McFarland
class which can be used to construct bent functions and highly nonlinear resilient
functions, e.g. see [3, 5].

5.1 Equivalence of Generalized Correlation Immunity and Usual
Correlation Immunity

In this section, we extend the definition of correlation immunity (resiliency) for
vectorial Boolean function to the generalized case with respect to the correlation
attack based on equation (4). Then we show that the usual correlation immunity
(resiliency) implies generalized correlation immunity (resiliency). First let us
recall the definition of correlation immune vectorial Boolean functions. For a
vector w ∈ GF (2)n, denote by wt(w) the number of ones in w.

Definition 3. The vector function F : GF (2)n → GF (2)m is correlation im-
mune of order t (denoted CI(t)) if

u · F (x) + w · x is balanced, or equivalently û · F (w) = 0

whenever 1 ≤ wt(w) ≤ t. Moreover if F (x) is balanced, then F (x) is t-resilient.



Resiliency is essential for protection against divide-and-conquer correlation at-
tack on combinatorial generator (for more details, please see Siegenthaler [14]).

Next, let us describe a generalized divide-and-conquer attack against vector
combinatorial stream ciphers. In a combinatorial generator involving n LFSR’s,
suppose there is a subset of outputs z ∈ GF (2)m for which the linear approxima-
tions Pr(wi1(z)xi1 + · · ·+wit

(z)xit
= g(z)) = pz 6= 1/2, involve the correspond-

ing set of t linear feedback shift registers, LFSRi1 , . . . , LFSRit. The attacker
guesses the initial state of LFSRi1 , . . . , LFSRit

. If the guess is correct, then
this relation should hold between the t LFSR’s states and the relevant output2

z with probability pz 6= 1/2. If the guess is wrong, then the LFSR states and the
output are uncorrelated. Thus the complexity of guessing the secret initial state
is reduced because we only need to guess the content of t instead of n LFSR’s. To
protect against such an attack, we define the concept of generalized correlation
immunity and resiliency as follows.

Definition 4. Let F : GF (2)n → GF (2)m and g, wi : GF (2)m → GF (2). We
say F (x) is generalized correlation immune of order t (generalized CI(t)) if

g(F (x)) + w1(F (x))x1 + · · ·+ wn(F (x))xn is balanced,

or equivalently,
F̂ (g(·), w1(·), . . . , wn(·)) = 0,

whenever 1 ≤ wt(w1(z), . . . , wn(z)) ≤ t for all z ∈ GF (2)m. Moreover if F (x) is
balanced, then we say F (x) is generalized t-resilient.

Generalized t-resiliency ensures protection against generalized divide-and-conquer
correlation attack on t or less LFSR’s in a combinatorial stream cipher.

Theorem 4 Let F : GF (2)n → GF (2)m. Then F (x) is CI(t) (t-resilient) if
and only if F (x) is generalized CI(t) (generalized t-resilient).

Proof. If F (x) is generalized CI(t) (resp. generalized t-resilient), then it fol-
lows from Definitions 3 and 4 that F (x) is CI(t) (resp. t-resilient). Now as-
sume F (x) is CI(t), we shall prove that F (x) is generalized CI(t). Suppose
1 ≤ wt(w1(z), . . . , wn(z)) ≤ t for all z ∈ GF (2)m. Then v̂ · F (w(z)) = 0 for all
v, z ∈ GF (2)m because F (x) is CI(t). By Theorem 3, we see that

F̂ (g(·), w1(·), . . . , wn(·)) =
1

2m

∑

z∈GF (2)m

(−1)g(z)
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)) = 0.

This is because the inner summands is a sum of v̂ · F (w(z)) which are zeroes for
all v, z ∈ GF (2)m. Thus F (x) is generalized CI(t). The proof that t-resiliency
implies generalized t-resiliency is identical to the CI(t) case except that F (x) is
now balanced.

ut
Thus we see that usual resiliency is sufficient to ensure generalized resiliency.
2 By relevant output, we mean those z ∈ GF (2)m for which there exist a linear

approximation with positive bias involving the same set of input xi1 , . . . , xit



6 Generalized Nonlinearity of Secondary Constructions

Secondary constructions produce Boolean functions with high nonlinearity, re-
siliency and other good cryptographic properties from other Boolean functions
as building blocks. With respect to the generalized correlation attack, it would
be useful to check if these constructions yield functions with high generalized
nonlinearity. Moreover by Theorem 4, vector functions that satisfy the usual
correlation immunity are also generalized correlation immune. Thus we would
also like to check that secondary construction for resilient functions have high
generalized nonlinearity.

The first secondary construction we look at is output composition. One com-
mon candidate for output composition is the projection function, i.e. dropping
output bits. For example, there are many known permutations with high non-
linearity [1] and by dropping output bits, we form vectorial Boolean functions
with the same or higher nonlinearity.

Proposition 2 Let F : GF (2)n → GF (2)m and G : GF (2)m → GF (2)k

be balanced functions. Then GNG◦F ≥ GNF . If G(z) is a permutation, then
GNG◦F = GNF .

The proof of Proposition 2 can be found in the Appendix, Section 7.5. By Propo-
sition 2, we see that output composition, e.g. dropping output bits, is good for
enhancing security as it may increase the generalized nonlinearity.

Another common construction for vectorial resilient functions is concatena-
tion. Let us look at the known results on this construction.

Proposition 3 ([16, Corollary 4]) Let F1 : GF (2)n1 → GF (2)m1 be a t1-
resilient function and F2 : GF (2)n2 → GF (2)m2 be a t2-resilient function. Then
F1||F2 : GF (2)n1+n2 → GF (2)m1+m2 defined by

F1||F2(x, y) = (F1(x), F2(y))

is a t-resilient function where t = min(t1, t2).

By Proposition 3, given two smaller vector Boolean functions which are t-
resilient, we can form a bigger Boolean function which is t-resilient. With re-
spect to generalized correlation attack, we would like to know its generalized
nonlinearity.

Proposition 4 Let F1 : GF (2)n1 → GF (2)m1 and F2 : GF (2)n2 → GF (2)m2

be balanced functions. Then the generalized nonlinearity of their concatenation
F (x, y) = F1(x)||F2(y) satisfies:

GNF ≤ 2n1+n2−1 − 1
2
(2n1 − 2GNF1)(2

n2 − 2GNF2).

The proof of Proposition 4 can be found in the Appendix, Section 7.6. By Propo-
sition 4, we see that for a concatenated function to possess high generalized
nonlinearity, both the component functions have to possess high generalized
nonlinearity.
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7 Appendix

7.1 The Single-Bit Output Case and Bilinear Cryptanalysis

It is easy to see that in the single output case (m = 1), the Zhang-Chan cor-
relation attack is equivalent to the usual correlation attack, i.e. UNF = NF .



However, it is not so obvious whether the generalized correlation attack is better
than the usual correlation attack. The four functions from GF (2) to GF (2) are
of the form w(z) = az + b, where a, b ∈ GF (2). Hence, the expression used for
the generalized correlation attack is a bilinear approximation:

Pr(a0z+b0+(a1z+b1)x1+(a2z+b2)x2+· · ·+(anz+bn)xn = 0), ai, bi ∈ GF (2),

where for any z ∈ GF (2), we have (a1z + b1, . . . , anz + bn) 6= (0, . . . , 0). The
above equation can also be written as:

Pr(za′(x) = a(x)) where a(x), a′(x) are affine functions, (8)

such that za′(x)+a(x) is a non-constant function for every z ∈ GF (2). In Propo-
sition 5, we show that generalized nonlinearity is equal to the usual nonlinearity
in the single output case.

Proposition 5 Let f : GF (2)n → GF (2). Then GNf = Nf .

Proof. In this proof, a(x), a′(x) and a′′(x) = a(x)+a′(x)+1 are affine functions.
We also require that a(x) and a′′(x) be non-constant functions, so that the
approximation in equation (8) is useful for correlation attack. From equation (5)
and the discussion in Section 7.1, we deduce that:

nonlingenF = min
a(x),a′(x)

|{x : f(x)a′(x) = a(x)}|

= min
a(x),a′(x)

(|{x : f(x) = a(x) = 0}|+ |{x : f(x) = a(x) + a′(x) + 1 = 1}|)

= min
a(x)

|{x : f(x) = a(x) = 0}|+ min
a′′(x)

|{x : f(x) = a′′(x) = 1}|.

On the other hand, we see from equation (1) that:

Nf = min
a(x)

|{x : f(x) = a(x)}|
= min

a(x)
(|{x : f(x) = a(x) = 0}|+ |{x : f(x) = a(x) = 1}|).

But

|{x : f(x) = a(x) = 1}| = |f−1(1)|+ |{x : f(x) = a(x) = 0}| − |a−1(0)|
= |f−1(1)|+ |{x : f(x) = a(x) = 0}| − 2n−1.

Thus

Nf = min
a(x)

(2× |{x : f(x) = a(x) = 0}|+ c) where c = |f−1(1)| − 2n−1.

From this, we deduce that:

min
a(x)

|{x : f(x) = a(x) = 0}| = Nf − c

2
, min

a′′(x)
|{x : f(x) = a′′(x) = 1}| = Nf + c

2
.



By combining the above two expressions, we get:

Nf = min
a(x)

|{x : f(x) = a(x) = 0}|+ min
a′′(x)

|{x : f(x) = a′′(x) = 1}| = nonlingenF.

Also min0 6=u∈GF (2)m(wt(u · F ), 2n − wt(u · F )) ≥ Nf . Thus GNf = Nf .
ut

Although generalized correlation attack does not improve on the usual cor-
relation attack when m = 1, we can see in Section 3.2 many examples where
generalized correlation attack yields better results than the usual and Zhang-
Chan correlation attack when the number of output bits is m ≥ 2.

7.2 Proof of Theorem 1

Proof. We have:

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·))

= max
g∈G,w∈W

∑

z∈GF (2)m

(−1)g(z)
∑

x∈F−1(z)

(−1)w(z)·x

=
∑

z∈GF (2)m

max
g(z)∈GF (2),w(z)∈GF (2)n−{0}

(−1)g(z)
∑

x∈F−1(z)

(−1)w(z)·x.

To maximize this expression, we choose g(z) = 0 if
∑

x∈F−1(z)(−1)w(z)·x > 0,
else we choose g(z) = 1. Thus we can equivalently write the expression as:

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·)) =
∑

z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)w(z)·x

∣∣∣∣∣∣
.

By substituting this expression in equation (5), we get nonlingenF .
ut

7.3 Efficient Computation of Unrestricted Nonlinearity

The bulk of the work in computing UNF comes from the computation of nonlinUNF .
Proposition 6 gives an efficient way to compute nonlinUNF .

Proposition 6 Let F : GF (2)n → GF (2)m. Then nonlinUNF can be computed
as:

nonlinUNF = 2n−1 − 1
2

max
w 6=0

∑

z∈GF (2)m

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)w·x

∣∣∣∣∣∣
.



Proof.

max
w 6=0,g∈G

ĝ ◦ F (w) = max
w 6=0,g∈G

∑

x∈GF (2)n

(−1)g◦F (x)+w·x

= max
w 6=0,g∈G

∑

z∈GF (2)m

(−1)g(z)
∑

x∈F−1(z)

(−1)w·x

= max
w 6=0

∑

z∈GF (2)m

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)w·x

∣∣∣∣∣∣
.

where we choose g(z) = 0 if the inner sum is positive and g(z) = 1 is the inner
sum is negative. By substituting this expression in equation (3), Proposition 6
is proved.

ut

7.4 Proof of Theorem 3

Proof. Let φz(x) be as defined in the proof of Theorem 2. For a fixed z ∈
GF (2)m,

∑

x∈F−1(z)

(−1)w(z)·x =
1

2m

∑

x∈GF (2)n

(−1)w(z)·x × 2mφz(x)

=
1

2m

∑

x∈GF (2)n

(−1)w(z)·x ×
∑

v∈GF (2)m

(−1)v·(F (x)+z)

(because
∑

v∈GF (2)m

(−1)v·a = 2m if and only if a = 0)

=
1

2m

∑

v∈GF (2)m

(−1)v·z ×
∑

x∈GF (2)n

(−1)w(z)·x+v·F (x)

=
1

2m

∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)).

By substituting this expression in Lemma 1, the proof is complete.
ut

7.5 Proof of Proposition 2

Proof. Let G,W and G′,W ′ be the set of m-bit and k-bit Boolean functions in
Definitions 1 and 2 respectively.

max
g′∈G′,w′∈W′

Ĝ ◦ F (g′, w′1, . . . , w
′
n) = max

g′∈G′,w′∈W′
F̂ (g′ ◦G,w′1 ◦G, . . . , w′n ◦G)

≤ max
g∈G,w∈W

F̂ (g, w1, . . . , wn).



Therefore by equation (5), nonlingenG ◦ F ≥ nonlingenF . Note that w′ ∈ W ′

implies w′ ◦G ∈ W in the above inequality.
Since F (x) is balanced, nonlingenF = GNF by remark 3. It is easy to deduce

that G ◦ F is balanced if both F and G are balanced. Thus nonlingenG ◦ F =
GNG◦F by remark 3 and we have GNG◦F ≥ GNF .

If G(z) is a permutation, then {g ◦ G|g ∈ G} = G and {(w1 ◦ G, . . . , wn ◦
G)|w ∈ W} = W. Thus we have nonlingenG ◦ F = nonlingenF which implies
GNG◦F = GNF .

ut

7.6 Proof of Proposition 4

Proof. Consider any gi : GF (2)mi → GF (2), i = 1, 2 and any wi,1, . . . , wi,ni
:

GF (2)mi → GF (2), i = 1, 2 where for all z ∈ GF (2)mi , (wi,1(z), . . . , wi,ni
(z)) 6=

(0, . . . , 0). We see that:

F̂1(g1(·), w1,1(·), . . . , w1,n1(·))× F̂2(g2(·), w2,1(·), . . . , w2,n2(·))
=

∑
x

(−1)g1(F1(x))+w1,1(F1(x))x1+...+w1,n1 (F1(x))xn1

×
∑

y

(−1)g2(F2(y))+w2,1(F2(y))y1+...+w2,n2 (F2(y))yn2

=
∑
x,y

(−1)g(F1(x),F2(y))+w1(F1(x),F2(y))x1+...+wn1+n2 (F1(x),F2(y))yn2

= ̂(F1, F2)(g(·), w1(·), . . . , wn1+n2(·)).
where we let g : GF (2)m1+m2 → GF (2) be defined by g(z1, z2) = g1(z1)+g2(z2).
Let

w1(z1, z2) = w1,1(z1), . . . , wn1(z1, z2) = w1,n1(z1),
wn1+1(z1, z2) = w2,1(z2), . . . , wn1+n2(z1, z2) = w2,n2(z2).

For all (z1, z2) ∈ GF (2)m1+m2 , it is obvious that (w1(z1, z2), . . . , wn1+n2(z1, z2)) 6=
(0, . . . , 0).

Since on the left hand side of the above equations g(·) and wi,j(·) can be any
functions while the g, wi defined on the right hand side are only functions on
(z1, z2) ∈ GF (2)m1+m2 of a special form, we have:

max
g1,w1,i

F̂1(g1(·), w1,i(·))× max
g2,w2,i

F̂2(g2(·), w2,i(·))

≤ max
g,wi

̂(F1||F2)(g(·), w1(·), . . . , wn1+n2(·).

By substituting this inequality in equation (5), we get

nonlingen(F1||F2) ≤ 2n1+n2−1 − 1
2
(2n1 − 2nonlingenF1)(2n2 − 2nonlingenF2).

(9)



Since F1(x) and F2(y) are balanced functions, we have nonlingenFi = GNFi
by

remark 3. Furthermore, it is easy to see that (F1(x), F2(y)) is a balanced function.
Thus nonlingen(F1||F2) = GN(F1||F2) by remark 3. Thus we can substitute all
the nonlingenF in equation (9) by GNF and we are done.

ut


