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Abstract. We propose a new 128-bit blockcipher CLEFIA supporting
key lengths of 128, 192 and 256 bits, which is compatible with AES.
CLEFIA achieves enough immunity against known attacks and flexibility
for efficient implementation in both hardware and software by adopting
several novel and state-of-the-art design techniques. CLEFIA achieves a
good performance profile both in hardware and software. In hardware
using a 0.09 µm CMOS ASIC library, about 1.60 Gbps with less than
6 Kgates, and in software, about 13 cycles/byte, 1.48 Gbps on 2.4 GHz
AMD Athlon 64 is achieved. CLEFIA is a highly efficient blockcipher,
especially in hardware.

Key words: blockcipher, generalized Feistel structure, DSM, CLEFIA

1 Introduction

A lot of secure and high performance blockciphers have been designed bene-
fited from advancing research which started since the development of DES [11].
For example, IDEA, MISTY1, AES, and Camellia are fruits of such research
activities [1, 10, 15, 19]. New design and evaluation techniques are evolved day
by day; topics on algebraic immunity and related-key attacks are paid attention
recently [6,8]. Moreover, light-weight ciphers suitable for a very limited resource
environment are still active research fields. FOX and HIGHT are examples of
such newly developed blockciphers [12,13].

We think it is good timing to show a new blockcipher design based on current
state-of-the-art techniques. In this paper, we propose a new 128-bit blockcipher
CLEFIA supporting key lengths of 128, 192 and 256 bits, which are compati-
ble with AES. CLEFIA achieves enough immunity against known cryptanalyses
and flexibility for very efficient implementation in hardware and software. The
fundamental structure of CLEFIA is a generalized Feistel structure consisting of
4 data lines, in which there are two 32-bit F-functions per one round.



One of novel design approaches of CLEFIA is that these F-functions employ
the Diffusion Switching Mechanism (DSM) [22, 23]: they use different diffusion
matrices, and two different S-boxes are used to obtain stronger immunity against
a certain class of attacks. Consequently, the required number of rounds can be
reduced. Moreover, the two S-boxes are based on different algebraic structures,
which is expected to increase algebraic immunity. Other novel ideas include the
secure and compact key scheduling design and the DoubleSwap function used in
it. The key scheduling part uses a generalized Feistel structure, and it is possible
to share it with the data processing part. The DoubleSwap function can be
compactly implemented to enable efficient round key generation in encryption
and decryption.

CLEFIA achieves about 1.60 Gbps with less than 6 Kgates in hardware using
a 0.09 µm CMOS ASIC library, and about 13 cycles/byte, 1.48 Gbps on 2.4 GHz
AMD Athlon 64 processor in software. We consider CLEFIA is a well-balanced
blockcipher in security and performance, and the performance is advantageous
among other blockciphers especially in hardware.

This paper is organized as follows: in Sect. 2, notations are first introduced.
In Sect. 3, we give the specification of CLEFIA. Then design rationale is shown
in Sect. 4. Sect. 5 describes the evaluation results on both of security and per-
formance aspects. Finally Sect. 6 concludes the paper.

2 Notations

This section describes mathematical notations, conventions and symbols used
throughout this paper.

0x : A prefix for a binary string in a hexadecimal form
a(b) : b denotes the bit length of a

a|b or (a|b) : Concatenation
(a, b) or (a b) : Vector style representation of a|b

a ← b : Updating a value of a by a value of b
ta : Transposition of a vector or a matrix a

a⊕ b : Bitwise exclusive-OR. Addition in GF(2n)
a · b : Multiplication in GF(2n)
a : Logical negation

a ≪ b : b-bit left cyclic shift operation
wb(a) : For an 8n-bit string a = a0|a1| . . . |an−1, ai ∈ {0, 1}8,

wb(a) denotes the number of non-zero ais.

3 Specification

This section describes the specification of CLEFIA. We first define a function
GFNd,r which is a fundamental structure for CLEFIA, followed by definitions of
a data processing part and a key scheduling part.



3.1 Definition of GFNd,r

CLEFIA uses a 4-branch and an 8-branch Type-2 generalized Feistel network [24].
We denote d-branch r-round generalized Feistel network employed in CLEFIA
as GFNd,r. GFNd,r employs two different 32-bit F-functions F0 and F1 whose
input/output are defined as follows.

F0, F1 :
{{0, 1}32 × {0, 1}32 → {0, 1}32

(RK(32), x(32)) 7→ y(32)

For d 32-bit input Xi and output Yi (0 ≤ i < d), and dr/2 32-bit round keys
RKi (0 ≤ i < dr/2), GFNd,r (d = 4, 8) are defined as follows.

GFN4,r :
{{{0, 1}32}2r × {{0, 1}32}4 → {{0, 1}32}4

(RK0(32), . . . , RK2r−1(32), X0(32), . . . , X3(32)) 7→ Y0(32), . . . , Y3(32)

Step 1. T0 | T1 | T2 | T3 ← X0 | X1 | X2 | X3

Step 2. For i = 0 to r − 1 do the following:
Step 2.1 T1 ← T1 ⊕ F0(RK2i, T0), T3 ← T3 ⊕ F1(RK2i+1, T2)
Step 2.2 T0 | T1 | T2 | T3 ← T1 | T2 | T3 | T0

Step 3. Y0 | Y1 | Y2 | Y3 ← T3 | T0 | T1 | T2

GFN8,r :
{{{0, 1}32}4r × {{0, 1}32}8 → {{0, 1}32}8

(RK0(32), . . . , RK4r−1(32), X0(32), . . . , X7(32)) 7→ Y0(32), . . . , Y7(32)

Step 1. T0 | T1 | . . . | T7 ← X0 | X1 | . . . | X7

Step 2. For i = 0 to r − 1 do the following:
Step 2.1 T1 ← T1 ⊕ F0(RK4i, T0), T3 ← T3 ⊕ F1(RK4i+1, T2)

T5 ← T5 ⊕ F0(RK4i+2, T4), T7 ← T7 ⊕ F1(RK4i+3, T6)
Step 2.2 T0 | T1 | . . . | T6 | T7 ← T1 | T2 | . . . | T7 | T0

Step 3. Y0 | Y1 | . . . | Y6 | Y7 ← T7 | T0 | . . . | T5 | T6

The inverse function GFN−1
d,r are realized by changing the order of RKi and

the direction of word rotation at Step 2.2 and Step 3.

3.2 Data Processing Part

The data processing part of CLEFIA consists of ENCr for encryption and DECr

for decryption. ENCr and DECr use a 4-branch generalized Feistel structure
GFN4,r. Let P,C ∈ {0, 1}128 be a plaintext and a ciphertext, and let Pi, Ci ∈
{0, 1}32 (0 ≤ i < 4) be divided plaintext and ciphertext where P = P0|P1|P2|P3

and C = C0|C1|C2|C3, and let WK0,WK1,WK2,WK3 ∈ {0, 1}32 be whitening
keys and RKi ∈ {0, 1}32 (0 ≤ i < 2r) be round keys provided by the key
scheduling part. Then, r-round encryption function ENCr is defined as follows:

ENCr :




{{0, 1}32}4 × {{0, 1}32}2r × {{0, 1}32}4 → {{0, 1}32}4
(WK0(32), . . . , WK3(32), RK0(32), . . . , RK2r−1(32), P0(32), . . . , P3(32))

7→ C0(32), . . . , C3(32)



Step 1. T0 | T1 | T2 | T3 ← P0 | (P1 ⊕WK0) | P2 | (P3 ⊕WK1)
Step 2. T0 | T1 | T2 | T3 ← GFN4,r(RK0, . . . , RK2r−1, T0, T1, T2, T3)
Step 3. C0 | C1 | C2 | C3 ← T0 | (T1 ⊕WK2) | T2 | (T3 ⊕WK3)

The decryption function DECr is the inverse function of ENCr which is
defined by using GFN−1

d,r. Fig. 1 in Appendix C illustrates the ENCr function.
The number of rounds, r, is 18, 22 and 26 for 128-bit, 192-bit and 256-bit keys,
respectively.

3.3 Key Scheduling Part

The key scheduling part of CLEFIA supports 128, 192 and 256-bit keys and
outputs whitening keys WKi (0 ≤ i < 4) and round keys RKj (0 ≤ j < 2r) for
the data processing part. We first define the DoubleSwap function which is used
in the key scheduling part.

Definition 1 (The DoubleSwap Function Σ).
The DoubleSwap function Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X(128) 7→ Y(128)

Y = X[7− 63] | X[121− 127] | X[0− 6] | X[64− 120] ,

where X[a− b] denotes a bit string cut from the a-th bit to the b-th bit of X. 0-th
bit is the most significant bit (See Fig. 2 in Appendix C).

Let K be a k-bit key, where k is 128, 192 or 256. The key scheduling part
is divided into the following two sub-parts. (1) Generating an intermediate key
L from K, and (2) Expanding K and L to generate WKi and RKj . The key
scheduling is explained according to the sub-parts.

Key Scheduling for a 128-bit Key. The 128-bit intermediate key L is
generated by applying GFN4,12 which takes twenty-four 32-bit constant values
CON(128)

i (0 ≤ i < 24) as round keys and K = K0|K1|K2|K3 as an input. Then
K and L are used to generate WKi (0 ≤ i < 4) and RKj (0 ≤ j < 36) in
the following steps. In the latter part, thirty-six 32-bit constant values CON(128)

i

(24 ≤ i < 60) are used. The generation steps of CON are explained in Sect 3.5.

(Generating L from K)

Step 1. L ← GFN4,12(CON
(128)
0 , . . . ,CON

(128)
23 , K0, . . . , K3)

(Expanding K and L)
Step 2. WK0|WK1|WK2|WK3 ← K
Step 3. For i = 0 to 8 do the following:

T ← L⊕ (CON
(128)
24+4i | CON

(128)
24+4i+1 | CON

(128)
24+4i+2 | CON

(128)
24+4i+3)

L ← Σ(L)
if i is odd: T ← T ⊕K
RK4i|RK4i+1|RK4i+2|RK4i+3 ← T



Key Scheduling for a 192-bit Key. Two 128-bit values KL,KR are generated
from a 192-bit key K = K0|K1|K2|K3|K4|K5, Ki ∈ {0, 1}32. Then two 128-
bit values LL, LR are generated by applying GFN8,10 which takes CON(192)

i

(0 ≤ i < 40) as round keys and KL|KR as a 256-bit input. Then KL, KR and
LL, LR are used to generate WKi (0 ≤ i < 4) and RKj (0 ≤ j < 44) in the
following steps. In the latter part, forty-four 32-bit constant values CON(192)

i

(40 ≤ i < 84) are used.
The following steps show the 192-bit/256-bit key scheduling. For the 192-bit key
scheduling, the value of k is set as 192.

(Generating LL, LR from KL, KR for a k-bit key)
Step 1. Set k = 192 or k = 256

Step 2. If k = 192 : KL ← K0|K1|K2|K3, KR ← K4|K5|K0|K1

else if k = 256 : KL ← K0|K1|K2|K3, KR ← K4|K5|K6|K7

Step 3. Let KL = KL0|KL1|KL2|KL3, KR = KR0|KR1|KR2|KR3

LL|LR ← GFN8,10(CON
(k)
0 , . . . ,CON

(k)
39 , KL0, . . . , KL3, KR0, . . . , KR3)

(Expanding KL, KR and LL, LR for a k-bit key)
Step 4. WK0|WK1|WK2|WK3 ← KL ⊕KR

Step 5. For i = 0 to 10 (if k = 192), or 12 (if k = 256) do the following:
If (i mod 4) = 0 or 1:

T ← LL ⊕ (CON
(k)
40+4i | CON

(k)
40+4i+1 | CON

(k)
40+4i+2 | CON

(k)
40+4i+3)

LL ← Σ(LL)
if i is odd: T ← T ⊕KR

else:

T ← LR ⊕ (CON
(k)
40+4i | CON

(k)
40+4i+1 | CON

(k)
40+4i+2 | CON

(k)
40+4i+3)

LR ← Σ(LR)
if i is odd: T ← T ⊕KL

RK4i|RK4i+1|RK4i+2|RK4i+3 ← T

Key Scheduling for a 256-bit Key. For a 256-bit key, the value of k is set as
256, and the steps are almost the same as in the 192-bit key case. The difference
is that we use CON(256)

i (0 ≤ i < 40) as round keys to generate LL and LR,
and then to generate RKj (0 ≤ j < 52), we use fifty-two 32-bit constant values
CON(256)

i (40 ≤ i < 92).

3.4 F-functions

F-functions F0, F1 : (RK(32), x(32)) 7→ y(32) are defined as follows:

[F-function F0] [F-function F1]
Step 1. T ← RK ⊕ x Step 1. T ← RK ⊕ x
Step 2. Let T = T0|T1|T2|T3, Ti ∈ {0, 1}8 Step 2. Let T = T0|T1|T2|T3, Ti ∈ {0, 1}8

T0 ← S0(T0), T1 ← S1(T1) T0 ← S1(T0), T1 ← S0(T1)
T2 ← S0(T2), T3 ← S1(T3) T2 ← S1(T2), T3 ← S0(T3)

Step 3. Let y = y0|y1|y2|y3, yi ∈ {0, 1}8 Step 3. Let y = y0|y1|y2|y3, yi ∈ {0, 1}8
t(y0, y1, y2, y3) = M0

t(T0, T1, T2, T3)
t(y0, y1, y2, y3) = M1

t(T0, T1, T2, T3)



S0 and S1 are nonlinear 8-bit S-boxes. The orders of these S-boxes are differ-
ent in F0 and F1. Tables in Appendix B show the input/output values of each
S-box. In these tables all values are expressed in hexadecimal form, suffixes ’0x’
are omitted. For an 8-bit input of an S-box, the upper 4-bit indicates a row and
the lower 4-bit indicates a column .

Two matrices M0 and M1 in Step 3 are defined as follows.

M0 =




0x01 0x02 0x04 0x06

0x02 0x01 0x06 0x04

0x04 0x06 0x01 0x02

0x06 0x04 0x02 0x01


 , M1 =




0x01 0x08 0x02 0x0a

0x08 0x01 0x0a 0x02

0x02 0x0a 0x01 0x08

0x0a 0x02 0x08 0x01


 .

These are 4× 4 Hadamard-type matrices with elements hij = ai⊕j for a certain
set {a0, a1, a2, a3}†.

The multiplications between matrices and vectors are performed in GF(28)
defined by the lexicographically first primitive polynomial z8 + z4 + z3 + z2 + 1.
Fig. 3 in Appendix C illustrates the construction of F0 and F1.

3.5 Constant Values

32-bit constant values CON(k)
i are used in the key scheduling algorithm. We

need 60, 84 and 92 constant values for 128, 192 and 256-bit keys, respectively.
Let P(16) = 0xb7e1 (= (e − 2) · 216) and Q(16) = 0x243f (= (π − 3) · 216),
where e is the base of the natural logarithm (2.71828...) and π is the circle ratio
(3.14159...). CON(k)

i , for k = 128, 192, 256, are generated by the following way
(See Table 1 for the repetition numbers l(k) and the initial values IV (k)).

Step 1. T ← IV (k)

Step 2. For i = 0 to l(k) − 1 do the following:

Step 2.1. CON
(k)
2i ← (T ⊕P) | (T <<< 1)

Step 2.2. CON
(k)
2i+1 ← (T ⊕Q) | (T <<< 8)

Step 2.3. T ← T · 0x0002−1

In Step 2.3, multiplications are performed in GF(216) defined by a primitive
polynomial z16 + z15 + z13 + z11 + z5 + z4 + 1 (=0x1a831)‡.

Table 1. Required Numbers of Constant Values

k # of CON l(k) IV (k)

128 60 30 0x428a (= ( 3
√

2− 1) · 216)

192 84 42 0x7137 (= ( 3
√

3− 1) · 216)

256 92 46 0xb5c0 (= ( 3
√

5− 1) · 216)

† An Hadamard-type matrix is used in the blockcipher Anubis [2].
‡ The lower 16-bit value is defined as 0xa831=( 3

√
101 − 4) · 216. ‘101’ is the smallest

prime number satisfying the primitive polynomial condition in this form.



4 Design Rationale

CLEFIA is designed to realize good balance on three fundamental directions for
practical ciphers: (1) security, (2) speed, and (3) cost for implementations. This
section describes the design rationale of several aspects of CLEFIA.

Structure. CLEFIA employs a 4-branch generalized Feistel structure which is
considered as an extension of a 2-branch traditional Feistel structure. There are
many types of generalized Feistel structures. We choose one instance which is
known as “Generalized type-2 transformations” defined by Zheng et al. [24]. The
type-2 structure has two F-functions in one round for the four data lines case.
The type-2 structure has the following features:

– F-functions are smaller than that of the traditional Feistel structure
– Plural F-functions can be processed simultaneously
– Tends to require more rounds than the traditional Feistel structure

The first feature is a great advantage for software and hardware implementations,
and the second one is suitable for efficient implementation especially in hardware.
We conclude that the advantages of the type-2 structure surpass the disadvantage
of the third one for our blockcipher design. Moreover, the new design technique,
which is explained in the next, enables to reduce the number of rounds effectively.

Diffusion Switching Mechanism. CLEFIA employs two different diffusion
matrices to enhance the immunity against differential attacks and linear attacks
by using the Diffusion Switching Mechanism (DSM). This design technique was
originally developed for the traditional Feistel structures [22,23]. We customized
this technique suitable for GFNd,r, which is one of the unique propositions of
this cipher. Due to the DSM, we can prevent difference cancellations and linear
mask cancellations in the neighborhood rounds in the cipher. As a result the
guaranteed number of active S-boxes is increased.

Let the branch number of a function P be B(P ) = mina 6=0{wb(a)+wb(P (a))}.
The two matrices M0 and M1 used in CLEFIA satisfy the following branch num-
ber conditions of the DSM.

B(M0) = B(M1) = 5, B(M0|M1) = B(tM−1
0 |tM−1

1 ) = 5 .

Table 2 shows the guaranteed numbers of active S-boxes of CLEFIA. The
guaranteed data are obtained from computer simulations using a exhaustive-
type search algorithm. Now we focus on the columns indexed by ‘GFN4,r’. The
columns of ‘D’ and ‘L’ in the table show the guaranteed number of differential
and linear active S-boxes, respectively. The ‘DSM’ denotes that the DSM is used,
and the ‘w/o DSM’ denotes that DSM is not used, where only one matrix with
branch number 5 is employed. From this table we can confirm the effects of the
DSM when r ≥ 3, and these guaranteed numbers increase about 20% − 40%
than the structure without DSM. Consequently, the numbers of rounds can be
reduced, which implies that the performance is improved.



Table 2. Guaranteed Numbers of Active S-boxes

GFN4,r GFN8,r GFN4,r GFN8,r

D & L D L D D & L D L D
r w/o DSM DSM DSM DSM r w/o DSM DSM DSM DSM

1 0 0 0 0 14 25 34 34 48
2 1 1 1 1 15 26 36 36 50
3 2 2 5 2 16 30 38 39 53
4 6 6 6 6 17 32 40 42 56
5 8 8 10 8 18 36 44 46 59
6 12 12 15 12 19 36 46 48 62
7 12 14 16 14 20 37 50 50 66
8 13 18 18 21 21 38 52 52 71
9 14 20 20 24 22 42 55 55 76
10 18 22 23 29 23 44 56 58 81
11 20 24 26 34 24 48 59 62 86
12 24 28 30 39 25 48 62 64 91
13 24 30 32 44 26 49 65 66 94

Table 3. Tables of SSi (0 ≤ i < 4)

x 0 1 2 3 4 5 6 7 8 9 a b c d e f x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SS0(x) e 6 c a 8 7 2 f b 1 4 0 5 9 d 3 SS1(x) 6 4 0 d 2 b a 3 9 c e f 8 7 5 1

SS2(x) b 8 5 e a 6 4 c f 7 2 3 1 0 d 9 SS3(x) a 2 6 d 3 4 5 e 0 7 8 9 b f c 1

Choices of two S-boxes. CLEFIA employs two different types of 8-bit S-
boxes: one is based on four 4-bit random S-boxes, and the other is based on the
inverse function over GF(28) which has the best possible maximum differential
probability DPmax and linear probability LPmax. The both S-boxes are selected
to be implemented efficiently especially in hardware. The two 8-bit S-boxes S0

and S1 are defined as:

S0, S1 :
{{0, 1}8 → {0, 1}8

x(8) 7→ y(8)

S0 is generated by combining four 4-bit S-boxes SS0, SS1, SS2 and SS3 in
the following way. The values of these S-boxes are defined as Table 3.

Step 1. t0 ← SS0(x0), t1 ← SS1(x1), where x = x0|x1, xi ∈ {0, 1}4
Step 2. u0 ← t0 ⊕ 0x2 · t1, u1 ← 0x2 · t0 ⊕ t1
Step 3. y0 ← SS2(u0), y1 ← SS3(u1), where y = y0|y1, yi ∈ {0, 1}4

The multiplication in 0x2 · ti is performed in GF(24) defined by the lexicograph-
ically first primitive polynomial z4 + z + 1.

S1 is defined as follows:

y =
{

g(f(x)−1) if f(x) 6= 0
g(0) if f(x) = 0 .



The inverse function is performed in GF(28) defined by a primitive polynomial
z8 + z4 + z3 + z2 + 1. f(·) and g(·) are affine transformations over GF(2), which
are defined as follows.

f : x(8) 7→ y(8) g : x(8) 7→ y(8)


y0
y1
y2
y3
y4
y5
y6
y7




=




0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 1 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1







x0
x1
x2
x3
x4
x5
x6
x7




+




0
0
0
1
1
1
1
0







y0
y1
y2
y3
y4
y5
y6
y7




=




0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1
0 1 0 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0







x0
x1
x2
x3
x4
x5
x6
x7




+




0
1
1
0
1
0
0
1




Here, x = x0|x1|x2|x3|x4|x5|x6|x7 and y = y0|y1|y2|y3|y4|y5|y6|y7, xi, yi ∈
{0, 1}. The constants in f and g can be represented as 0x1e and 0x69, respec-
tively. If we apply isomorphic mapping φ from GF(28) to GF((24)2) defined by
an irreducible polynomial z2 + z + ω3, where ω is a root of z4 + z + 1 = 0, the
merged transformations φ ◦ f and g ◦ φ−1 require only few XOR operations.

For security parameters, DPmax of S0 is 2−4.67 and its LPmax is 2−4.38, the
minimum Boolean degree is 6, and the minimum number of terms over GF(28)
is 244. For S1, DPmax and LPmax are both 2−6.00, the minimum Boolean degree
is 7 and it has at least 252 terms over GF(28).

Designs for Efficient Implementations. CLEFIA can be implemented ef-
ficiently both in hardware and software. In Table 4, we summarize the design
aspects for efficient implementations.

Table 4. Design Aspects for Efficient Implementations

GFN · Small size F-functions (32-bit in/out)
· No need for the inverse F-functions

SP-type F-function · Enabling the fast table implementation in software

DSM · Reducing the numbers of rounds

S-boxes · Very small footprint of S0 and S1 in hardware

Matrices · Using elements with low hamming weights only

· Sharing the structure with the data processing part
Key Schedule · Requiring only a 128-bit register for a 128-bit key

· Small footprint of DoubleSwap

5 Evaluations

5.1 Security

As a result of our security evaluation, full-round CLEFIA is considered as a
secure blockcipher against known attacks. Here, we mention the cryptanalytic
results of several attacks which are considered effective for reduced-round CLE-
FIA.



Differential Cryptanalysis [7]. For differential attack, we adopt an approach
to count the number of active S-boxes of differential characteristics. This method
was adopted by AES, Camellia and other blockciphers [1, 10]. We found the
guaranteed number of differential active S-boxes of CLEFIA by computer search
as shown in Table 2. Using 28 active S-boxes for 12-round CLEFIA and DPS0

max =
2−4.67, it is shown that DCP 12r

max ≤ 228×(−4.67) = 2−130.76. This means there is
no useful 12-round differential characteristic for an attacker. Moreover, since S1

has lower DPmax, the actual upper-bound of DCP is expected to be lower than
the above estimation. As a result, we believe that full-round CLEFIA is secure
against differential cryptanalysis.

Linear Cryptanalysis [17]. We also apply active S-boxes based approach
for the evaluation of linear cryptanalysis. Since LPS0

max = 2−4.38, combining 30
active S-boxes for 12-round CLEFIA, LCP 12r

max ≤ 230×(−4.38) = 2−131.40. We
conclude that it is difficult for an attacker to find 12-round linear-hulls which
can be used to distinguish CLEFIA from a random permutation. As a result,
full-round CLEFIA is secure enough against linear cryptanalysis.

Impossible Differential Cryptanalysis [4]. We consider that impossible
differential attack is one of the most powerful attacks against CLEFIA. The
following two impossible differential paths are found.

(0, α, 0, 0)
9r

6→ (0, α, 0, 0) and (0, 0, 0, α)
9r

6→ (0, 0, 0, α) p = 1

where α ∈ {0, 1}32 is any non-zero difference. These paths are confirmed by
the check algorithm proposed by Kim et al. [14]. Using the above distinguisher,
we can mount actual key-recovery attacks for each key length. Table 5 shows
the summary of the complexity required for the impossible differential attacks.
According to Table 5, it is expected that full-round CLEFIA has enough security
margin against this attack.

Table 5. Summary of Impossible Differential Cryptanalysis

# of rounds key length key # of chosen time
whitening plaintexts complexity

10 128, 192, 256 yes 2101.7 2102

11 192, 256 yes 2103.5 2188

12 256 no 2103.8 2252

Saturation Cryptanalysis [9]. We also consider that saturation attack is one
of the most powerful attacks against CLEFIA. In this analysis, we consider a
32-bit word based saturation attack. Let Xi ∈ {0, 1}32 (0 ≤ i < 232) be 232



32-bit variables. Now we classify Xi into four states depending on the conditions
satisfied.

Const (C) : ∀i, j Xi = Xj , All (A) : ∀i, j i 6= j ⇔ Xi 6= Xj ,

Balance (B) :
⊕232−1

i=0 Xi = 0 , Unknown (U) : unknown .

Using the above notation, the following 6-round distinguishers are found.

(C,A, C, C) 6r→ (B, U,U,U) and (C,C, C,A) 6r→ (U,U,B, U) p = 1

These distinguishers can be extended to an 8-round distinguisher by adding two
more rounds before the above 6 round path. Let A(96) be an “All” state of 96-bit
word, and we divide it into 3 segments as A(96) = A0|A1|A2. Then the 8-round
distinguishers are given as follows.

(A0, C, A1, A2)
8r→ (B, U,U, U) and (A0, A1, A2, C) 8r→ (U,U,B, U) p = 1

Using the above 8-round distinguisher, it turns out that 10-round 128-bit
key CLEFIA can be attacked with complexity slightly less than 2128 F-function
calculations. From the above observations, we conclude that full-round CLEFIA
has enough security margin against this attack.

Algebraic Attack [8]. Let CLEFIA-I be a modified version of CLEFIA by
replacing all 4-bit S-boxes by the identity function I, I : {0, 1}4 → {0, 1}4, where
I(x) = x. Based on the estimation method by Courtois and Pieprzyk the total
number of terms can be estimated as follows [8]. T = 818

(
144
8

)
> 250+41 = 291 for

CLEFIA-I with r = 18, which gives the complexity T 2.376 = 2216 and T 3 = 2273.
For CLEFIA-I with r = 22, we have T = 818

(
352
8

)
> 250+52 = 2102, and thus

T 2.376 = 2242 and T 3 = 2306. Finally, for CLEFIA-I with r = 26, we have
T = 818

(
416
8

)
> 250+54 = 2104, T 2.376 = 2247, and T 3 = 2312. Although we

give the results of the estimation, we should interpret these estimations with an
extreme care: the real complexity of the XSL attacks is by no means clear at the
time of writing and is the subject of much controversy [16,20].

Related-Key Attack [3]. As for CLEFIA with a 128-bit key, L is generated
by L = GFN4,12(CON(128),K). As in Table 2, GFN4,12 has at least 28 active
S-boxes, and we have DCPmax ≤ 2−130.76. Therefore, for any ∆K and ∆L, a
differential probability of (∆K → ∆L) is expected to be less than 2−128, i.e., no
useful differential (∆K → ∆L) exists.

Also for 192 and 256-bit keys, (LL, LR) is generated by applying GFN8,10

to KL,KR. From Table 2, it has at least 29 differential active S-boxes, which
implies there are no differential characteristics with probability more than 2−128.

The above observations imply the probability of any related-key differential
(∆P, ∆C, ∆K) is less than 2−128, if all the information on ∆L is needed for
differential. Because all the bits in L are used in 2 or 6 consecutive rounds.
As a result, we believe that CLEFIA holds strong immunity against related-
key cryptanalysis. We also expect that CLEFIA holds enough immunity against
other related-key type attacks including related-key boomerang and related-key
rectangle attacks [5].



Table 6. Results on Hardware Performance of CLEFIA

Key Enc/Dec Key Setup Optimi- Area Freq. Speed Speed/Area
Length (cycles) (cycles) zation (gates) (MHz) (Mbps) (Kbps/gate)

18 12 area 5,979 225.83 1,605.94 268.63
128 speed 12,009 422.29 3,003.00 250.06

CLEFIA 36 24 area 4,950 201.28 715.69 144.59
speed 9,377 389.55 1,385.10 147.71

(0.09 µm) 192 22 20 area 8,536 206.56 1,201.85 140.81
256 26 20 area 8,482 206.56 1,016.95 119.89

AES [21] 128 11 N/A area 12,454 145.35 1,691.35 135.81
(0.13 µm) 54 N/A area 5,398 131.24 311.09 57.63

Security against Other Attacks. Due to the page limitation, the details of
the security evaluation against known general attacks are omitted. Immunity
against some of the known attacks can be estimated by the evaluation results of
similar type attacks already mentioned in this section. We consider any attack
does not threat full-round CLEFIA.

5.2 Performance

Table 6 shows evaluation results of hardware performance of CLEFIA using a
0.09µm CMOS ASIC library, where one gate is equivalent to a 2-way NAND and
the speed is evaluated under the worst-case condition. The Verilog-HDL models
were synthesized by specifying area or speed optimization to a logic synthesis
tool. The synthesized circuit of CLEFIA with 128-bit key by area optimization
occupies only 5,979 gates at a throughput of about 1.60 Gbps. Although we take
into account the difference of ASIC libraries, these figures indicate high efficiency
of CLEFIA in hardware implementation compared to the best known results of
hardware performance of AES [21].

Table 7 shows software performance results on Athlon 64 (AMD64) 4000+
2.4 GHz processor running Windows XP 64-bit Edition. We measured software
processing speed of enc/dec and key setup using the rdtsc instruction. In the
single-block (common) implementation, 12.9 cycle/byte (1.48 Gbps on the pro-
cessor) is achieved. The two-block parallel encryption is suitable for CTR mode,
because two blocks can be processed simultaneously [18].

6 Conclusion

We proposed a 128-bit blockcipher CLEFIA, which supports 128-bit, 192-bit,
and 256-bit keys. CLEFIA employs several new design approaches, including
the DSM technique. As a result, enough immunity against known attacks is
achieved. Moreover, the design of CLEFIA allows very efficient implementation
in a variety of environments. Some results of highly efficient implementation are
exemplified.



Table 7. Results on Software Performance of CLEFIA (assembly language)

Type of Key Encryption Decryption Key Setup Table size
implementation Length (cycles/byte) (cycles/byte) (cycles) (KB)

128 12.9 13.3 217
single-block 192 15.8 16.2 272 8

CLEFIA 256 18.3 18.4 328
two-block 128 11.1 11.1 217
parallel 192 13.3 13.3 272 16

encryption 256 15.6 15.6 328

AES [18] single-block 128 10.6 N/A N/A 8
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A Test Vectors

We give test vectors of CLEFIA for each key length. The data are expressed in
hexadecimal form.

128-bit key:
key ffeeddcc bbaa9988 77665544 33221100

plaintext 00010203 04050607 08090a0b 0c0d0e0f

ciphertext de2bf2fd 9b74aacd f1298555 459494fd

192-bit key:
key ffeeddcc bbaa9988 77665544 33221100 f0e0d0c0 b0a09080

plaintext 00010203 04050607 08090a0b 0c0d0e0f

ciphertext e2482f64 9f028dc4 80dda184 fde181ad

256-bit key:
key ffeeddcc bbaa9988 77665544 33221100

f0e0d0c0 b0a09080 70605040 30201000

plaintext 00010203 04050607 08090a0b 0c0d0e0f

ciphertext a1397814 289de80c 10da46d1 fa48b38a



B Tables of S0 and S1

S0 S1
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 57 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c 6c da c3 e9 4e 9d 0a 3d b8 36 b4 38 13 34 0c d9
1. 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af bf 74 94 8f b7 9c e5 dc 9e 07 49 4f 98 2c b0 93
2. bf a1 19 65 f7 7a 32 20 06 ce e4 83 9d 5b 4c d8 12 eb cd b3 92 e7 41 60 e3 21 27 3b e6 19 d2 0e
3. 42 5d 2e e8 d4 9b 0f 13 3c 89 67 c0 71 aa b6 f5 91 11 c7 3f 2a 8e a1 bc 2b c8 c5 0f 5b f3 87 8b
4. a4 be fd 8c 12 00 97 da 78 e1 cf 6b 39 43 55 26 fb f5 de 20 c6 a7 84 ce d8 65 51 c9 a4 ef 43 53
5. 30 98 cc dd eb 54 b3 8f 4e 16 fa 22 a5 77 09 61 25 5d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c
6. d6 2a 53 37 45 c1 6c ae ef 70 08 99 8b 1d f2 b4 6e 54 15 62 f6 35 30 52 a3 16 d3 28 32 fa aa 5e
7. e9 c7 9f 4a 31 25 fe 7c d3 a2 bd 56 14 88 60 0b cf ea ed 78 33 58 09 7b 63 c0 c1 46 1e df a9 99
8. cd e2 34 50 9e dc 11 05 2b b7 a9 48 ff 66 8a 73 55 04 c4 86 39 77 82 ec 40 18 90 97 59 dd 83 1f
9. 03 75 86 f1 6a a7 40 c2 b9 2c db 1f 58 94 3e ed 9a 37 06 24 64 7c a5 56 48 08 85 d0 61 26 ca 6f
a. fc 1b a0 04 b8 8d e6 59 62 93 35 7e ca 21 df 47 7e 6a b6 71 a0 70 05 d1 45 8c 23 1c f0 ee 89 ad
b. 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de 24 52 7a 4b c2 2f db 5a 4d 76 67 17 2d f4 cb b1 4a a8
c. 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9 b5 22 47 3a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae
d. 6e 84 72 bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a f8 5f ab f1 1b 42 81 d6 be 44 29 a6 57 b9 af f2
e. 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90 d4 75 66 bb 68 9f 50 02 01 3c 7f 8d 1a 88 bd ac
f. 9a 36 e5 29 c3 4f ab 64 51 f8 10 d7 bc 02 7d 8e f7 e4 79 96 a2 fc 6d b2 6b 03 e1 2e 7d 14 95 1d
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