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Abstract. In this article, it is discussed how to construct a compres-
sion function with 2n-bit output using a component function with n-bit
output. The component function is either a smaller compression func-
tion or a block cipher. Some constructions are presented which compose
collision-resistant hash functions: Any collision-finding attack on them is
at most as efficient as the birthday attack in the random oracle model
or in the ideal cipher model. A new security notion is also introduced,
which we call indistinguishability in the iteration, with a construction
satisfying the notion.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It satisfies preimage resistance, second-
preimage resistance and collision resistance. It is one of the most important
primitives in cryptography [19]. For simplicity, a cryptographic hash function is
called a hash function in this article.

A hash function usually consists of iteration of a compression function with
fixed input/output length. This type of hash function is called an iterated hash
function. There has been an interest in constructing a compression function
from component functions with smaller output length. Many schemes have been
presented following the approach [4,10,11,13-15,17,20]. It is typical for con-
structions using block ciphers. For example, suppose that AES is used for con-
struction. The block length of AES is 128 bits, and a hash function with 128-bit
output is no longer secure against the birthday attack. Thus, it is desired to
construct a compression function with larger output length.

In this article, we study how to construct a compression function with 2n-
bit output using a component function with n-bit output. A hash function with
such a compression function is called a double-block-length (DBL) hash function
(as opposed to a single-block-length (SBL) hash function, where the compression
function has n-bit output). The component function may be either a block cipher
or a smaller compression function.

We first discuss constructions using a smaller compression function. We focus
on the constructions formalized by Nandi [22]. In his formalization, the com-
pression function is of the form F(x) = (f(z), f(p(x))), where f is a component



compression function and p is a permutation such that both p and p~! are easy
to compute. We show that any collision-finding attack on a hash function with
the compression function F' is at most as efficient as the birthday attack if f is
a random oracle and p satisfies some properties. Our properties for p are easy
to be satisfied; for example, they are satisfied by the permutation p(z) =z @ ¢,
where @ is bit-wise addition and ¢ is a non-zero constant.

Similar results are in fact already obtained by Nandi [21], whose analysis
actually applies to a broader range of hash functions than our analysis. How-
ever, our results are sharper. We give a significantly better upper bound on the
probability of finding a collision as a function of the number of queries made by
the adversary.

A new security notion for a compression function is also introduced, which
we call indistinguishability in the iteration. It is really weaker than the notion
proposed in [5]. However, it may be valuable in practice. Loosely speaking, a
compression function F(z) = (f(z), f(p(x))) where f is a random oracle is called
indistinguishable in the iteration if F' cannot be distinguished from a random
oracle in the iterated hash function. We give sufficient conditions on p for F' to
be indistinguishable in the iteration.

Second, we discuss constructions using a block cipher. A compression function
composed of a block cipher is presented and its collision resistance is analyzed.
We show that any collision-finding attack on a hash function composed of the
compression function is at most as efficient as the birthday attack if the block
cipher used is ideal. A block cipher is ideal if it is assumed to be a keyed invertible
random permutation. The compression function presented in this article is quite
simple but has not been explicitly discussed previously.

In [10], it is shown that a collision-resistant hash function can be easily
composed of a compression function using two distinct block ciphers. It is well-
known that two distinct block ciphers can be obtained from a block cipher by
fixing, for example, one key bit by 0 and 1. However, it is preferable in practice
that fixing key bits is avoided. Moreover, fixing one bit may not be sufficient and
more bits may be required to be fixed. Our new construction does not involve
any fixing of key bits by constants.

The technique in [3] is used in the security proofs in this article. However,
the analysis is more complicated than the one in [3] since the relation of two
component-compression-function/block-cipher calls in a compression function
need to be taken into account.

The rest of this article is organized as follows. Section 2 includes notations,
definitions and a brief review of the related works. Section 3 discusses compres-
sion functions composed of a smaller compression function, including the results
on collision resistance and our new notion of indistinguishability in the iteration.
Section 4 exhibits a block-cipher-based compression function whose associated
hash function has optimal collision resistance; the proof of collision resistance
is given in the appendix. Section 5 gives a concluding remark which mentions a
recent collision attack on the scheme in Sect. 4.



2 Preliminaries

2.1 Iterated Hash Function

A hash function H : {0,1}* — {0, 1} usually consists of a compression function
F:{0,1}* x {0,1}¥ — {0,1}* and a fixed initial value ho € {0,1}*. An input m
is divided into the ¢'-bit blocks m1,mas,...,m;. Then,

hi = F(hi—1,m;)

is computed successively for 1 < i <! and h; = H(m). H is called an iterated
hash function.

Before being divided into the blocks, unambiguous padding is applied to
the input. The length of the padded input is a multiple of #. In this article,
Merkle-Damgard strengthening [6,20] is assumed for padding. Thus, the last
block contains the length of the input.

2.2 Random Oracle Model and Ideal Cipher Model

Random Oracle Model. Let F,.,, = {f|f : {0,1}" — {0,1}"}. In the
random oracle model, the function f is assumed to be randomly selected from
F,, ,,. The computation of f is simulated by the following oracle.

The oracle f first receives an input z; as a query. Then, it returns a randomly
selected output y; if the query has never been asked before. It keeps a table of
pairs of queries and replies, and it returns the same reply to the same query.

Ideal Cipher Model. A block cipher with the block length n and the key
length « is called an (n, k) block cipher. Let e : {0,1}* x {0,1}" — {0,1}" be
an (n, k) block cipher. Then, e(k,-) is a permutation for every k € {0,1}*, and
it is easy to compute both e(k,-) and e(k,-) 1.

Let B, . be the set of all (n,x) block ciphers. In the ideal cipher model,
e is assumed to be randomly selected from B, ,. The encryption e and the
decryption e~ ! are simulated by the following two oracles.

The encryption oracle e first receives a pair of a key and a plaintext as
a query. Then, it returns a randomly selected ciphertext. On the other hand,
the decryption oracle e~ ! first receives a pair of a key and a ciphertext as a
query. Then, it returns a randomly selected plaintext. The oracles e and e~!
share a table of triplets of keys, plaintexts and ciphertexts, (k;,z;,y;)’s, which
are produced by the queries and the corresponding replies. Referring to the
table, they select a reply to a new query under the restriction that e(k,-) is a
permutation for every k. They also add the triplet produced by the query and
the reply to the table.



2.3 DBL Hash Function

An iterated hash function whose compression function is composed of a block
cipher is called a single-block-length (SBL) hash function if its output length is
equal to the block length of the block cipher. It is called a double-block-length
(DBL) hash function if its output length is twice larger than the block length.

Let F' be a compression function composed of a block cipher. For an iterated
hash function composed of F, the rate r defined below is often used as a measure
of efficiency:

[l
(the number of block-cipher calls in F) x n

T =

In this article, we also call an iterated hash function a DBL hash function if
its compression function F' is composed of a smaller compression function f and
its output length is twice larger than the output length of f.

2.4 Related Work

Knudsen and Preneel studied the schemes to construct secure compression func-
tions with longer outputs from secure ones based on error-correcting codes [13—
15]. Tt is an open question whether optimally collision-resistant compression
functions are constructed by their schemes. A hash/compression function is op-
timally collision-resistant if any attack to find its collision is at most as efficient
as the birthday attack.

Our work is largely motivated by the recent works by Lucks [18] and Nandi [22].
Nandi generalized the results by Lucks and by Hirose [10]. He discussed how to
construct DBL hash functions and presented optimally collision-resistant ones.
However, their security analysis is not so sharp as ours, which is mentioned in
Sect. 1.

Coron, Dodis, Malinaud and Puniya [5] discussed how to construct a random
oracle with arbitrary input length given a random oracle with fixed input length.

As is reviewed in the following, there are many papers on hash functions
composed of block ciphers.

Preneel, Govaerts and Vandewalle [25] discussed the security of SBL hash
functions against several generic attacks. They considered SBL hash functions
with compression functions represented by h; = e(k,x) @ z, where e is an (n,n)
block cipher, k, x, z € {h;—1, m;, hi_1®m;, c} and ¢ is a constant. They concluded
that 12 out of 64(= 43) hash functions are secure against the attacks. However,
they did not provide any formal proofs.

Black, Rogaway and Shrimpton [3] presented a detailed investigation of prov-
able security of SBL hash functions given in [25] in the ideal cipher model. The
most important result in their paper is that 20 hash functions including the 12
mentioned above is optimally collision-resistant.

Knudsen, Lai and Preneel [16] discussed the insecurity of DBL hash functions
with the rate 1 composed of (n,n) block ciphers. Hohl, Lai, Meier and Waldvo-
gel [11] discussed the security of compression functions of DBL hash functions



with the rate 1/2. On the other hand, the security of DBL hash functions with
the rate 1 composed of (n,2n) block ciphers was discussed by Satoh, Haga and
Kurosawa [26] and by Hattori, Hirose and Yoshida [8]. These works presented
no construction for DBL hash functions with optimal collision resistance.

Many schemes with the rates less than 1 were also presented. Merkle [20]
presented three DBL hash functions composed of DES with the rates at most
0.276. They are optimally collision-resistant in the ideal cipher model. MDC-2
and MDC-4 [4] are also DBL hash functions composed of DES with the rates
1/2 and 1/4, respectively. Lai and Massey proposed the tandem/abreast Davies-
Meyer [17]. They consist of an (n,2n) block cipher and their rates are 1/2. It is
an open question whether the four schemes are optimally collision-resistant or
not.

Hirose [10] presented a large class of DBL hash functions with the rate 1/2,
which are composed of (n,2n) block ciphers. They were shown to be optimally
collision-resistant in the ideal cipher model. However, his construction requires
two independent block ciphers, which makes the results less attractive.

Nandi, Lee, Sakurai and Lee [23] also proposed an interesting construction
with the rate 2/3. However, they are not optimally collision-resistant. Knudsen
and Muller [12] presented some attacks against it and illustrated its weaknesses,
none of which contradicts the security proof in [23].

Black, Cochran and Shrimpton [2] showed that it is impossible to construct
a highly efficient block-cipher-based hash function provably secure in the ideal
cipher model. A block-cipher-based hash function is highly efficient if it makes
exactly one block-cipher call for each message block and all block-cipher calls
use a single key.

Gauravaram, Millan and May proposed a new approach based on iterated
halving to design a hash function with a block cipher [7].

3 DBL Hash Function in the Random Oracle Model

3.1 Compression Function

In this section, we consider the DBL hash functions with compression functions
given in the following definition.

Definition 1. Let F : {0,1}2" x {0,1}* — {0,1}*" be a compression function
such that (gi, hi) = F(gi—1, hi—1,m;), where g;, h; € {0,1}" and m; € {0,1}°. F
consists of f: {0,1}?" x {0,1}®* — {0,1}" and a permutation p : {0,1}2"+0 —
{0,132+ as follows:

9i = FU(gi—h hi—1, mi) = f(gi—h hi—1, mi)
hi = Fr.(gi—1,hi—1,mq) = f(p(gi—1, hi—1,m4)) -

p satisfies the following properties:

— It is easy to compute both p and p~!,

— p(p(+)) is an identity permutation,
— p has no fized points, that is, p(gi—1, hi—1,m;) # (gi—1, hi—1,m;) for any
(Gi—1, hi—1,m;).



3.2 Collision Resistance

We will analyze the collision resistance of DBL hash functions composed of F
under the assumption that f is a random oracle.

Two queries to the oracle f are required to compute the output of F' for
an input. For this compression function, a query to f for Fy or Fp uniquely
determines the query to f for the other since p is a permutation. Moreover, for
every w € {0,1}2"*0 f(w) and f(p(w)) are only used to compute F(w) and
F(p(w)), and w # p(w) from the properties for p in Definition 1. Thus, it is
reasonable to assume that a pair of queries w and p(w) to f are asked at a time.

Definition 2. A pair of distinct inputs w,w’ to F are called a matching pair if
w' = p(w). Otherwise, they are called a non-matching pair.

Notice that w’' = p(w) iff w = p(w’) since p(p(+)) is an identity permutation.

Definition. Insecurity is quantified by success probability of an optimal resource-
bounded adversary. The resource is the number of the queries to f in the random
oracle model.

For a set S, let z «—g S represent random sampling from S under the uniform
distribution. For a probabilistic algorithm M, let z < M mean that z is an
output of M and its distribution is based on the random choices of M.

Let H be a DBL hash function composed of a compression function F' in Def-
inition 1. The following experiment FindColHF(A, H) is introduced to quantify
the collision resistance of H. The adversary A with the oracle f is a collision-
finding algorithm of H.

FindColHF(A, H)
f R F2n+b,n5
(m,m’) «gr Af;
if m#m/ ANH(m)= H(m') return 1; else return 0;

FindColHF(A, H) returns 1 iff A finds a collision. Let AdvS!'(A) be the
probability that FindColHF(A, H) returns 1. The probability is taken over the
uniform distribution on F'3p,44 5 and random choices of A.

Definition 3. For g > 1, let
Advyl(g) = max {Adv‘}})“(A)} ,
where A makes at most q pairs of queries to f in total.

Without loss of generality, it is assumed that A4 does not ask the same query
twice. A can keep pairs of queries and their corresponding answers by himself.



Analysis. The following theorem shows the collision resistance of a hash func-
tion composed of F' in Definition 1.

Theorem 1. Let H be a hash function composed of a compression function F
specified in Definition 1. Then, for every 1 < q <27,

2

Advipo < (L)' + 2
Proof. Let A be a collision-finding algorithm of H with the oracle f. A asks ¢
pairs of queries to f in total. Suppose that A finds a colliding pair m,m’ of H.
Then, it is easy to find a colliding pair of inputs for F' without any additional
queries to the oracle. Moreover, a pair of inputs to F' are either matching or
non-matching, so are the colliding pair of inputs for F.

For 2 < j < g, let C; be the event that a colliding pair of non-matching
inputs are found for F' with the j-th pair of queries. Namely, it is the event that

(f (wj), f(p(w;)) € {(f (wy), f(p(w;))), (f (p(wsr)), f(wj))}

for some j' < j, where w; and p(w;) are the j-th pair of queries. Since both
f(w;) and f(p(w;)) are randomly selected by the oracle,

26-1)

Let C be the event that a colliding pair of non-matching inputs are found for F’
with ¢ pairs of queries. Then,

9 2
Pr[C] = Pr[Co v Cy V-V o] < 3 PrC] < (2%) .
j=2

For 1 < j < g, let CI" be the event that a colliding pair of matching inputs
are found for F' with the j-th pair of queries, that is, f(w;) = f(p(w;)). Thus,

m 1

Let C™ be the event that a colliding pair of matching inputs are found for F’
with ¢ pairs of queries. Then,

q
m) __ m m m m) __ q
Pr[C™] = Pr[C v C} \/-~-\/Cq]§j;Pr[Cj]—2—n .

Thus, if ¢ < 2", then

2
Adv"(A) < Pr[Cv C™] < Pr[C] + Pr[C™] < (2%) + 4

which holds for any A. O



From Theorem 1, any constant probability of success in finding a collision of
H requires £2(2™) queries.
A better bound can be obtained with more restricted permutations.

Theorem 2. Let H be a hash function composed of a compression function
F specified in Definition 1. Suppose that the permutation p is represented by
p(g, hym) = (pev(g, h), pm(m)), where pey : {0,132 — {0,1}2" and py, : {0,1}° —
{0,1}b. Suppose that pe, has no fived points and that pey(g, k) # (h,g) for any
(g,h). Then, for every 1 < q < 2",

coll q 2

Advy(q) <3 (2—n) .
Proof. Let A be a collision-finding algorithm of H with the oracle f. A asks ¢
pairs of queries to f in total. Suppose that A finds a colliding pair m,m’ of H.
Then, it is easy to find a colliding pair of inputs for F' without any additional
queries. Moreover, a pair of inputs to F' are either matching or non-matching,
so are the colliding pair of inputs for F'.

Let C be the event that a colliding pair of non-matching inputs are found for
F with ¢ pairs of queries. Then, as in the proof of Theorem 1,

Pr(C] < (2%)2 .

Suppose that a colliding pair of matching inputs are obtained for F' from the
collision of H found by A. Let (g,h,m) and (¢’,h’,m’) be the colliding pair.
Then, (g,h) = pev(g’sh') (and (¢',h') = pev(g,h)). (g,h) and (g’,h’) are both
outputs of F, or at most one of them is the initial value (go,ho) of H since
(g,h) # (¢',h'). Thus, a pair of inputs w and w’ are also found for F' from the
collision of H such that F'(w) = pey(F(w')) or F(w) = pev(go, ho)-

Suppose that (g,h) = F(w) and (¢',h') = F(w'). Then, a pair of w and w’
are non-matching since (g, h) = pev(9', ') # (R, 9').

For 1 < j <gq, let (AZ;“ be the event that, for the j-th pair of queries w; and
p(w;),

F(w)) € {pev(90,h0)} U () Apev (Fwjr)), pev (F(p(w;r)))}

1<57<j
F(p(wj)) € {pCV(907hO)} U U 4{pcv(F(wj’))vpcv(F(p(wj’)))} .
Thus,
Pr[ém] < 2(2j — 1)



Let C™ = C* v -+ v C. Then,

Thus,

coll ~m ~m q 2
Adve"(A) < Pr[CV &™) < Pr[C] + Pr[C™) < 3 (27) ,

for 1 < g < 2™, which holds for any A. O

For ¢ < 2"~!, Theorem 2 gives a smaller upper bound than Theorem 1. The
difference between their upper bounds is significant. For example, let n = 128
and ¢ = 2%, Then, the upper bound of Theorem 1 is about 27%8, while the
upper bound of Theorem 2 is less than 2774,

FEzample 1. Here is an example of the permutation p satisfying the conditions
given in Theorem 2:

p(gvhvm) = (g@Cl,h@Cg,m) ’

where ¢; and ¢y are distinct constants in {0, 1}".

3.3 Indistinguishability in the Iteration

We introduce a new security notion which is called indistinguishability in the
iteration.

Definition. Let F' be a compression function specified in Definition 1. The
following experiment DistinguishCF(A, F') is introduced to quantify the indis-
tinguishability in the iteration of F. The adversary A is a distinguishing al-
gorithm of F. A has an oracle O. In this experiment, a randomly chosen bit
d € {0,1} is given to O first. If d = 1, then O chooses f € Fa,4p,n randomly
in advance. Then, O returns F(w) = (f(w), f(p(w))) to each query w from A.
If d =0, then O chooses R € Fg,, 142, randomly in advance. Then, O returns
R(w) to each query w from A. A makes a chosen message attack and tries to
tell whether O uses F' or R. However, A is only allowed to select his j-th query

w; = (w§1),w§2),w§3)) from
j—1
{(w(l),w(z),w(?’)) (w®, w®) e U(vél),vf)) Aw® e {0,1}b} )
=0

where (vEl), vf)) is O’s answer to the ¢-th query for £ > 1 and (v(()l), v(()z)) is some

fixed initial value of a hash function H. F' is assumed to be used only in the
iteration of H.



DistinguishCF(A, F)
d g {0,1};
d' —gr A°D;

if d=d return 1; else return 0;

Let Succi*(A) be the probability that DistinguishCF(A, F) returns 1.
Without loss of generality, it can be assumed that Succi}?d'it(A) > 1/2 because
the probability that d = d’ is 1/2 even if A chooses d’ randomly. It can also be
assumed that A does not ask the same query twice. Let

Advindit(4) def Succitt(4) —1/2 .

Definition 4. For g > 1, let
Advirdit(g) = max {AdviI?d'it(A)} ,

where A makes at most q queries to O.

As long as Advi}?d'it (¢) is small enough, the compression function F' behaves
like a random function in the iterated hash function. The following theorem
presents an upper bound on Adv}?d”t(q) with additional restriction on the per-
mutation p.

Theorem 3. Let F' be a compression function specified in Definition 1. Suppose
that the permutation p is represented by p(g, h,m) = (Pev(g, h), pm(m)), where
Pev 1 {0,132 — {0,1}%" and py : {0,1}° — {0,1}°. Suppose that pe, has no
fixed points. Then, for every 1 < q < 27,
o 1 2

v <3 (8]
Proof. Let A be the optimal distinguishing algorithm for F' which makes ¢
queries. Let w; be A’s j-th query to O and T' = {w; |1 < j < ¢} N {p(w;) |1 <
j < q}. Suppose that d = 1. Then, O returns F(w;) = (f(w;), f(p(w,))) for w;.
If T = ¢, then F is completely indistinguishable from R. It is because each one
of f(w;) and f(p(w;)) for 1 < j < ¢q appears only once and it is chosen randomly
by O.

Let Empty be the event that T' = ¢. Then,

Succlt(A) = Pr[d = d'] = Pr[d = d’' A Empty] + Pr[d = d’ A ~Empty]
= Pr[d = d' | Empty] Pr[Empty] + Pr[d = d' | ~Empty] Pr[-=Empty]

1
< 3 + Pr[-Empty] .
Let v; be the initial value if 7 = 0 and the answer of O to the j-th query by
Aif j>1.For1<j<gq,let C; be the event that v; € {pcv(ve) |0 <€ < j—1}.
Then,

Pr(C]] < 55 -



For 1 <q <27,

q—1
1/ q\2
Pr~Empty] < Pr{C V-V C)_,] < Y Pr(C]] < 5 (27)
j=1
which implies that Advitdi(q) < (¢/27)2/2. O

4 DBL Hash Function in the Ideal Cipher Model

4.1 Compression Function

In this section, the collision resistance of a DBL hash function composed of a
compression function using a block cipher is analyzed. The compression function
specified in the following definition is considered.
Definition 5. Let F : {0,1}2" x {0,1}* — {0,1}*" be a compression function
such that (gi, hi) = F(gi—1, hi—1,m;), where g;, h; € {0,1}" and m; € {0,1}°. F
consists of a (n,n + b) block cipher e as follows:

gi = Fu(gi—1,hic1,mi) = e(hi—1|lmi, gi—1) © gi1

hi = Fr(gi—1,hi—1,mi) = e(hi—1||mi,gi1 ®c) @ gi1 @ c

where || represents concatenation and ¢ € {0,1}" — {0"} is a constant.

The compression function in Definition 5 is also shown in Fig. 1. It is one of
the compression functions specified in Definition 1 and its f and p are specified
as follows:

f(gi-1, him1,m;) = e(hi-1llmi, gi—1) © gi—1

p(gi—1,hic1,mi) = (91 D ¢, hi1,my)

Y
gZ_l > (& :C) > gZ
A A
hi—l
m;
) Yy \ ]
N oe 1l h;
C—D* ¢ P hi

Fig. 1. A compression function considered in Sect. 4.2

F requires two invocations of e to produce an output. However, these two
invocations need only one key scheduling of e. If F' is implemented using the AES
with 192-bit key-length, then n = 128, b = 64 and the rate is 1/4. If implemented
using the AES with 256-bit key-length, then n = b = 128 and the rate is 1/2.



4.2 Collision Resistance

Let F' be a compression function specified in Definition 5. Two queries to the
oracles e and e~ ! in total are required to compute the output of F' for an input.
It is easy to see from Fig. 1 that a query to e or e~! and the corresponding reply
for Fy (Fp) uniquely determine the query to e for Fy, (Fy). Moreover, these
two queries are only used to compute the outputs of F' for a matching pair of
inputs. Thus, it is assumed that a pair of queries to e, e~ ! required to compute
an output of F' are asked at a time.

Definition. The following experiment FindColHF(A, H) is similar to the one

in Sect. 3 except that the adversary A is a collision-finding algorithm with the

oracles e, e L.

FindColHF(A, H)
€ <R Bn,n+b;
(m,m’) —r A" ;
if m#m/' AH(m)= H(m') return 1; else return 0;

Let Adv$y"(A) be the probability that FindColHF(A, H) returns 1. The
probability is taken over the uniform distribution on B, ;1 and random choices

of A.
Definition 6. For g > 1, let
Adv'(q) = max {Adv(}?n(A)} ,
where A makes at most q pairs of queries to e,e”" in total.

Without loss of generality, it is assumed that A asks at most only once on a triplet
of a key, a plaintext and a ciphertext obtained by a query and the corresponding

reply.
Analysis. The following theorem shows the collision resistance of a hash func-
tion composed of F' in Definition 5.

Theorem 4. Let H be a hash function composed of the compression function F
specified in Definition 5. Then, for every 1 < g < 272,

Advi'(g) <3 (527)

The proof of Theorem 4 is given in the appendix.
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Concluding Remark

In this article, some plausible constructions have been proposed for DBL hash
functions.

Recently, Pramstaller and Rijmen presented a collision attack on the scheme

in Sect. 4 with DESX as an underlying block cipher [24]. Their result does not
contradict Theorem 4. It is a warning that we should be careful when we choose
an underlying block cipher. It also shows a limitation of the random oracle/ideal
cipher model. Related topics are discussed in [1,9].
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A Proof of Theorem 4

Let A be a collision-finding algorithm of H with oracles e,e~!. A asks ¢ pairs
of queries to e,e™! in total.

Since g; = e(hi—1||mi, gi—1) ® gi—1, g; depends both on the plaintext and the

ciphertext of e and one of them is fixed by a query and the other is determined



randomly by the answer from the oracle. Thus, g; is randomly determined by
the answer. h; is also randomly determined by the other answer.

Let (ki,jllk2,5,;,y;) and (ki ;]|k2,;,z; & ¢, z;) be the triplets of e obtained
by the j-th pair of queries and the corresponding answers.

For every 2 < j < g, let C; be the event that a colliding pair of non-matching
inputs are found for F' with the j-th pair of queries. Namely, it is the event that,
for some j' < 7,

F(xj, k1, ko) = F(xj, ki, kaj) or F(axj @ c ki j,kajr)
or

F(z; ®c ki, ko) = Flxj, ki ko ) or Fzy @ kij ko),
which is equivalent to

(y ©xj,2; O ®c) = (yy Sy, 2z Sy ®e)or (2 ©ay e,y Sayr) .
Thus,

20~ 1) o i
@ @ -2)Z - @-1) @@ DP

Let C be the event that a colliding pair of non-matching inputs are found for F’
with ¢ pairs of queries. Then,

q q ~1)
S;Pr Z—J]_l)) )

j=2

Pr[C;] <

Suppose that a colliding pair of matching inputs are obtained for F' from the
collision of H found by A. Let (g,h,m) and (¢’,h’,m’) be the colliding pair of
F. Then, (g,h) = (¢’ ®ec,h'). (g,h) and (¢, k') are both outputs of F' or at most
one of them is the initial value (go, ho) of H. Thus, a pair of inputs w and w’
are also found for F' from the collision of H such that

(Fu(w), Fr(w)) = (Fu(w') @ ¢, Fr(w')) or (go ® ¢, ho) -

Suppose that (Fy(w), Fr(w)) = (Fy(w") ® ¢, Fr.(w')). Then, a pair of w and
w’ are non-matching since

(Fu(w), Fr(w)) = (Fy(w') & ¢, Fp(w')) # (Fr(w'), Fy(w'))

For 1 < j < g, let (ki j||k2,j,xj,y;) and (ki ;| k2,5, 2; © ¢, z;) be the pair of
triplets of e obtained by the j-th pair of queries and the corresponding answers.
Let C;n be the event that F(J?j, li’ k27]‘) eVor F(J?j ®c, ]{117]‘, k27]‘) €V, where

V={(go®c.ho)}U | {(Fulaj, by ko) @ e, Fr(wy, ko ko))t U
1<5'<j

U {((Fu(ay @ kg ko) ®c Fr(ay @ c ki ko)) -

1<5'<y



Thus,

. 22— 1) 227 -1)
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Let (™ = C‘ln\/-~-\/égl. Then,
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Thus, if ¢ < 272, then

Adv"(A) < Pr[Cv ™) < Pr[C] + Pr[C™)

which holds for any A.



