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Abstract. For the power consumption model called Hamming weight
model, we rewrite DPA attacks in terms of correlation coefficients be-
tween two Boolean functions. We exhibit properties of S-boxes (also
called (n, m)-functions) relied on DPA attacks. We show that these prop-
erties are opposite to the non-linearity criterion and to the propagation
criterion. To quantify the resistance of an S-box to DPA attacks, we in-
troduce the notion of transparency order of an S-box and we study this
new criterion with respect to the non-linearity and to the propagation
criterion.

1 Introduction

Block cipher algorithms embedded in cryptographic devices are sensitive to two
main kinds of attacks, which are usually investigated in parallel. The first kind
relies on the properties of the cryptographic primitives involved in the cryptosys-
tem. The second kind is based on the analysis of the hardware’s leakages.

The most well-known attacks against block ciphers algorithms are the known-
plaintext attacks called differential cryptanalysis [2, 13] and linear cryptanaly-
sis [19]. Most block cipher algorithms (such as DES or AES) use vectorial func-
tions, also called S-boxes, as cryptographic primitives. To protect such cryp-
tosystems against linear and differential attacks, S-boxes are designed to fulfil
some cryptographic criteria (balancedness, high nonlinearity or high algebraic
degree).

Since electronic components are not usually perfectly tamper-proof, one can
obtain sensitive information from side channels such as the timing of operations
or the power consumption. In 1996, Kocher successfully used this approach to
exhibit a first side-channel attack effective enough to recover secret keys in nu-
merous cryptosystems [14]. Since Kocher’s original paper, a large number of very
efficient attacks has been reported on a wide variety of cryptographic implemen-
tations (see for instance [4,5,8,11,20,23]). Among these attacks, the Differential
Power Analysis (DPA) is one of the most powerfull against iterated block ci-
phers. DPA are usually used to attack on either the first or the last round but
it can sometimes be applied to attack on intern rounds of the block ciphers. It
requires the knowledge of either the plaintext or the ciphertext. It relies on a
statistical analysis of a large number of samples where the same key operates



on different data. For this strategy of attacks, S-boxes involved in the cryp-
tosystems are usually considered by cryptanalysts and also by cryptographers
as oracles providing the output corresponding to a given data. So, to withstand
DPA attacks, countermeasures are added at the implementation level to make
the signals needed for these attacks useless.

The efficiency of DPA attacks is much greater than the efficiency of differen-
tial or linear cryptanalysis 1. Moreover, in the area of embedded cryptography,
because of the life expectancy of the device, known-plaintext attacks requiring
a large number of pairs plaintext/ciphertext or requiring a large number of en-
cryptions are unpracticable. The difference between the efficiencies of the two
categories of attacks is not taken into account to design block ciphers for smart
cards. Indeed, nearly all the algorithms embedded in smart cards have been de-
signed to resist at high level to linear, differential and high-order differential at-
tacks, whereas nothing has been done to make them inherently resistant to DPA
attacks. Countermeasures against DPA attacks are generally added to the algo-
rithms when implemented on devices. Following this addition, the performances
and the code sizes of the resulting embedded algorithms are approximately mul-
tiplied by two. This increase is damaging in the area of embedded cryptography
where the computation power and the memory capability are limited. The de-
sign of DPA-resistant algorithms would make the addition of countermeasures
innecessary. Such a design could be done by selecting pertinent S-boxes.

For a very particular power consumption model, Guilley et al. studied in [9]
the single-bit DPA attack in terms of correlation coefficients between two Boolean
signals, the first one depending on linear combinations of output-bits of S-boxes
and the second one depending on consumption. The authors pointed out that
the better shielded against linear cryptanalysis an S-box is, the more vulnerable
it is to side-channel attacks such as DPA. In this paper, we extend the study of
Guilley et al. for multi-bit DPA attacks and for the power consumption model
called Hamming weight model. We exhibit the properties of S-boxes related to
DPA attacks. We argue that these new properties and the classical cryptographic
criteria (such as the high non-linearity or the satisfaction of propagation criteria
at high level) cannot be satisfied simultaneously. Since a highly non-linear S-box
cannot withstand DPA attacks in an optimal way, we point out that a trade-off
between the classical cryptographic criteria and resistance to DPA attacks has to
be found. We introduce a new cryptographic criteria, that we call transparency
order of an S-box, to quantify the resistance of an S-box to DPA attacks. We
exhibit lower and upper bounds on it and we study their tightness. We prove in
particular that bent functions (and more generally functions satisfying PC(l) for
a high level l) cannot by definition resist DPA attacks. To ensure the resistance of
an algorithm to these attacks, we argue that the new criterion must be satisfied
at a certain level and that this level depends on the amount of noise inside the

1 For example, a DPA of a software DES without any countermeasure requires between
50 and 200 plaintext/ciphertext pairs, whereas the best non-side-channel attack
against DES requires under 64 terabytes of plaintexts and ciphertexts encrypted
under a single key



device and/or the number of encryptions that a cryptanalyst can do with the
same key.

This paper is organized as follows. In Sect. 2, we recall the basic facts about
the main cryptographic properties of S-boxes. In Sect. 3, we give the formal
definition of an iterated block cipher and we recall the theory behind DPA at-
tacks. To establish the relationship between these attacks and the cryptographic
properties of S-boxes, we rewrite in Sect. 4 the DPA attacks in terms of cor-
relation coefficients. After arguing that the efficiency of (single-bit or multi-bit)
DPA attacks relies on the behavior of the so-called differential trace, we analyze
it in Sect. 5. We use this analysis in Sect. 6 to investigate how S-boxes can
withstand DPA attacks. In Sect. 7, we introduce and we briefly study the notion
of transparency order of a function, whose aim is to quantify the resistance of
an S-box to DPA attacks.

2 Notation and Preliminaries

In this paper, we distinguish the additions of integers in R, denoted by +, and
the additions mod 2, denoted by ⊕. For simplicity and because there will be no
ambiguity, we denote by + the addition of vectors of Fn

2 (words) with n > 1.
We call (n, m)-function any mapping F from Fn

2 into Fm
2 . If m equals 1, then

the function is called Boolean. If F is an affine (n, m)-function, then we call
direction of F , the linear (n, m)-function L such that there is a vector B ∈ Fm

2

for which F (x) = L(x) + B, x ∈ Fn
2 .

For every vector a ∈ Fn
2 , n ∈ N, we denote by H(a) the Hamming weight of

a. We denote the all-zero vector (resp. the all-one vector) on Fm
2 , by 0m (resp.

by 1m). The set {x ∈ Fn
2/F (x) 6= 0m} is called support of F : it is denoted by

Supp F . An (n, m)-function F is said to be balanced if every element y ∈ Fm
2

admits the same number 2n−m of pre-images by F .
To every (n, m)-function F , we associate the m-tuple (f1, · · · , fm) of Boolean

functions on Fn
2 , called the coordinate functions of F , such that we have F (x) =

(f1(x), · · · , fm(x)) for every x ∈ Fn
2 . The usual scalar product is denoted by

“·”. We recall that it is defined for every pair of vectors a = (a1, · · · , am) and
b = (b1, · · · , bm) by a · b =

⊕m
i=0 aibi.

To make the study of the properties of F easier, we introduce the sign func-
tion of F , that is the function (x, v) 7→ (−1)v·F (x) (if F is Boolean, the sign
function is the function x 7→ (−1)F (x)). For every (n, m)-function F and for
every vector v ∈ Fm

2 , we have:

v · F =
1
2
− 1

2
(−1)v·F . (1)

The Fourier transform of the sign function of an (n, m)-function F (that
we call Walsh transform of F ) is the function WF defined on Fn

2 × Fm
2 by the

formula:
WF (u, v) =

∑
x∈Fn

2

(−1)v·F (x)+u·x
. (2)



As we recall in the following proposition, the balancedness of a function can
be characterized through its Walsh transform’s coefficients.

Proposition 1. A (n, m)-function F is balanced if and only if WF (0, v) equals
zero for every vector v ∈ Fm

2
∗.

Let n be a positive integer and let f and g be two Boolean functions defined
on Fn

2 , the correlation coefficient of f and g, denoted by Cor (f, g), is defined by:

Cor(f, g) =
∑
x∈Fn

2

(−1)f(x)+g(x)
. (3)

If the output-bits of two Boolean functions are statistically independent, then
their correlation coefficient equals zero.

The nonlinearity of a function F is one of the parameters which quantify
the level of confusion brought in the system by the function (another such pa-
rameter is the degree). The nonlinearity of a vectorial function F is defined as
the minimum Hamming distance between the nonzero linear combinations of
the coordinate functions of F and the set of all Boolean affine functions (that is
functions x 7→ a ·x⊕ b, a, b ∈ Fn

2 ). Cryptographic functions used in block ciphers
must have high nonlinearities to prevent linear attacks (see [19]).

For every (n, m)-function F , the nonlinearity NF and the Walsh transform
WF satisfy the relation NF = 2n−1 − 1

2 maxu∈Fn
2 ,v∈Fm

2
∗ |WF (u, v) |. The nonlin-

earity NF of every (n, m)-function F is upper bounded by 2n−1− 2n/2−1. If n is
even and m ≤ n

2 , then this bound is tight. The functions achieving it are called
bent.

Another useful tool for quantifying the cryptographic resistance of functions
is the notion of derivative. The derivative of F with respect to a vector a ∈ Fn

2

is the (n, m)-function DaF : x 7→ F (x) + F (x + a). The notion of derivative is
related to differential and higher-order differential attacks [2, 13, 17]. A vector
a ∈ Fn

2 such that DaF is a constant function is called linear structure of F . The
space {a ∈ Fn

2 ; DaF = cst} is called linear space of F and it is denoted by εF .
As argued by Evertse in [7], the linear spaces of functions used as cryptographic
primitives in iterated block ciphers have be reduced to the null vector in order
to protect the systems against differential attacks.

Remark 1. Notice that for every (n, m)-function F and for every pair (a, v) ∈
Fn

2 ×Fm
2 , the correlation coefficient between Boolean functions x 7→ v ·F (x) and

x 7→ v · F (x + a) equals WDaF (0, v). �
The Strict Avalanche Criterion (SAC) was introduced by Webster and Tavares

in [30] and this concept was generalized into the Propagation Criterion (PC) by
Preneel [28]. These properties describe the behavior of a function whenever some
input coordinates are complemented. They must be satisfied at high levels, in
particular by functions involved in block ciphers. A function F satisfies PC(l)
if the function DaF is balanced for every vector a of weight at most l. In [29],
Rothaus showed that a function is bent if and only if it satisfies PC(n).

In the next section, our aim is to highlight the role that (n, m)-functions play
in DPA attacks on block ciphers.



3 DPA Attacks on Iterated Block Ciphers

3.1 Introduction to Iterated Block Ciphers

To define an iterated block cipher in a formal way, we usually consider a family
(FK)K∈K of (n, n)-functions indexed by a value K ∈ K, where K is called the
round key space. The encryption function of the iterated block cipher with block
size n, with R rounds and with round functions FK is defined by:

X(i) = FKi

(
X(i−1)

)
for 1 ≤ i ≤ R, (4)

where X(0) is the plaintext and X(R) is the ciphertext.
The vector (K1, . . . ,KR) is called the key and its coordinates are the round

keys.
As recalled in Sect. 2, balancedness is a fundamental property which has to

be satisfied by every designed round function FK , K ∈ K. A classical way to
define the balanced functions FK is to design or select the coordinates functions
of each FK being pairwisely independent. We assume in this paper that the
coordinate functions of every round function FK are pairwisely independent.

3.2 Introduction to Differential Power Analysis

Differential Power Analysis uses the fact that computers and microchips leak
information about the operations they process. Specific methods for analyzing
the power consumption measurements to find secret keys from tamper-resistant
devices have been studied in [3, 15, 23]. In what follows, we use notations in-
troduced in [15]. Moreover, we assume that the set K equals Fr

2, where r is a
positive integer.

Let (FK)K∈Fr
2

be a family of (n, n)-functions used as round functions in an
iterated block cipher embedded in a smart card, the power consumption of the
smart card after one round of the encryption of a message X ∈ Fn

2 using a round
key K̇ ∈ Fr

2 is usually (cf. [3, 15]) denoted by CK̇(X). Function CK̇ is called
power consumption function related to K̇ or power consumption function if there
is no ambiguity on K̇.

To describe the DPA attacks, one usually introduces a Boolean function D
called selection function and defined for every 3-tuple (X, K, j) ∈ Fn

2 × Fr
2 ×

{1, · · · , n} as the value of the jth bit of FK(X).
A DPA attack is done by computing a so-called differential trace whose values

are related to the selection function and to the power consumption function. In
what follows, we recall the definition of the differential trace.

Definition 1. [15] Let (FK)K∈Fr
2

be a family of permutations on Fn
2 and let

D be a selection function related to this family. Let (Xi)i≤N be a family of
N distinct vectors of Fn

2 (randomly chosen if N < 2n). Then, for every pair



(K, K̇) ∈ Fr
2
2 and for every integer j ≤ n, the differential trace of K with

respect to the 3-tuple (K̇,N, j) is denoted by ∆K,K̇(N, j) and defined by:

∆K,K̇(N, j) =

N∑
i=1

D(Xi,K, j)CK̇(Xi)∑N
i=1 D(Xi,K, j)

−

N∑
i=1

(1−D(Xi,K, j))CK̇(Xi)∑N
i=1(1−D(Xi,K, j))

, (5)

where CK̇ is the power consumption function related to K̇.

For large values N , the value ∆K,K̇(N, j) approximately equals ∆K,K̇(2n, j).
To simplify notations, we denote ∆K,K̇(2n, j) by ∆K,K̇(j).

In Relation (5), information about the secret parameter K̇ is given by the
power consumption function CK̇ . Each value CK̇(X) can be viewed as the energy
to flip bits from a previous state to state FK̇(X). To better understand the kind
of information this function can give about the round key K̇, a theoretical model
for the power consumption of devices must be introduced.

In this paper, we use the Hamming distance model introduced in [3] as a
generalization of the Hamming weight model (cf. [1]). In the Hamming distance
model, it is assumed that switching a bit from 0 to 1 requires the same amount
of energy as switching it from 1 to 0. The average power consumption to switch
a bit from 0 to 1 is denoted by c and for every pair (X, K) ∈ Fn

2 × Fr
2, one

denotes by α(X, K) ∈ Fn
2 the value of the data which is replaced by FK(X) on

the device. We call state function function α. For every pair (X, K) ∈ Fn
2 × Fr

2,
we assume throughout this paper that the power consumption CK(X) satisfies
the relation CK(X) = c×H (α(X, K) + FK(X)) + w, where w denotes a noise.

Remark 2. Due to Relation (1), we have:

CK(X) =
nc

2
− c

2
×

∑
u∈Fn

2
H(u)=1

(−1)u·(α(X,K)+FK(X)) + w . (6)

�

In the following section, we describe DPA attacks more formally and we
rewrite the differential trace in terms of correlation coefficients for balanced S-
boxes and for constant noise w.

4 DPA Attacks and Correlations

4.1 Single-bit DPA Attacks

One denotes by K̇ the first round key used in an iterated block cipher encrypting
messages X. We assume in this section that a cryptanalyst wants to retrieve K̇
and that he has measured nearly all the values CK̇(X), X ranges over Fn

2 .
In the rest of the paper, since we only consider the restriction α(·, K̇) of

the state function α, we denote by α the function X 7→ α(X, K̇) to simplify
notations.



Let (K̇,N, j) ∈ Fr
2 × {1, · · · , 2n} × {1, · · · , n} be a fixed 3-tuple. In a DPA

attack, coefficients ∆K,K̇(N, j) are computed for different round keys K ∈ Fr
2

until one value is significantely greater than the others. Let us denote by Kt

the corresponding key. The core of the attack is the following: if ∆Kt,K̇
(N, j) is

significantely greater than the other values ∆K,K̇(N, j), K ∈ Fr
2, then equality

Kt = K̇ holds with high probability. Since such an attack uses one single bit (of
index j) of the outputs FK̇(X), it is usually called single-bit DPA attack.

Currently, the main cryptographic properties of S-boxes (nonlinearity, re-
siliency, balancedness and propagation criteria) are characterized through the
Walsh transform. Therefore, to reveal the properties of balanced S-boxes that
are related to DPA attacks, we start rewriting the differential trace of a vector
in terms of correlation coefficients.

Lemma 1. Let (FK)K∈Fr
2

be a family of (n, n)-functions. Let α denote the state
function of a cryptographic system implementing FK , K ∈ Fr

2, as round functions
and let c denote the average power consumption to switch a bit in the system.
If all the functions FK are balanced, then for every pair (K, K̇) ∈ Fr

2
2 and for

every positive integer j ≤ n, we have :

∆K,K̇(j) =
c

2n

∑
u∈Fn

2
H(u)=1

Cor (v · FK , u · (FK̇ + α)) , (7)

where v = (v1, · · · , vn) ∈ Fn
2 is such that vj = 1 and vi = 0 if i 6= j.

Proof. By definition of v, we have D(X, K, j) = v · FK(X), which implies
equalities

∑
X∈Fn

2
D(X, K, j) = #Supp(v · FK) and

∑
X∈Fn

2
(1 − D(X, K, j)) =

2n − #Supp(v · FK). Because we assume that every FK is balanced, it follows
that cardinality of Supp(v · FK) equals 2n−1 for every pair (v,K) ∈ Fn

2 × Fr
2,

v 6= 0. Thus, Relation (5) applied for N = 2n implies the equality ∆K,K̇(j) =
−1

2n−1 (
∑

X (1− 2(v · FK(X)))CK̇(X)). Using Relation (1), we obtain ∆K,K̇(j) =
−1

2n−1

∑
X(−1)v·FK(X)CK̇(X). This equality and Relation (6) imply

∆K,K̇(j) =
−nc− 2w

2n

∑
X∈Fn

2

(−1)v·FK(X)

+
c

2n

∑
u∈Fn

2
H(u)=1

∑
X∈Fn

2

(−1)v·FK(X)+u·(α(X)+FK̇(X)) , (8)

where we recall that w denotes a constant noise. Due to the balancedness of
FK and Proposition 1, the first summation in Relation (8) is null for every
non-zero vector v and for every K ∈ Fr

2. Because the second summation in
Relation (8) equals c

2n

∑
u∈Fn

2
H(u)=1

Cor (v · FK , u · (FK̇ + α)), Relations (8) and (7)

are equivalent. �

More generally a DPA attack can be done by studying correlations between a
non-zero linear combination v ·FK and all the coordinate functions of FK̇ , when



K ranges over Fr
2.. To take this remark into account, we extend Definition 1 by

assuming that the differential trace of a vector K is defined with respect to a
pair (K̇, v) by:

∆K,K̇(v) =
c

2n

∑
u∈Fn

2
H(u)=1

Cor (v · FK , u · (FK̇ + α)) . (9)

In our model, a single-bit DPA attack on the first round of a block cipher
is led by designing, for a vector v ∈ Fn

2
∗, the set of round keys K such that

|∆K,K̇(v)| is maximal.

4.2 Multi-bit DPA Attacks

Single-bit DPA attacks were generalized in multi-bit DPA attacks in [3,21,22,24,
27]. Among these generalizations, the multi-bit DPA attack proposed by Brier et
al. in [3] is the most efficient. It is led by searching for high correlations between
functions X 7→ H (FK(X)), K ∈ Fr

2, and the power consumption function X 7→
CK̇(X), where K̇ is the expected round key. One can prove as in Lemma 1 (and
for the same assumptions on (FK)K∈Fr

2
) that multi-bit DPA attack is done by

selecting round keys K which maximize the value δK̇(K) defined for every pair
(K, K̇) ∈ Fr

2
2 by:

δK̇(K) = |
∑

v∈Fn
2 , H(v)=1

∆K,K̇(v)| . (10)

To better understand how the candidate round keys are selected, we study
the differential trace in the next section.

5 Analysis of the Differential Trace

Values ∆K,K̇(v) (and hence δK̇(K)) are strongly related to the assumptions
which are made on the state function α. Indeed, as noticed in [3, 5, 8], if α
is supposed to be unknown and dependent on FK̇ , then the values taken by
(K, v) 7→ ∆K,K̇(v) cannot be used to get information about the round key K̇.
Consequently, it is usually assumed either that functions α and FK are indepen-
dent for every round key K ∈ Fr

2, or that α is constant.

5.1 Functions FK and Function α Are Independent

To prevent statistical attacks, round functions (FK)K∈Fr
2

of iterated block ciphers
are currently designed such that the coordinates of vectors Y = FK(X), X ∈ Fn

2 ,
are statistically independent. Moreover, to withstand differential and statistical
attacks, the functions in (FK)K∈Fr

2
are defined to be as uncorrelated as possible.

Then, for every pair of distinct elements (K, K̇) ∈ Fr
2
2 and for every pair (u, v) ∈

Fn
2
∗ × Fn

2
∗, u 6= v, one can realistically assume in a cryptographic area that

Cor(v ·FK , u ·FK̇) equals zero (let us notice that in the particular case u = v, it



cannot be usually assumed that functions u · FK and u · FK̇ are uncorrelated).
This assumption is related to the hypothesis of wrong-key randomization [10,16].
Under this assumption, we argue in the following proposition that the differential
trace has a very simple behavior.

Proposition 2. Let (FK)K∈Fr
2

be a family of (n, n)-functions. Let α denote the
state function of a cryptographic system implementing functions FK , K ∈ Fr

2, as
round functions and let c denote the average power consumption to switch a bit
in the system. If for every pair (K, K̇) ∈ Fr

2
2 and for every pair of distinct vectors

(u, v) ∈ Fn
2

2 s.t. H(u) = 1, functions u · FK and v · FK̇ are independent and if
α is independent of the round functions FK for every K ∈ Fr

2, then for every

3-tuple (v,K, K̇) ∈ Fn
2
∗×Fr

2
2, coefficient ∆K,K̇(v) equals c(−1)

v·(FK+F
K̇

)

2n Wα(0, v)
if v · (FK + FK̇) is constant and equals 0 otherwise.

Proof. Because the functions α and FK are independent for every K ∈ Fr
2, the

correlation coefficient Cor(v · FK ⊕ u · FK̇ , u · α), (u, v) ∈ Fn
2

2, H(u) = 1, equals
zero if v · FK ⊕ u · FK̇ is not constant and equals ±Wu·α(0) if v · FK ⊕ u · FK̇ is
constant. We assumed that Boolean functions v ·FK and u ·FK̇ are independent
for every pair (K, K̇) ∈ Fr

2
2 and every pair of distinct vectors (u, v) such that

H(u) = 1. One deduces that if v · FK ⊕ u · FK̇ is constant, then u equals v (and
H(v) = 1). �

5.2 Study of ∆K,K̇ when α Is Constant

It is realistic to assume that during the execution of an algorithm embedded in
smart cards, state function α is constant. This can be assigned to the so-called
pre-charged logic where the bus is cleared between each significant transferred
value or when the previous operation concerning the bus is an opcode loading
(cf. [5]). As explained in [3], another possible reason is that complex architectures
implement separated busses for data and addresses, that may prohibit certain
transitions.

Proposition 2 was established after assuming in particular that functions
v · FK ⊕ u · FK̇ and u · α are independent for every pair of distinct nonzero
vectors (u, v) ∈ Fn

2
2, H(u) = 1, and every pair (K, K̇). When α is assumed to be

constant, this assumption cannot be satisfied. However when α is constant, Re-
lation (9) can be rewritten ∆K,K̇(v) = c

2n

∑
u∈Fn

2
H(u)=1

(−1)u·βCor (v · FK , u · FK̇),

after denoting by β the constant value of α. Thus, one straightforwardly deduces
the following proposition:

Proposition 3. Let (FK)K∈Fr
2

be a family of (n, n)-functions. Let α denote the
state function of a cryptographic device implementing functions FK , K ∈ Fr

2, as
round functions and let c denote the average power consumption to switch a bit
in the system. Let us assume that functions v · FK and u · FK̇ are independent
for every pair (K, K̇) ∈ Fr

2
2 and for every pair of distinct elements (u, v) ∈ Fn

2
2,



H(u) = 1. If α is constant, equal to β ∈ Fn
2 , then for every 3-tuple (v,K, K̇) ∈

Fn
2
∗ × Fr

2
2, the differential trace of K with respect to (K̇, v) satisfies:

∆K,K̇(v) =
c× (−1)v·β

2n
Cor (v · FK , v · FK̇) . (11)

5.3 Efficiency of the Discrimination of Round Keys in DPA Attacks

Usually, DPA attacks do not permitt to obtain the expected key K̇ immediately
but allow to isolate it in a subset of Fr

2. For single-bit DPA attacks (resp. multi-
bit DPA attacks), the elements of this subset correspond to ghost peaks in the
distribution of the values of the function K ∈ Fr

2 − {K̇} 7→ |∆K,K̇(v)| (resp.
K ∈ Fr

2 − {K̇} 7→ |δK̇(K)|). Clearly, the greater the number of ghost peaks,
the smaller the efficiency of the attack. Indeed, wrong guesses have to be tested
again.

Under assumptions done in Propositions 2 and 3, the set of round keys se-
lected in a single-bit DPA attack with respect to a pair (v, K̇) contains the set
{K ∈ Fr

2| v · (FK + FK̇) = cst}. Indeed, when the state function is constant or
independent of functions FK , then the value |∆K,K̇(v)| is maximal for every K
belonging to {K ∈ Fr

2| v · (FK + FK̇) = cst}. For multi-bit DPA attacks on a de-
vice with random (or null) state function, the set of selected round keys admits
the set {K ∈ Fr

2| FK + FK̇ ∈ {0n, 1n}} as a subset.

6 Resistance of S-Boxes to DPA Attacks when Round
Keys Are Introduced by Addition

In many iterated block ciphers such as DES [25] or AES [26], the round key is
introduced by addition. In this case, we have r = n and, for every round key
K ∈ Fn

2 , the round function FK is the function X 7→ F (X + K), where F is
a robust cryptographic permutation on Fn

2 . In such a system we call S-box the
function F .

In the rest of the paper, we assume that the round keys are introduced
by addition. Under this assumption, Propositions 2 and 3 imply the following
corollary:

Corollary 1. Let F be an (n, n)-function whose coordinate functions are pair-
wisely independent and let α be the state function of a cryptographic device in
which F is embedded as an S-box. If α is independent of F or constant, then
the number of round keys selected after a single-bit DPA attack with respect to
the vector v ∈ Fn

2 (resp. after a multi-bit DPA attack) is greater than or equal
to #εv·F (resp. #εF ).

One cannot withstand multi-bit DPA attacks by increasing the size of the
linear space εF of F , since the elements of K̇+εF act in a very similar way in the
cryptosystem. Indeed, by definition of εF , for every element K in K̇ + εF , there



exists a constant C ∈ Fn
2 such that X 7→ F (X + K̇) and X 7→ F (X + K) + C

are equal.
We showed in Sect. 4.2 that only vectors K such that δK̇(K) is maximal have

to be stored as good candidate round keys. In practice, because of the imper-
fections of the measurements (and also because the values of K 7→ ∆K,K̇(N, j),
N ≤ 2n and j ≤ n fixed, are not computed for N = 2n but for large N � 2n),
every tested vector such that δK̇(K) is significantely high, is stored as a good
candidate key (even if δK̇(K) is not the maximal value achieved). For this reason,
it is difficult to mount an efficient DPA attack when the amplitude of the peaks
in the distribution of the values δK̇(K), K ∈ Fn

2 , are not high enough (cf. [5,6]).
Indeed, let us denote by σ the assumed margin of error on the computation of
values δK̇(K). We argued in Sect. 4 that under some realistic assumptions, the
value δK̇(K) is always maximal for K = K̇. Thus, if the average value

D(K̇) =
1

2n − 1

∑
K∈Fn

2−{K̇}

(
δK̇(K̇)− δK̇(K)

)
(12)

is smaller than σ, then the peaks in the distribution of values δK̇(K) could not
be identified by an attacker because of the imperfections of the measurements.
Reciprocally, if Difference (12) is significantly higher than σ, then the peak
corresponding to δK̇(K̇) will clearly appear in the distribution of values δK̇(K)
when K ranges over Fn

2 .
Let us develop the computation of D(K̇) for α independent of F and for α

constant.

Lemma 2. Let F be a (n, n)-function whose coordinate functions are pairwisely
independent and let α be the state function of a cryptographic system implement-
ing F as an S-box.
If α is independent of F , then for every element K̇ ∈ Fn

2 we have :

D(K̇) =
c

2n
|
∑
v∈Fn

2
H(v)=1

Wα(0, v)| − 1
2n − 1

∑
K∈Fn

2−{K̇}

δK̇(K) . (13)

If α is constant and equals β ∈ Fn
2 , then for every element K̇ ∈ Fn

2 we have :

D(K̇) = c|n− 2H(β)| − c

22n − 2n

∑
a∈Fn

2
∗

|
∑
v∈Fn

2
H(v)=1

(−1)v·βWDaF (0, v)| . (14)

Proof. Due to Proposition 2, if α and F are independent, then the summa-
tions

∑
v∈Fn

2 , H(v)=1 ∆K̇,K̇(v) and c
2n

∑
v∈Fn

2 , H(v)=1 Wα(0, v) are equivalent: one
straightforwardly deduces Relation (13). If the function α equals the constant
value β, coefficient Wα(0, v) in Relation (13) equals (−1)v·β ×2n. Moreover, due
to Remark 1 and Relation (11), one has

∆K,K̇(v) =
c

2n
× (−1)v·βWDK+K̇F (0, v) . (15)

From Relations (1), (10), (13) and (15), one deduces Relation (14). �



Remark 3.
1. More generally, one can rewritte Relation (14) for (n, m)-functions as:

D(K̇) = c|m− 2H(β)| − c

22n − 2n

∑
a∈Fn

2
∗

|
∑
v∈Fn

2
H(v)=1

(−1)v·βWDaF (0, v)| . (16)

Moreover, due to Relation (1), summation
∑

v∈Fn
2

H(v)=1

(−1)v·βWDaF (0, v) is also

equal to [n2n − 2
∑

X∈Fn
2

H(β + DaF (X))]. 2. For every vector t ∈ Fn
2 , let τt

denotes the function X ∈ Fn
2 7→ X + t. Since WDK+K̇F (0, v) equals the function

X 7→ Cor(v ·F, v ·F ◦ τK+K̇), Relation (15) relates the differential trace function
to the cross-correlation function of the coordinate functions of F viewed as
binary sequences (see for instance [12] for more details about the cross-correlation
function of binary sequences). �

As we recalled in Sect. 5.2, it is realistic to assume that during the execution of
an algorithm running in a smart card environment, state function α is constant.
For such a case, we introduce a new notion, that we call transparency order of a
function, to quantify the resistance of an S-box to (single bit or multi-bit) DPA
attacks.

7 Transparency Order of S-Boxes

7.1 Definition

Let us assume that the state function is constant. Usually, one cannot presuppose
the constant value taken by α, which depends on the implementation. Thus, to
thwart DPA attacks on one round of an iterated block cipher, the D(K̇) values
have to be small enough not only for any round key K̇ but also for every possible
value β. This remark leads us to introduce a new criterion on S-boxes. In order
to be as general as possible, we introduce the notion for (n, m)-functions and
not only for permutations on Fn

2 .

Definition 2. Let n and m be two positive integers and let F be an (n, m)-
function. The transparency order of F , denoted by TF , is defined by:

TF = max
β∈Fm

2

(|m− 2H(β)| − 1
22n − 2n

∑
a∈Fn

2
∗

|
∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)|). (17)

The smaller the transparency order of an S-box, the higher its resistance to
DPA attacks. Indeed, to make the peak corresponding to δK̇(K̇) undistinguish-
able from noise of measurements, value δK̇(K̇) must be approximately equal to
the average amplitude δK̇(K) when K ranges over Fn

2 . Thus, the greatest trans-
parency order that an S-box can achieve without compromising its resistance
to DPA attacks depends on the quality of the measurements an attacker can
achieve 2.
2 By adding Hardware’s countermeasures to the device, it is possible to ensure a

minimal margin of error for any measurement of the power consumption.



7.2 Study of Transparency Order of S-Boxes

In order to determine what a reasonably high transparency order is, there is a
need for an upper bound on the transparency order of (n, m)-functions. In what
follows, we introduce an upper bound and a lower bound on the transparency
order of a function. We show that these bounds can be achieved.

Theorem 1. Let n and m be two positive integers, transparency order TF of
every (n, m)-function F satisfies the following relation:

0 ≤ TF ≤ m . (18)

If every coordinate function of F is bent, then TF = m. Moreover, TF is null if
and only if F is an affine function, whose direction L satisfies Im(L) ⊆ {0m, 1m}.

Remark 4. Since n-variables bent functions only exist for n even, the tightness
of the upper bound in Relation (18) is still an open problem for n odd. �

Being unbalanced, bent functions are never used as cryptographic primitives.
However, due to their properties recalled in Sect. 2 (optimal non-linearity and
only balanced non-zero derivatives), they resist in an optimal way to linear and
differential cryptanalysis. By showing that bent functions are the weakest pos-
sible functions from DPA attacks viewpoint, Theorem 1 establishes that it is
impossible to design a function that can resist in an optimal way to linear, dif-
ferential and DPA attacks. In the following proposition, we show more generally
that the functions satisfying PC(l) for a large (but not necessarily optimal) order
l do not have a good transparency order.

Proposition 4. Let m and n be two positive integers such that m ≤ n. Let F
be a (n, m)-function. Let l ≤ n be a positive integer. If F satisfies the PC(l)
criteria, then the transparency order of F satisfies:

TF ≥ m

(
1−

2n −
∑l

j=0

(
n
j

)
2n − 1

)
. (19)

Proof. Because function F satisfies PC(l), then function DaF is balanced for
every vector a s.t. H(a) ≤ l. Due to Proposition 1, one deduces that for every
vector a such that H(a) ≤ l and for every non-zero vector v ∈ Fm

2 , we have
WDaF (0, v) = 0. Thus, if F satisfies PC(l), then for every vector β ∈ Fm

2 , we
have ∑

a∈Fn
2
∗

|
∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)| =
∑

a∈Fn
2
∗

H(a)>l

|
∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)| .

The cardinality of the set {a ∈ Fn
2 , H(a) > l} is 2n −

∑l
j=0

(
n
j

)
. Moreover,

since every value WDaF (0, v) is lower than or equal to 2n, then the inequality



|
∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)| ≤ m2n is satisfied for every β ∈ Fm
2 . One deduces

the following relation for every vector β ∈ Fm
2 :

∑
a∈Fn

2
∗

|
∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)| ≤ m2n

2n −
l∑

j=0

(
n

j

) . (20)

From Relations (17) and (20) and the fact that maxβ |m − 2H(β)| is maximal
for β ∈ {0m, 1m}, one deduces Inequality (19). �

In the next proposition, we investigate the transparency order of affine (n, m)-
functions. In particular, we argue that the transparency of an affine function is
related to the weight enumerators of the cosets of Im(L), where Im(L) is seen as
a binary linear code.

Proposition 5. Let n and m be two positive integers. Let F be an affine (n, m)-
function admitting L for direction, then its transparency order satisfies the fol-
lowing relation:

TF = max
β∈Fm

2

 2n

2n − 1
|m− 2H(β)| − 1

2n − 1

m∑
j=0

|m− 2j|Nj,β

 , (21)

where Nj,β denotes the cardinality of the set {a ∈ Fn
2 ; H(L(a) + β) = j}.

Moreover, if F is balanced, then its transparency order satisfies:

TF =


2n

2n−1

(
m− m

2m

(
m
m
2

))
if m is even

2n

2n−1

(
m− 2m

2m

(m−1
m−1

2

))
if m is odd

. (22)

Remark 5.
1. In Proposition 5, the set β + Im (L) can be viewed as a coset of a linear
code. Let C denotes this code. If β belongs to C, then β + Im(L) = Im(L) and
values Nj,β , j ≤ m, are the coefficients of the weight enumerator of C (see for
instance [18] for more details about weight enumerators of codes).
2. We recall that for m even and due to Stirling’s formula, we have

(
m

m/2

)
'

2m/
√

m
2 π for large values of m. Thus for large values m and for balanced affine

(n, m)-functions F , the transparency order of F equals approximately 2n

2n−1 (m−√
2m
π ) if m is even and to 2n

2n−1

(
m− mq

(m−1)π
2

)
if m is odd. �

Due to Proposition 5 and to Remark 5, the transparency order of balanced
affine functions is not close to 0 for high values m. Moreover, Relation (21) relates
the problem of the construction of affine functions with small transparency order
to the problem of defining linear codes whose elements have a Hamming weight
either close to 0 or close to m.



8 Conclusion

The study of DPA attacks in terms of correlation coefficients enables us bet-
ter to understand these attacks. It allows us to characterize the properties of
S-boxes related to DPA attacks. To quantify the information leakage of devices
involving S-boxes, we introduced the notion of transparency order. We estab-
lished a spectral characterization of the transparency order of S-boxes and we
exhibit its upper and lower bounds. We proved that the lower bound is achieved
by particular affine functions and we proved that the transparancy order of
bent functions achieves the upper bound. The construction of highly-nonlinear
S-boxes with small transparency order (close to 0) is an open problem. The defi-
nition of such S-boxes would allow the design of specific block cipher algorithms
for smart cards which are less resistant to linear or differential attacks but are
inherently resistant to DPA attacks. To make up for this security loss, such al-
gorithms can be implemented in smart cards without the high penalties due to
DPA-countermeasures.
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A Proofs of Theorem 1 and of Proposition 5

A.1 Proof of Theorem 1

Proof. The value of |m − 2H(β)| is upper bounded by m and equals m for
β = 0m, 1m. On the other hand, values taken by the summation in Relation (17)
belong to [0; m]. One straightforwardly deduces Inequality (18).
TF equals m if and only if β ∈ {0m, 1m}. In this case, the value of the summa-
tion

∑
a∈Fn

2
∗ |
∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)| is null if and only if the summation∑
v∈Fm

2
H(v)=1

WDaF (0, v) is null for every non-zero vector a. On the other hand, if

every coordinate function of F is bent, then for every a ∈ Fn
2 and every v ∈ Fm

2

such that H(v) = 1, the function Da(v · F ) is balanced and (due to Proposition
1) satisfies WDaF (0, v) = 0. One concludes that such functions F , TF is maximal
and equals m.
Now, we show that if TF is null, then F is an affine function, whose direction
L satisfies Im(L) ⊆ {0m, 1m}. By definition, TF is greater than or equal to each
value

|m− 2H(β)| − 1
2n(2n − 1)

∑
a∈Fn

2
∗

|
∑

v∈Fm
2 ,H(v)=1

(−1)v·βWDaF (0, v)| ,

β ∈ Fm
2 , which implies (for β ∈ {0m, 1m}):

m− 1
2n(2n − 1)

∑
a∈Fn

2
∗

|
∑

v∈Fm
2 , H(v)=1

WDaF (0, v)| ≤ TF . (23)

The left-hand side of Relation (23) being always positive or null, if TF equals 0,
then m − 1

2n(2n−1)

∑
a∈Fn

2
∗ |
∑

v∈Fm
2 , H(v)=1 WDaF (0, v)| must equal 0, which is

equivalent to: ∑
a∈Fn

2
∗

|
∑

v∈Fm
2 , H(v)=1

WDaF (0, v)| = m2n(2n − 1) . (24)

Relation (24) is satisfied if and only if |WDaF (0, v)| equals 2n for every pair
(a, v) ∈ Fn

2
∗ × Fm

2 , H(v) = 1, which implies that F is affine. Let L denote the
direction of F , then Relation (24) is equivalent to∑

a∈Fn
2
∗

|
∑

v∈Fm
2 , H(v)=1

(−1)v·L(a)| = m(2n − 1) ,

and the equality holds if and only if
∑

v∈Fm
2 , H(v)=1(−1)v·L(a) (that is the value

m− 2H(L(a))) equals ±m i.e. if and only if L(a) equals 0m or 1m. One deduces
that if TF equals 0, then F is an affine function whose direction L satisfies
Im(L) ⊆ {0m, 1m}. Let us prove now that this necessary condition is a sufficient
one.



Let F be an affine function whose direction L satisfies Im(L) ⊆ {0m, 1m}. Then
summation |

∑
v∈Fn

2 ,H(v)=1 WDaF (0, v)| equals 2n|m− 2H(β)| if L(a) = 0m and
equals 2n|m − 2H(β + 1m)| if L(a) = 1m. Since one has |m − 2H(β + 1m)| =
|m− 2H(β)|, one deduces the equality∑

a∈Fn
2
∗

|
∑

v∈Fn
2 ,H(v)=1

WDaF (0, v)| = 2n(2n − 1)|m− 2H(β)| ,

and hence, that TF is null. �

A.2 Proof of Proposition 5

Before providing proof of Proposition 5, let us first introduce the following tech-
nical lemma:

Lemma 3. For every positive integer m, the following relation is satisfied:

m∑
j=0

|m− 2j|
(

m

j

)
=

{
m
(

m
m
2

)
if m is even

2m
(m−1

m−1
2

)
if m is odd

. (25)

Using Lemma 3, a proof of Proposition 5 is:

Proof. Function L being the direction of F , for every pair (a, v) ∈ Fn
2 × Fm

2 ,
coefficient WDaF (0, v) equals 2n(−1)v·L(a). Thus, for every β ∈ Fm

2 , summation∑
v∈Fm

2
H(v)=1

(−1)v·βWDaF (0, v) equals 2n (m− 2H (β + L(a))). Hence, from Rela-

tion (17) one deduces:

TF = max
β∈Fm

2

 2n

2n − 1
|m− 2H(β)| − 1

2n − 1

∑
a∈Fn

2

|m− 2H (β + L(a))|

 . (26)

Because summation
∑

a∈Fn
2
|m− 2H (β + L(a))| can be rewritten on the form∑m

j=0

∑
a∈Fn

2 ,H(β+L(a))=j |m− 2j|, Relation (21) is satisfied.
If F is balanced, then Im(L) = β + Im(L) = Fm

2 and Nj,β equals 2n−m ×(
m
j

)
for every vector β and every integer j ≤ m. In this case, summation∑

a∈Fn
2
|m− 2H (β + L(a))| equals 2n−m

∑m
j=0 |m− 2j|

(
m
j

)
. By applying Lemma

3, one deduces that for every balanced affine (n, m)-function, Relations (22) and
(26) are equivalent. �


