Preimage and Collision Attacks on MD2

Lars R. Knudsen! and John E. Mathiassen?

! Department of Mathematics, Technical University of Denmark
2 Department of Informatics, University of Bergen, Norway

Abstract. This paper contains several attacks on the hash function
MD2 which has a hash code size of 128 bits. At Asiacrypt 2004 Muller
presents the first known preimage attack on MD2. The time complexity
of the attack is about 2'°* and the preimages consist always of 128 blocks.
We present a preimage attack of complexity about 2°7 with the further
advantage that the preimages are of variable lengths. Moreover we are
always able to find many preimages for one given hash value. Also we
introduce many new collisions for the MD2 compression function, which
lead to the first known (pseudo) collisions for the full MD2 (including
the checksum), but where the initial values differ. Finally we present a
pseudo preimage attack of complexity 2°° but where the preimages can
have any desired lengths.

1 Introduction

A hash function is a function that takes an arbitrary long input, and produces
a fixed length output. The output is often called a fingerprint of the input. A
cryptographic hash function needs to satisfy certain security criteria in order to
be called a secure hash function. Let

H:{0,1}* — {0,1}"

denote a hash function, whose output is of length n bits. A cryptographic hash
function should be resistant against the following attacks:

— Collision: Find = and 2’ such that = # 2’ and H(z) = H(z').
— 2nd preimage: Given z and y = H(x) find 2’ # z such that H(z') = y.
— Preimage: Given y = H(x), find 2’ such that H(z') = y.

Typically one requires that there must not exist attacks of these three types
which are better than brute-force methods. Thus, to find a collision should not
have a lower complexity than about 27/2 and it should not be possible to find
preimages in time less than 2.

It is common to construct hash functions from iterating a so-called a com-
pression function

h:{0,1}" x {0,1}' — {0,1}",

which compresses a fixed number of bits. Here the output of one application
of this function, h;, of length n is called a chaining variable and is used as an

input in the next iteration together with the next message block m; 1 of length
[. If the design of a hash function follows the principles of Merkle and Damgard
[4,1], it can be shown that a collision for the hash function H implies a collision
for the compression function h. Thus, if one can design a secure compression
function, then one can also design a secure hash function. Still, the first step
towards finding weaknesses in the hash function may be to find weaknesses in
the compression function. The first chaining variable in an iterated hash function
is often called the I'V (initial value) and this is often fixed. Attacks on hash
functions where the attacker is able to choose or change the IV are called pseudo
attacks. Must popular hash functions are using an iterative compression function
and a fixed IV. Examples are MD4, MD5, SHA-1, and RIPEMD-160.

The organisation of this paper is as follows. Section 2 presents the MD2 hash
function. Section 3 presents some collision attacks on the compression function
where many details are included in an appendix. Section 4 presents several at-
tacks on MD2 (including the checksum). They are a pseudo collision attack,
several preimage attacks, as well as a pseudo preimage attack. As far as we are
informed the complexities of all these attacks are the lowest known today. Below
is a summary of all known results on MD2, where an asterisk (*) indicates that
the attack is new.

| |Collision| Preimage |Comments |

Compression function 28[6 273 [5]

Hash function (pseudo)| 216 (*) 295 (%) Arbitrary length messages

Hash function - 2104[5] [Message length 128 blocks

Hash function - 297-6_2112 (%) [Message length 44-128 blocks
2 The MD2

The MD2 hash algorithm is designed by Ron Rivest and published in 1988[2,3].
It is a function H : GF(256)* — GF(256)', which takes an arbitrary number
of bytes GF(256) and outputs a string of 16 bytes GF(256)16. The function
consists of iterations of a compression function h : GF(256)'6 x GF(256)'¢ —
GF(256)°, h; = h(h;_1,m;), where the input in the ith iteration is the ith
message block m; and the chaining variable h;_;. The message m to be hashed
is appended with some padding bytes and a checksum ¢ before it is processed:
m||p|le = ma|lma||- - - ||mis1, where |m;| = 128 fori = 1,2,...,t+1. At least one
byte and at most 16 bytes of m; are padded. Let b be the length of the message
in bytes, and i = b mod 16, i € {0,1,...,15}, then d = 16 — i (represented in
a byte) is added to the message d times. There is at least one byte padding,
so if the length is b = 15mod 16, then d = 1 the byte p = 1 is appended the
message. If the message length in bytes is 0 modulo 16 , then d = 16 and the
byte sequence p =16]---|16 of length 16 bytes is added to the message, so that
the length of the message still is 0 modulo 16.

Next a checksum block m;y1 = ¢ =c¢o | 1 | --+ | ¢15 is appended to the
message. The checksum [Algorithm 1] is generated processing every byte of the

Algorithm 1 Algorithm to compute the checksum ¢ = c¢o||ea]| - - - ||e15
for j=0,1,...,15

C; = 0
fori=1to t do

for j =0 to 15 do

¢ = s(cjflmod 16 Dmig) e

end /*for i*/

end /*for j*/

Algorithm 2 The compression function in MD2, where the output is the 16

first bytes of hi,l | hi,g | te | hi,16| s |hi,48-
for j =1 to 16 do
hijj = hi—ij

hije+; =mi,;

higat+; = hi—ij ® my;
t=0
for r =1 to 18 do

for j =1 to 48 do

t = hi; =s(t) ® hi

end /*for j*/

t = r — lmodulo 256
end /*for r*/

message one block at the time, starting at the first block. The checksum is
initialized to 0, ¢; = 0 for 4 = 0,1,...,15. Then for all ¢ message blocks, m; for
1=1,2,...,t, process all 16 bytes of that block and the checksum j =0,1,...,15
by the function ¢; = s(c(j_1) ® m; ;) © ¢; where m; j is the j'th byte of the i’th
block of the message and where s : {0, 1}8 — {0, 1}8 is a bijective mapping, which
is also used in the compression function. The details of s are not important for
the results in this paper. The hash function is iterated in the following way:

— hO:iv:()
— g = h(hi1,mi) fori=1,2, ...t +1
— H(m) = hi1

The compression function [Algorithm 2] of MD2 takes two inputs of each 128
bits, cf., earlier, and consists of an 18-round iterative process, where a vector of
the 48 bytes constructed from h;_1||m;||h;—1 ® m; and denoted

hi = hiallhigl] - |[hias
is repeatedly processed from left to right through the use of the same round func-

tion consisting of simple byte exclusive-ors and the eight-bit bijective mapping
s(), also used in the checksum calculation.

3 Attacks on the Compression Function

In [6] a collision attack on the compression function of MD2 is given. Recall
that this function computes h; = h(h;—1,m;). Rogier and Chavaud give 141
collisions for the compression function where for all collisions h;_1 is fixed to the
value zero. Note that the IV of MD2 as stated in [2] is zero. We found some
variations of this attack. First of all we found that the collision attack extends
and it is possible to find many more collisions of this form. We implemented one
improvement and found 32,784 collisions, all with h;—; = 0. This attack takes
very little time. Also we found that it is possible to find so-called multi-collisions
for the compression function, that is, a set of different m;s all with same output
in the compression function and all with h;_; = 0. With a complexity of about
272 one expects a multiple collision of eight messages.

Another variation of Rogier and Chavauds attack is to fix m; to zero and find
different values of h;_; leading to identical outputs of the compression function
and yet another variation is to fix m; @ h;_1. These variants are similar to the
above original one, although the complexities are slightly higher. [6] also consider
cases where only a subset of the bytes of h;_1 are zeros. We show similar results
for the variations. The details of the variant where h;_1 = 0 are descibed in
Appendix B. The details of the other variants are described in an extended
version of the paper available upon request.

In the next section we shall use some of the improvements and variations of
the attacks on the compression function.

4 Attacks on the MD2 Hash Function

4.1 A Pseudo Collision Attack on MD2

In Section 3 we mention a collision attack on the compression function where
m; = m} =0 and h;,_; # h}_;, but where h; = h}. Using this attack we are able
to find collision for MD2 (including the checksum) but using different I'Vs. We
have found 130 such collisions in 2 seconds on a single PC, and can find ~ 2!°
such collisions in about 512 seconds (under 9 minutes) with that property. For
any such collision h;_1 # h}_,, thus if two different I'V values of MD2 are chosen
to be IV = h;_1 and IV’ = h/_; then one can find collisions for all of MD2 for
a message using two different IV's.

— Find a pair (hg,m1) # (hy,m1) where m; = 0 such that h(hg,m1) =

h(hy,m1).
— Set IV = hg and IV’ = hy,.
— Choose message blocks ma|ms|, ..., |mq.
— Then clearly H(IV,m) = H(IV',m), where m = mq|ma|ms|,. .., |m.

Notice that the checksums for both hashes are identical since the message blocks
are identical, and therefore we have pseudo collision for MD?2.

Let us now consider a situation where such collisions could become practical.
Imagine a scenario where Alice and Bob use a digital signature system using a

hash function. Imagine that they are signing the same message m many times,
e.g., “Alice owes Bob 100 US$”. In order to avoid that the same message gives
an identical signature, Alice suggests to use a time-stamp, but Bob convinces
her that instead he shall send Alice a fresh random hash-IV (e.g., a nonce) to be
used in every new signature. Alice agrees to this, however demands that the IV
Bob chooses should be run through the hash function first. And so, they agree
on the following protocol.

— Bob chooses a random IV
— Alice calculates r = h(IV,0), creates the hash as usual by h = H(r, m), and
signs the hash value, sign(h).

Assuming that the digital signature scheme and the hash function are secure, it
seems hard for Bob to cheat. In every new signature a different IV is used, so Bob
cannot play the replay attack. However using MD2 in this protocol is a problem
since Bob is able to find many collisions of the type h(IV,0) = h(IV’,0), and
hence he is able to reuse the signature and message together with other IVs.

4.2 The Preimage Attack

In [5] F. Muller presents the first known preimage attack on MD2 faster than
a brute-force attack. The attack is divided into two parts: in the first part one
finds many preimages of the compression function and in the second part one
finds those preimages which conform with the checksum function. Note that
for most iterated hash functions a preimage attack of the compression function
immediately gives at least a pseudo preimage on the hash function, but this is
not true for MD2 because of the additional checksum block which is appended
to the messages. [5] lists three different attacks on the compression function:

1. Given h; and h;_1, find a message m; such that h; = h(h;—1,m;). The
complexity is 2.

2. Given h; and m;, find a value h;_; such that h; = h(h;—1,m;). The com-
plexity is 2.

3. Given h;, find a value h,—; and a message m; such that h; = h(h;—1,m;).
The complexity is 273.

Here one unit in the complexity measures is the time to run the compression
function once. All these attacks are expected to give one solution, but there
might also be zero or several solutions. Assuming that the compression function
is a random function, the probability that there is no solution is (1 — 2~ 128)2128,

and the probability that there are at least w solutions is:

- 2128 —128i 12812128 4 — 1
pwz12{<i>2 (1 —271%8) 1}~1ZZ—

=0

The first attack above can be used to find also preimages for (all of) MD2[5].
With hy = 0 and h = hios the attack is as follows, where hg is given and ¢ is
initialised to 1:

1. Choose a random value of h;.

2. If more than 2 solutions of m; satisfying h; = h(h;—1,m;) is found: Increase
i by 1. If i < 128: Goto step 1.

3. If no more than 2 solutions of mqsg satisfying hisgs = h(hi27, m12s) is found:
Set i to 127 and goto step 1.

This gives 128 consecutive pairs (h;_1, h;) for which there are at least 2 different
values of m; such that h; = h(h;_1, m;). Consequently there are at least 2'2%
different messages m (of 128 blocks) such that h = H(m), and therefore one
of these messages is expected to conform with the checksum miog = ¢. Let c[i]
denote the checksum after i iterations (¢ message blocks). Using the birthday
attack on the checksum function has a complexity of about 264:

— Compute 2% values of ¢[64] by iterating the checksum function through 264

possible values of the blocks mi,ma, ..., me4.

— Compute 2% values of ¢[64] by calculating the checksum backwards through
264 possible values of the blocks mgs, mes, - - . , M128 = C.

— Search for a collision between elements in the two lists.

The expected number of collisions in this last step is 1. The overall complexity
of this attack is as follows. The probability of finding at least two solutions
in the attack on the compression function is approximately p; = 1 — 2e71,
and for each of the steps in the algorithm we expect ps ! repeats. So the total
complexity is 128 - py ' - 29° ~ 2194, The padding bytes have not been considered
in this attack, but it is strightforward to ensure that the preimages have correct
padding without increasing the complexity of the attack[5]. One drawback of this
preimage attack is that the messages always consist of 128 blocks. It is left as
an open question in [5] to find preimages with fewer blocks. In the next section
we give an improvement in complexity of the above attack as well as variants
where the messages have fewer than 128 blocks.

4.3 Improvement of the Preimage Attack

First we give a preimage attack also with 128 blocks in the messages but with a
lower complexity. We are given hg = 0 and h = hy2g and proceed as follows:

1. Given ho = 0; use the collision attack from Section 3 (see also Appendix B)
to find hy; and a collision for u > 4 different values of m; satisfying hy =
h(ho, mq)

2. Let hi27 = h1, and use the preimage attack to try to find v > 1 values of
mqag such that hias = h(hia7, m12s). If there are no solutions, use another
collision from step 1.

3. Let hy = hy and find w > 2 values of mqy such that ho = h(hy, m2). If there
are no solutions, repeat step 2 using another collision from step 1.

4. Set h; = hy for i =3,...,126.

This is a situation where hg = 0,hy = hy = --- = hia7, h128 = h, and the use
of the birthday attack on the checksum is expected to give 1 solution. The first

Table 1. Complexities of the preimage attack for different message lengths, where in
each case one solution is expected.

|w > |message length|comp1exity|

2 128 2976
3 80 2993
4 64 21014
5 55 21()5.8
6 50 21064
7 46 21092
8 43 2112.2

step has a relative small complexity as discussed before, but we might be forced
to repeat steps 2 and 3. The probability of a solution in step 2 is approximately
p1 = 0.63, and the probability in the third step is approximately ps = 0.26.
Total complexity of the attack is then

prl - pyl. 29 < 2976,

There are possible ways to shorten the number of blocks in the preimages, but at
the expense of higher complexity. If we require that w > 3 in step 3, we expect
a slightly higher complexity, but the number of blocks in the preimages would
drop to approximately l0gz2'28. Table 1 shows the complexities and lengths of
the preimages for different lower bounds of w. As an example, it is possible to
lower the number of blocks in the preimages to 55 instead of 128, by requiring
w > 5 in which case the complexity is < 2104,

It is also possible to get more preimages without increasing the total (time)
complexity. Since we use a preimage where h;_1 = h;, the possible length of the
chain in the middle can be arbitrarily long, however the length is limited by the
complexity of the collision attack of the checksum. One example is an attack
where the messages are of length 191 and where w > 2. This gives a memory
and computational complexity of 2% in the birthday attack on the checksum,
and it is expected to give 262 collisions and thereby 252 possible preimages, but
total running time of the attack is unchanged.

4.4 A Pseudo Preimage Attack on MD2

In this section we present a pseudo preimage attack on MD2 which has better
complexity than the preimage attack, and where the messages can be (almost)
as short or as long as we desire. This attack uses two attacks from [5] on the
compression function having complexities 272 and 2°° respectively.

Initially a hash value h is given, and we are able to find a message m and an
IV which give us the desired hash value h = H(IV,m). First use the method of
finding pseudo preimages hy and my41 of hy11 = h in the compression function.
Remember that the last message block m;4; is the checksum block, and we

might repeat this preimage attack to find the second last message block, which
also contains the padding bytes. Due to the high degree of freedom in the attack
on the compression function, it is possible to choose between 1 and 16 suitable
padding bytes in this message block m;, but it is sufficient to choose the last
byte of m; equal to 1, and the attack still gives us m; and h;_; with complexity
273,

Next we need to have at least one more message block in our preimage to
make the checksum consistent with the (given) initial value ¢[0] = 0, (recall
that c[i] denotes the checksum after ¢ iterations (i message blocks). A potential
problem with the checksum could be to fit the two fixed ends ¢[0] = 0 and
c[t] = myy1. However it turns out to be easy to “glue” two consecutive checksum
values c[i — 1] and c[i] together by choosing an appropriate value m;. Notice that
it is also possible to calculate the checksum c[i] = ¢(c[¢ — 1], m;) backwards by
inverting the function, c[i — 1] = ¢=!(c[i], m;). Now suppose we have found the
message values mo and the checksum, we compute ¢[2] and then ¢[1] by going
backwards. We now “glue” ¢[0] and c[1] together by finding the appropriate
m1. To get a preimage of two blocks we set hy = h;—1 and m; = m¢—1, and
use another pseudo preimage attack from [5], having complexity 2%, to find
IV = hy. Using the MD2 hash function on the IV and a message m will now
give the required hash h = H(IV,m). The total complexity in this situation
where the message length is two, is 2%°.

For a required message length ¢, and given h;4; = h the algorithm is as
follows:

— Find ht and mt+1(: C) such that ht+1 = h,(h,t, mt+1).

— Find h;—; and m; (included valid padding byte), such that hy = h(hs—1,m;).

— Repeat the preimage attack t — 2 times to find h; and ms.

— Find ¢[1] by calculating the checksum backwards by using m; for i = 2,3,. ..,
t+1

— Use special property in the checksum algorithm to find m; such that c[1] =
c(0,mq).

— Use the other pseudo preimage attack[5] to find IV = hg given hy and m;.

The complexity of three first steps of the attack is ¢ - 27 and the last step has
complexity 2°°. The other parts of the algorithm have relatively small complexity
and the total complexity of the attack is 2°° as long as t < 22'. The message
length could be as small as t = 2.

5 Conclusion

In this paper some new attacks on the hash function MD2 were presented. First
some extended collision attacks on the compression function were given. Using
one of these attacks it was shown to be possible to mount a pseudo collision
on the MD2, which is the first known attack of its kind faster than the trivial
attacks. The paper also presented the best known preimage attack on MD2 which
is an improvment of a factor of 80 compared to existing attacks. Also, it was

shown that the lengths of the preimages can be made smaller than in previous
attacks, where the lengths were fixed and relatively high. Moreover it was shown
that it is possible to extend the attack such that many preimages are found.

References

1. I.B. Damgard. A design principle for hash functions. In G. Brassard, editor, Ad-
vances in Cryptology: CRYPTO’89, Lecture Notes in Computer Science 435, pages
416-427. Springer Verlag, 1990.

2. B. Kaliski. The MD2 message-digest algorithm. Request for Comments (RFC) 1319,
Internet Activities Board, Internet Privacy Task Force, April 1992. Available from
http://www.fags.org/rfcs/rfc1319.html.

3. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

4. R. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in
Cryptology - CRYPTO’89, Lecture Notes in Computer Science 435, pages 428—446.
Springer Verlag, 1990.

5. F. Muller. The MD2 hash function is not one-way. In P.J. Lee, editor, Advances
in Cryptology - ASIACRYPT 2004, LNCS 3329, pages 214—229. Springer Verlag,
2004.

6. N. Rogier and P. Chauvaud. MD2 is not secure without the checksum byte. In
Designs, Codes and Cryptography, 12, pages 245251, 1997.

A Properties of the MD2 Compression Function

In order to be able to describe the attacks it is convenient to describe the com-
pression function and its intermediate states in a 19 x 49-matrix
i=0,1,...,18

T= (Tiyj);‘:O,l,...,48’
which is also shown in Figure 1, where the first row is made from h;_1, m; and
hi—1 @m;. The first element T} ¢ is never used, but (Tp ;)j=12,... 48 = hi—1 | m; |
hi—1 @ m;—1.

Next the rows of the matrix is processed in an iterative manner:

- Tl,O =0

— 1;0= Ti—1,48 + 17 — 2mod 256 for i = 2, 3, ey 18 (but not for i = 1)
- Ti,j = 1ij-1,5 (&) S(Ti7j_1) for i = 1,2, . ,18 andj == 1,2, . ,48

— hi = (Ths,j)j=12,....16

After this procedure the matrix contains all the states of the compression matrix.
As we shall see, it is sometimes advantageous in a cryptanalytic approach to
try and compute the values in the matrix in a different order than the above
line by line approach. To help us do this, we have derived five computing rules
directly from the algorithm. The three first rules are shown in Figure 2. The
two remaining are just the dependencies between the first and last columns of
T. The rules are:

hy T

Fig. 1. The MD2 compression function calculation shown as a matrix T. It also shows
how the submatrices T1, T» and T3 are defined, and one line at the time is computed
from left to right. The 16 rightmost bytes of the last line of 77 (the dark area in the
last line) contains h; = h(h;—1,m;) when the matrix is completed.

Ti,j = Tiflﬁj (&%) S(Tiyjfl), Where 1= 1, 2, ooy 18 and j = 1, 2, ey 48
Ti*l,j = T%J' D S(Tiyjfl), where i = 1, 2, ey 18 and j = 1, 2, cen ,48
Ti,jfl = S_l(T%J D T%*L]—)v where = 1,2, ey 18 and] = 1,2, e ,48
Ty0 = Ty—1.4s8 + (i — 2) mod 256, where i = 2,3, ..., 18.

)

Ti—1,48 = Ti,O - (’L - 2) mod 256, where i = 2, 3, ey 18.

Al

The three first rules give us five properties from [6] also shown in Figure 3 and
Figure 4.

Property 1: Let k£ < m and | < n. If the elements (T, ;) j=i,i1+1,...,» from row
k and (T;,;)"=**+L--™ from column [are known the submatrix (7}, J);z]fl]i:'llnm
is uniquely determined using rule 1 (Figure 3).

Property 2: Let k£ < m and | < n. If the elements (T, ;) j=i,i+1,...,» from row
k and (T;,)=*k+tL-m from column n are known the matrix (T”);z];l]f:'llnm
is uniquely determined using rule 3 (Figure 3).

Property 3: Let £ < m and | < n. If the elements (T}, ;) j=1,i+1,...,n from row
m and (T;,;)=F*+L-™ from column [are known the matrix (Tu)ﬁi’fﬁﬁlnm
is uniquely determined using rule 2 (Figure 3).

Property 4: Let | < n and k < m, such that m — k = n — [. If the ele-
ments (7} ,)=** 1M from column n are known then half the square matrix
(T”)zzllcﬁ:rllnm is uniquely determined under the diagonal (T ;) =" * 1™
using rule 3 (Figure 4).

j=n+k—i,(n+k—1)+1,...

Ti1,5

?47 Ti 1, $—> Ti 1,

Tij—1 T Tij—1 T Tij—1 Tij

Fig. 2. The dependency of an element T; ; in the matrix 7. These three figures show
these three dependencies T; ; = T5-1,;®8(T5,j-1), Tic1,; = 13,; Ds(Ti,5-1) and T; ;-1 =
s (T;; ® Ti—1;) respectively.

| n | n | n

m m m

Fig. 3. The figure from left to right shows the Properties 1, 2 and 3 respectively. If the
dark areas are known the rest of the matrix is uniquely defined.

Property 5: Let £ < m and [< n, such that n — 1 = m — k. If the
elements (T, ;)j=t,141,...,» from row m is known then half the square matrix
(le)zzlzl]‘ﬂlnm is uniquely determined under the diagonal (T ;) =" * 1™
using rule 2 (Figure 4).

Observe that the Properties 4 and 5 are similar and define exactly the same
triangle, and that the Properties 1, 2 and 3 define the same rectangle. In the
attacks of the compression function it is useful to denote the leftmost 17, the

middle 17 and the rightmost 17 columns of the matrix T by (the matrices) T7,

m m

Fig. 4. Illustration of the Properties 4 and 5. If the bottom row or the rightmost column
is known, the shaded triangle is uniquely defined.

j=n+k—i,(n+k—1)+1,...

T, respectively T3 as shown in Figure 1. Notice that the first and last column
of Ty overlap with the last column of T and the first column of T5.

B Collision Attacks on the Compression Function of
MD2

B.1 Collision Attack where h;_1 =0

The first part of this section is from [6] with our extensions at the end. We shall

T T3

?

hy T

Fig. 5. The figure shows the collision attack on the compression function where h;—1 =
0. The dark areas are processed line by line.

consider a special case where h;_1 = 0 and as a consequence m; = h;_1 & m;
and the first rows of T5 and T35 are equal. Since the first row of 77 and the first
element in row 1 are known (defined to be 0), we are able to calculate row 1 of
T:1. Now we try to find values of m; such that the 13 first rows of 75 and T35 are
equal, and in order to be equal the leftmost columns of T5 and T5 must be equal
and the rightmost columns of 75 and 73 must be equal. Since the rightmost
column of T3 coincide with the leftmost column of T3, the four of them must
be equal in order for the matrices to be equal. Having the rightmost element
(T1)1,16 in the first row of T3, we know that we must have:

(T1)116 = (T2)1,0 = (T3)1,0 = (T2)1,16 = (T3)1,16 = Th 48

and if we know 11 48 we know that T ¢ = 17 48 + 0mod 256, so it is simple to
complete row 2 of T7. We continue until row k:

(T1)i16 = (T2)ine = (T3)inefori=1,2,... .k

and calculate row £+ 1 of T}

The k values in the right column of T and 73 are now known and we might
complete a triangle in the rows 1,2,...,k of these two matrices according to
property 2, shown in Figure 5. The figure shows the situation where 13 rows
(k = 13) are preprocessed and the triangles are completed, and there are 3
remaining bytes to be chosen to complete row 13 of Tb and 7T3. The 224 possible
choices of these bytes will determine 224 different first rows m; = hi_1 ® m;
(property 3) and will complete row 13 in both of these matrices, and since the
first 14 rows of T3 is already fixed we have a multi collision in:

((Tl)i,o)i:1,2,...,14

containing (2%)? different messages m;. It remains to find collisions among these
in the last 4 rows of column 0:

((T1)4,0)i=15,16,17,18

and equal values in row 0 and column 0 of 7T} give an equal matrix by property 1,
and we also have collisions in 16 bytes of the last row of T, which is the chaining
variable h;. The expected number of collisions in this case is approximately

(((2)%)%/2)/((2%)") = 2'° = 32768

in theory, and we found 32784 collisions in practice. In [6] & = 14 and 2 bytes
are varied, and the expected number of collisions were 128 and in practice there
were 141 collisions, but to decrease k to get more collisions is not mentioned
explicitly in the paper.

In general we would expect

(((28)167k)2/2)/((28)187(k+1)) _ 28(157k)71

collisions, only depending on the choice of k. The memory and computational
complexity is proportional to the number of bytes varied: 28(16=%),

In the preimage attack described earlier in this paper it is advantageous to
use this attack when hg = 0 and to get collisions in m;. It is possible to get
more than 2 different m; such that all of them give the same output hi, and if
so we have a multiple collision. If we look for a d-tuple collision and we are able
to vary b = 16 — k bytes in the first phase of the attack, we expect

28b
(y) /28(b+1)(d71) ~ 28(b+17d)/d!

d-tuple collisions. If b = 9 and d = 8 we expect ~ 2%7 > 1 multiple collisions of
size 8, and the complexity is approximately 272.

There are similar attacks on the compression function where m; = 0 or where
hi—1@&m; = 0. For these two attacks and the one where h;_; = 0 there are gener-
alizations which are described in detail in an extended version of the paper avail-
ableathttp://www.ii.uib.no/~johnm/publications/md2-procExtended.pdf

