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Abstract. The need of true random number generators for many pur-
poses (ranging from applications in cryptography and stochastic simu-
lation, to search heuristics and game playing) is increasing every day.
Many sources of randomness possess the property of stationarity. How-
ever, while a biased die may be a good source of entropy, many appli-
cations require input in the form of unbiased bits, rather than biased
ones. In this paper, we present a new technique for simulating fair coin
flips using a biased, stationary source of randomness. Moreover, the same
technique can also be used to improve some of the properties of pseudo
random number generators. In particular, an improved pseudo random
number generator has almost unmeasurable period, uniform distribution
of the letters, pairs of letters, triples of letters, and so on, and passes
many statistical tests of randomness. Our algorithm for simulating fair
coin flips using a biased, stationary source of randomness (or for improv-
ing the properties of pseudo random number generators) is designed by
using quasigroup string transformations and its properties are mathe-
matically provable. It is very flexible, the input/output strings can be
of 2-bits letters, 4-bits letters, bytes, 2-bytes letters, and so on. It is of
linear complexity and it needs less than 1Kb memory space in its 2-bits
and 4-bits implementations, hence it is suitable for embedded systems
as well.

1 Introduction

Random number generators (RNGs) are useful in every scientific area which uses
Monte Carlo methods. It is difficult to imagine a scientific area where Monte
Carlo methods and RNGs are not used. Extremely important is the application
of RNGs in cryptography for generation of cryptographic keys, and random ini-
tialization of certain variables in cryptographic protocols. Countless applications
in cryptography, stochastic simulation, search heuristics, and game playing rely
on the use of sequences of random numbers.



The choice of the RNG for a specific application depends on the requirements
specific to the given application. If the ability to regenerate the random sequence
is of crucial significance such as debugging simulations, or the randomness re-
quirements are not very stringent (flying through space on your screen saver), or
the hardware generation costs are unjustified, then one should resort to pseudo-
random number generators (PRNGs). PRNGs are algorithms implemented on
finite-state machines and are capable of generating sequences of numbers which
appear random-like from many aspects. Though they are necessarily periodic
(“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin”, John von Neumann), their periods are very long, they
pass many statistical tests and can be easily implemented with simple and fast
software routines.

It is widely accepted that the core of any RNG must be an intrinsically
random physical process. So, it is no surprise that the proposals and implemen-
tations of RNGs range from tossing a coin, throwing a dice, drawing from a urn,
drawing from a deck of cards and spinning a roulette to measuring thermal noise
from a resistor and shot noise from a Zener diode or a vacuum tube, measur-
ing radioactive decay from a radioactive source, integrating dark current from
a metal insulator semiconductor capacitor, detecting locations of photoevents,
and sampling a stable high-frequency oscillator with an unstable low-frequency
clock. Some of the sources of randomness, such as radioactive sources [1] and
quantum-mechanical sources [2], may yield data from probability distributions
that are stationary. Therefore, the output of these sources does not change over
time and does not depend on previous outputs. However, even if a source is
stationary, it generally has a bias. In other words, the source does not give un-
biased bits as direct output. It is therefore quite important to be able to extract
unbiased bits efficiently from a stationary source with unknown bias.

Suppose that a reading obtained from a stationary source of randomness can
be equal to any one of m different values, but that the probability of obtaining
any one of these values is unknown and in general not equal to 1/m. In other
words, we assume that the source may be loaded. Our aim in this paper is to
simulate unbiased coin flips using a biased source.

Previous Work – There are several references to the problem of simulating
unbiased physical sources of randomness. Von Neumann [3] described the fol-
lowing method; flip the biased coin twice: if it comes up HT, output an H, if
it comes up TH, output a T, otherwise, start over. This method will simulate
the output of an unbiased coin irrespective of the bias of the coin used in the
simulation. Elias [4] proposed a method of extracting unbiased bits from biased
Markov chains. Stout and Warren [5] and Juels et. al. [6] presented new exten-
sions of the technique of von Neumann. Stout and Warren suggested a method
for simulating a fixed number of fair coin flips using as few rolls of a biased die
as possible, while the authors of [6] proposed an algorithm for extracting, given
a fixed number of rolls of a biased die, as many fair coin flips as possible. The
general characteristics of the methods for simulating unbiased physical sources
of randomness are: (i) all of them do not use each bit of information generated



by the source, (ii) some of the methods can be implemented in computationally
effective way, but for some of them corresponding algorithms are of exponential
nature and then approximations should be involved, and (iii) for some of them
mathematical proofs are supplied for their properties.

Our Work – In this paper we propose a method for simulating unbiased
physical sources of randomness which is based on the quasigroup string trans-
formations and some of their provable properties. Our method uses each bit of
information produced by a discrete source of randomness. Moreover, our method
is capable of producing a random number sequence from a very biased station-
ary source (for example, from a source that produces 0 with probability 1/1000
and 1 with probability 999/1000). The complexity of our algorithm is linear, i.e.
an output string of length n will be produced from an input string of length
n with complexity O(n). Our algorithm is highly parallel. This means there
exist computationally very effective software and hardware implementations of
the method. Our algorithm is also very flexible: the same design can be used
for strings whose letters consists of 2-bits, 4-bits, bytes, 2-bytes, and generally it
can be designed for an arbitrary n-bit letters alphabet (n ≥ 2). The method pro-
posed in this paper can also be used to improve the quality of existing PRNGs
so that they pass many statistical tests and their periods can be arbitrary large
numbers. Since many of the weak PRNGs are still in use because of the simplic-
ity of their design and the speed of producing pseudo random strings (although
of bad quality), our method in fact can improve the quality of these PRNGs
very effectively.

The paper is organized as follows. Needed definitions and properties of quasi-
groups and quasigroup string transformations are given in Section 2. The algo-
rithm for simulating unbiased physical sources of randomness (or for improving
PRNGs) is presented in Section 3. In this section we also present some numerical
results concerning our method, while the proofs of the main theorems are given
in the appendicitis. In Section 4 we close our paper with conclusion.

2 Quasigroup string transformations

Here we give a brief overview of quasigroups, quasigroup operations and quasi-
group string transformations (more detailed explanation the reader can find in
[7], [8]).

A quasigroup is a groupoid (Q, ∗) satisfying the laws

(∀u, v ∈ Q)(∃x, y ∈ Q)(u ∗ x = v, y ∗ u = v),

x ∗ y = x ∗ z =⇒ y = z, y ∗ x = z ∗ x =⇒ y = z.

Hence, a quasigroup satisfies the cancelation laws and the equations a ∗ x =
b, y∗a = b have unique solutions x, y for each a, b ∈ Q. If (Q, ∗) is a quasigroup,
then ∗ is called a quasigroup operation.

Here we consider only finite quasigroups, i.e Q is a finite set. Closely related
combinatorial structures to finite quasigroups are the so called Latin squares: a



Latin square L on a finite set Q (with cardinality |Q| = s) is an s × s-matrix
with elements from Q such that each row and each column of the matrix is a
permutation of Q. To any finite quasigroup (Q, ∗) given by its multiplication
table it is associated a Latin square L, consisting of the matrix formed by the
main body of the table, and each Latin square L on a set Q define a quasigroup
(Q, ∗).

Given a quasigroup (Q, ∗) five new operations, so called parastrophes or
adjoint operations, can be derived from the operation ∗. We will need only the
following two, denoted by \ and /, and defined by:

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (1)

Then the algebra (Q, ∗, \, /) satisfies the identities

x \ (x ∗ y) = y, x ∗ (x \ y) = y, (x ∗ y)/y = x, (x/y) ∗ y = x (2)

and (Q, \), (Q, /) are quasigroups too.
Several quasigroup string transformations can be defined and those of interest

of us will be explained bellow. Consider an alphabet (i.e. a finite set) A, and
denote by A+ the set of all nonempty words (i.e. finite strings) formed by the
elements of A. The elements of A+ will be denoted by a1a2 . . . an rather than
(a1, a2, . . . , an), where ai ∈ A. Let ∗ be a quasigroup operation on the set A.
For each l ∈ A we define two functions el,∗, e′l,∗ : A+ −→ A+ as follows. Let
ai ∈ A, α = a1a2 . . . an. Then

el,∗(α) = b1 . . . bn ⇐⇒ bi+1 = bi ∗ ai+1 (3)

e′l,∗(α) = b1 . . . bn ⇐⇒ bi+1 = ai+1 ∗ bi (4)

for each i = 0, 1, . . . , n− 1, where b0 = l. The functions el,∗ and e′l,∗ are called e-
and e′-transformations of A+ based on the operation ∗ with leader l. Graphical
representations of the e- and e′-transformations are shown on Figure 1 and Figure
2.

a1 a2 . . . an−1 an

l = b0 b1 b2 . . . bn−1 bn
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ? ? ? ?

Fig. 1. Graphical representation of an e-transformation

Example 1. Take A = {0, 1, 2, 3} and let the quasigroup (A, ∗) be given by

the multiplication scheme

∗ 0 1 2 3

0 2 1 0 3

1 3 0 1 2

2 1 2 3 0

3 0 3 2 1
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l = b0 b1 b2 . . . bn−1 bn
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Fig. 2. Graphical representation of an e′-transformation

Consider the string α = 1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0
and choose the leader 0. Then we have the following transformed strings

e0,∗(α) = 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0,
e′0,∗(α) = 3 3 0 3 3 3 3 3 3 3 3 3 3 2 1 2 1 1 2 3 3 2 0 3 3 1 1 1.

Four consecutive applications of these transformations are presented below:

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = α
0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = e0,∗(α)
0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = e0,∗2(α)
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = e0,∗3(α)
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = e0,∗4(α)

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = α
0 3 3 0 3 3 3 3 3 3 3 3 3 3 2 1 2 1 1 2 3 3 2 0 3 3 1 1 1 = e′0,∗(α)
0 0 0 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 1 2 2 2 3 3 1 3 2 1 0 = e′0,∗

2(α)
0 2 0 1 2 3 0 1 2 3 0 1 2 3 1 2 2 3 2 3 0 1 3 1 0 0 1 0 2 = e′0,∗

3(α)
0 1 1 0 1 3 3 2 3 1 1 0 1 3 2 3 0 0 1 3 3 2 2 1 1 1 0 2 3 = e′0,∗

4(α)

One can notice that the starting distribution of 0, 1, 2 and 3 in α : 16/28, 7/28,
4/28, 1/28 is changed to 7/28, 7/28, 10/28, 4/28 in e0,∗4(α) and to 5/28, 10/28,
5/28, 8/28 in e′0,∗

4(α), hence the distributions became more uniform.
Several quasigroup operations can be defined on the set A and let ∗1, ∗2,

. . . , ∗k be a sequence of (not necessarily distinct) such operations. We choose
also leaders l1, l2, . . . , lk ∈ A (not necessarily distinct either), and then the
compositions of mappings

Ek = El1...lk = el1,∗1 ◦ el2,∗2 ◦ · · · ◦ elk,∗k
,

E′
k = E′

l1...lk
= e′l1,∗1 ◦ e′l2,∗2 ◦ · · · ◦ elk,∗k

,

are said to be E- and E′-transformations of A+ respectively. The functions
Ek and E′

k have many interesting properties, and for our purposes the most
important ones are the following:

Theorem 1. ([8]) The transformations Ek and E′
k are permutations of A+.

Theorem 2. ([8]) Consider an arbitrary string α = a1a2 . . . an ∈ A+, where
ai ∈ A, and let β = Ek(α), β′ = E′

k(α). If n is large enough integer then, for
each l : 1 ≤ l ≤ k, the distribution of substrings of β and β′ of length l is
uniform. (We note that for l > k the distribution of substrings of β and β′ of
length l may not be uniform.)



We say that a string α = a1a2 . . . an ∈ A+, where ai ∈ A, has a period p if
p is the smallest positive integer such that ai+1ai+2 . . . ai+p = ai+p+1ai+p+2 . . .
. . . ai+2p for each i ≥ 0. The following property holds:

Theorem 3. ([9]) Let α = a1a2 . . . an ∈ A+, ai ∈ A, and let β = Ek(α), β′ =
E′

k(α), where Ek = Eaa...a, E′
k = E′

aa...a, a ∈ A and a ∗ a 6= a. Then the periods
of the strings β and β′ are increasing at least linearly by k.

We should note that the increasing of the periods depends of the number of
quasigroup transformations k, and for some of them it is exponential, i.e. if α
has a period p, then β = Ek(α) and β′ = E′

k(α) may have periods greater than
p 2c k, where c is some constant. We will discuss this in more details in the next
section. In what follows we will usually use only E-transformations, since the
results will hold for E′-transformations by symmetry.

Theorem 1 is easy to prove (and one can find the proof in [8]). The proofs
of Theorem 2 and Theorem 3 are given in the Appendix I and the Appendix II,
respectively.

3 Description of the algorithms

Assume that we have a discrete biased stationary source of randomness which
produces strings from A+, i.e. the alphabet of source is A, where

A = {a0, a1, . . . , as−1}

is a finite alphabet. (However, we may also think that strings in A+ are produced
by a PRNG.)

Now we define two algorithms for simulating unbiased physical sources of
randomness (or for improving PRNGs), based on E- and E′-transformations
accordingly. We call them an E − algorithm and an E′ − algorithm. In these
algorithms we use several internal and temporal variables b, L1, . . . , Ln. The
input of the algorithm is the order of the quasigroup s, a quasigroup (A, ∗) of
order s, a fixed element l ∈ A (the leader), an integer k giving the number
of applications of the transformations el,∗ and e′l,∗ and a biased random string
b0, b1, b2, b3, . . . . The output is an unbiased random string.

The performance of the algorithms is based on Theorems 1, 2 and 3. By The-
orem 1 we have that E − algorithm and E′ − algorithm are injective, meaning
that different input string produces different output string. Theorem 2 guaran-
tees that the algorithms generate unbiased output random strings. Theorem 3
guarantees that if the biased source has period p (such as some Pseudo Random
Number Generator) the algorithm will generate unbiased output with longer
period.

Both E − algorithm and E′ − algorithm can also be used to improve the
properties of PRNGs. For example, for suitable choice of the quasigroup and
suitable choice of the parameter s, Theorem 3 shows that the period of the output
pseudo random string can be made arbitrary large. In addition, we have checked



the quality of output pseudo random strings by using available statistical tests
(such as Diehard [10] and those suggested by NIST [11]) for different quasigroups,
leaders, and different values of n: in all these cases the pseudo strings passed all
of the tests.

E-algorithm
Phase I. Initialization
1. Choose a positive integer s ≥ 4;
2. Choose a quasigroup (A, ∗) of order s;
3. Set a positive integer k;
4. Set a leader l, a fixed element of A such that l ∗ l 6= l;
Phase II. Transformations of the random

string b0b1b2b3 . . . , bj ∈ A
5. For i = 1 to k do Li ← l;
6. j ← 0;
7. do

b ← bj ;
L1 ← L1 ∗ b;
For i = 2 to k do Li ← Li ∗ Li−1;
Output: Lk;
j ← j + 1;

loop;

The E′ − algorithm differs of the E − algorithm only in step 7:

E′ − algorithm
7′. do

b ← bj ;
L1 ← b ∗ L1;
For i = 2 to k do Li ← Li−1 ∗ Li;
Output: Lk;
j ← j + 1;

loop;

Example 2. The PRNG used in GNU C v2.03 do not passed all of the
statistical tests in the Diehard Battery v0.2 beta [10], but the improved PRNG
passed all of them after only one application (k = 1) of an e-transformation
performed by a quasigroup of order 256. The results are given in the next two
screen dumps.

***** TEST SUMMARY FOR GNU C (v2.03) PRNG *****
All p-values:

0.2929,0.8731,0.9113,0.8755,0.4637,0.5503,0.9435,0.7618,0.9990,0.0106,1.0000,0.0430,0.0680,

1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,

1.0000,1.0000,1.0000,0.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,

1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,0.2009,0.0949,0.1939,0.0944,0.2514,0.3419,

0.5714,0.2256,0.1484,0.7394,0.0562,0.3314,0.2559,0.5677,0.3061,0.4763,0.8185,0.1571,0.2072,

0.5667,0.7800,0.6428,0.7636,0.1529,0.9541,0.8689,0.1558,0.6235,0.5275,0.6316,0.7697,0.7181,



0.7921,0.4110,0.3050,0.8859,0.4783,0.3283,0.4073,0.2646,0.0929,0.6029,0.4634,0.8462,0.3777,

0.2385,0.6137,0.1815,0.4001,0.1116,0.2328,0.0544,0.4320,0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,1.0000,0.0013,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,1.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,1.0000,

0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,

0.0753,0.0010,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0233,0.0585,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.2195,0.0321,0.0000,0.0000,0.9948,0.0006,0.0000,0.0000,0.0688,0.5102,

0.6649,0.1254,0.2967,0.1218,0.8199,0.7125,0.6873,0.1663,0.7150,0.7275,0.9035,0.1946,0.7261,

0.7243,0.1083,0.4266,0.7664,0.8384,0.7317,0.8340,0.3155,0.0987,0.7286,0.6645,0.9121,0.0550,

0.6923,0.1928,0.7236,0.0159,0.4636,0.2764,0.2325,0.3406,0.3746,0.1208,0.8145,0.3693,0.7426,

0.6272,0.6139,0.4957,0.3623,0.4929,0.3628,0.5266,0.2252,0.7948,0.7327,0.2732,0.6895,0.2325,

0.2303,0.1190,0.8802,0.0377,0.6887,0.4175,0.0803,0.3687,0.7010,0.7425,0.1003,0.0400,0.5055,

0.9488,0.3209,0.5965,0.0676,0.0021,0.2337,0.5204,0.5343,0.0630,0.2008,0.6496,0.4157,0.0559,

0.9746,0.1388,0.4657,0.5793,0.6455,0.8441,0.5248,0.7962,0.8870

Overall p-value after applying KStest on 269 p-values = 0.000000

*** TEST SUMMARY FOR GNU C v2.03 + QUASIGROUP PRNG IMPROVER ***

All p-values:
0.5804,0.3010,0.1509,0.5027,0.3103,0.5479,0.3730,0.9342,0.4373,0.5079,0.0089,0.3715,0.3221,

0.0584,0.1884,0.1148,0.0662,0.8664,0.5070,0.7752,0.1939,0.9568,0.4948,0.1114,0.2042,0.4190,

0.4883,0.4537,0.0281,0.0503,0.0346,0.6085,0.1596,0.1545,0.0855,0.5665,0.0941,0.7693,0.0288,

0.1372,0.8399,0.0320,0.6930,0.3440,0.9842,0.9975,0.1354,0.8776,0.1919,0.2584,0.6437,0.1995,

0.2095,0.3298,0.5180,0.8136,0.7294,0.7560,0.0458,0.6285,0.1775,0.1546,0.0397,0.5135,0.0938,

0.6544,0.9673,0.8787,0.9520,0.8339,0.4397,0.3687,0.0044,0.7146,0.9782,0.7440,0.3042,0.3388,

0.8465,0.7123,0.8752,0.8775,0.7552,0.5711,0.3768,0.1390,0.9870,0.9444,0.6101,0.1090,0.2032,

0.8538,0.6871,0.8785,0.9159,0.4128,0.4513,0.1512,0.8808,0.7079,0.2278,0.1400,0.6461,0.4082,

0.3353,0.1064,0.6739,0.2066,0.5119,0.0558,0.5748,0.5064,0.8982,0.6422,0.7512,0.8633,0.1712,

0.4625,0.0843,0.0903,0.7641,0.6253,0.8523,0.7768,0.8041,0.5360,0.0826,0.0378,0.8710,0.4901,

0.7994,0.7748,0.8403,0.9886,0.1373,0.7082,0.8860,0.9595,0.2671,0.0038,0.7572,0.8403,0.7410,

0.5615,0.6181,0.1257,0.5960,0.2432,0.8302,0.1981,0.7764,0.2109,0.2109,0.6620,0.8938,0.0052,

0.8116,0.5196,0.0836,0.4144,0.2466,0.3298,0.8724,0.9837,0.8748,0.0930,0.5055,0.6511,0.3569,

0.2832,0.4029,0.9290,0.3470,0.6598,0.4796,0.3758,0.6077,0.4213,0.1886,0.1500,0.3341,0.0594,

0.0663,0.0946,0.8279,0.2451,0.2969,0.9297,0.0739,0.4839,0.1307,0.4527,0.0272,0.9913,0.0570,

0.0791,0.9028,0.4706,0.4020,0.7592,0.4105,0.7107,0.5505,0.7223,0.3233,0.3037,0.9924,0.5545,

0.7944,0.0854,0.5545,0.4455,0.4636,0.2613,0.2467,0.9586,0.4275,0.8175,0.5793,0.1189,0.7109,

0.2115,0.8156,0.8468,0.9429,0.8382,0.1463,0.4212,0.6948,0.4816,0.3454,0.2114,0.3493,0.1389,

0.3448,0.0413,0.2422,0.6363,0.2340,0.8404,0.0065,0.7319,0.8781,0.2751,0.5197,0.4105,0.7121,

0.0832,0.1503,0.1148,0.3008,0.0121,0.0029,0.4423,0.6239,0.0651,0.3838,0.0165,0.2770,0.0475,

0.2074,0.0004,0.7962,0.4750,0.4839,0.9152,0.1681,0.0822,0.0518

Overall p-value after applying KStest on 269 p-values = 0.018449

Example 3. In this example as a source we used a highly biased source
of randomness where 0 has frequency of 1

1000 and 1 has frequency of 999
1000 . We

applied several consecutive e-transformation with a random quasigroup of order



256, monitoring the results from Diehard battery. After the fifth e-transformation
we obtained the following results:

** TEST SUMMARY - HIGHLY BIASED SOURCE & FIVE e-Transformations **

All p-values:
0.9854,0.8330,0.4064,0.9570,0.6597,0.5447,0.5796,0.5885,0.3482,0.1359,0.1788,0.1194,0.8588,

0.3455,0.6627,0.3610,0.5622,0.9905,0.8430,0.1259,0.0799,0.9061,0.8378,0.4313,0.7249,0.4505,

0.9192,0.1007,0.2785,0.9099,0.0422,0.7891,0.2681,0.4452,0.9389,0.5081,0.7621,0.0914,0.0066,

0.6915,0.8662,0.7176,0.5658,0.7957,0.0590,0.4287,0.5772,0.4809,0.9891,0.1439,0.0000,0.6089,

0.2351,0.2533,0.0061,0.0171,0.6894,0.5279,0.9075,0.7313,0.6401,0.8004,0.1155,0.4374,0.8159,

0.9895,0.4989,0.5433,0.6915,0.9944,0.5661,0.7771,0.5461,0.8875,0.6586,0.0340,0.4701,0.9087,

0.1412,0.4037,0.7326,0.1809,0.3157,0.0573,0.3875,0.4210,0.9403,0.9805,0.2278,0.7588,0.2840,

0.5109,0.4997,0.5554,0.1334,0.5332,0.3025,0.2139,0.4366,0.2514,0.5530,0.7288,0.7055,0.3316,

0.0870,0.0853,0.6714,0.7704,0.9582,0.8772,0.2448,0.6751,0.0658,0.1317,0.6096,0.8317,0.0234,

0.6689,0.3353,0.5257,0.9411,0.7219,0.5881,0.1103,0.5709,0.3836,0.4470,0.6104,0.3517,0.5841,

0.1097,0.0597,0.6784,0.4045,0.6929,0.5104,0.5828,0.8125,0.5481,0.0264,0.3244,0.6821,0.8731,

0.8773,0.7624,0.7748,0.7128,0.4698,0.1195,0.0842,0.3780,0.8346,0.4562,0.5745,0.9541,0.3341,

0.0480,0.0753,0.3713,0.9637,0.9479,0.2401,0.8256,0.8368,0.2636,0.8346,0.9236,0.1218,0.3859,

0.8203,0.6748,0.5384,0.6346,0.8667,0.0006,0.6346,0.3780,0.8693,0.1459,0.7995,0.0483,0.7434,

0.2872,0.2546,0.2167,0.4233,0.8091,0.0451,0.2333,0.3243,0.8374,0.0915,0.3251,0.3731,0.5076,

0.8991,0.0931,0.9258,0.2831,0.8281,0.8386,0.0906,0.0979,0.5441,0.7129,0.8298,0.8427,0.8732,

0.7236,0.9397,0.5545,0.9397,0.9544,0.8312,0.2325,0.8424,0.2325,0.0176,0.8621,0.0401,0.7033,

0.2288,0.2786,0.6751,0.3424,0.5295,0.9344,0.7879,0.9744,0.0259,0.0487,0.1014,0.8589,0.8655,

0.1008,0.8204,0.5564,0.7432,0.8604,0.2008,0.2081,0.4452,0.2352,0.5092,0.4250,0.6055,0.5262,

0.1459,0.0838,0.2735,0.9764,0.6419,0.7941,0.2412,0.6055,0.9725,0.1075,0.2903,0.5552,0.1643,

0.0813,0.8206,0.0742,0.5889,0.3077,0.4771,0.7677,0.8252,0.3248

Overall p-value after applying KStest on 269 p-values = 0.373599

We now discuss the choice of the quasigroup, and the parameters s and k.
If E − algorithm and E′ − algorithm are used for simulating unbiased physical
sources of randomness, then the quasigroup can be chosen to be arbitrary (we
recommend 4 ≤ s ≤ 256) while k depends on s and how biased is the source of
randomness. The number k should be chosen by the rule ‘for smaller s larger k’
and its choice depends on the source. For example, if a source is highly biased (it
produces 0 with probability 1/1000 and 1 with probability 999/1000), we suggest
the following rule (derived from our numerous numerical experiments): ‘ks ≥ 512
and k > 8’. In fact, the number s is in a way predefined by the source. Let the
alphabet of the source consists of all 8-bits letters. Then we have the following
choices of A: A = {0, 1, 2, 3}, A = {0, 1, 2, . . . , 7}, A = {0, 1, . . . , 15}, A =
{0, 1, . . . , 31}, A = {0, 1, . . . , 63}, A = {0, 1, 2, . . . , 127}, A = {0, 1, 2, . . . , 255}.
Thus, the output string of the source is considered as string of bits and then the
bits are grouped in two, three, and so on. We can consider in this case alphabets
with two–byte letters, three–byte letters etc., but quasigroups of orders 65536 or
higher need a lot of storage memory and generally the computations are slower,
and we do not recommend to be used.



If E − algorithm and E′ − algorithm are used for improving some of the
properties of PRNGs, then the quasigroup should be exponential. Our theoret-
ical results ([8], [12], [13]) and numerical experiments indicate that the class
of finite quasigroups can be separated into two disjoint subclasses: the class of
linear quasigroups and the class of exponential quasigroups. There are several
characteristics that separate these two classes and for our purposes this one is
important. Given a finite set Q = {q0, q1, . . . , qs−1}, let (Q, ∗) be a quasigroup
and let α = q0q1 . . . qp−1q0q1 . . . qp−1q0q1 . . . qp−1 . . . be an enough long string
of period p. Let

αk = el,∗ . . . el,∗︸ ︷︷ ︸
k−times

(α).

If the period of the string αk is a linear function of k, then the quasigroup
(Q, ∗) is said to be linear. On the other hand, if the period of the string αk is
an exponential function 2c k (where c is some constant), then the quasigroup
(Q, ∗) is said to be exponential. The number c is called the period growth of the
exponential quasigroup (Q, ∗).

The numerical experiments presented in [14] show that the percentage of
linear quasigroups decreases when the order of the quasigroup increases. Fur-
thermore, the percentage of ‘bad’ quasigroups, i.e. linear quasigroups and expo-
nential quasigroup with period growth c < 2, is decreasing exponentially by the
order of the quasigroups. For quasigroups of order 4, 5, 6, 7, 8, 9 and 10 the
results are summarized in Table 3. We stress that the above results are not quite
precise (except for the quasigroups of order 4, where complete classification is
obtained in [15]), since the conclusion is made when only 7 e-transformation
were applied. Namely, it can happen that some of quasigroups, after more than
7 applications, will have period growth c ≥ 2.

Table 1. Percentage of ‘bad’ quasigroups of order 4 – 10

Order of the quasigroup 4 5 6 7 8 9 10

Percentage of ‘bad’ quasigroups 34.7 4.1 1.6 0.6 0.38 0.25 0.15

We made the following experiment over 106 randomly chosen quasigroups of
order 16. We counted the period growth after 5 applications of el,∗- transforma-
tions of each of the quasigroups on the following periodical strings with period
16: 0, 1, 2, . . . , 14, 15, 0, 1, 2, . . . , 14, 15, . . . , 0, 1, 2, . . . , 14, 15, . . . . The value of the
leader l did not affect the results. The obtained distribution of the period growth
is presented on the Table 2. It can be seen from Table 2 that 907 quasigroups have
period growth c < 2 after 5 applications of the e-transformation. We counted
the period growth after 6 applications of each of those quasigroups and we ob-
tained that only 15 of them have period growth c < 2. After 7 applications,
only one quasigroup has period growth c < 2, but after 10 applications of e-
transformations, this quasigroup has period growth 2. This experiment shows
that it is not easy to find randomly a linear quasigroup of order 16.



Table 2. Period growth of 106 randomly chosen quasigroups of order 16 after 5 appli-
cations of e-transformations

Number of Number of
Value of c quasigroups with Value of c quasigroups with

period growth 2c k period growth 2c k

0.00 ≤ c < 0.25 4 2.00 ≤ c < 2.25 79834

0.25 ≤ c < 0.50 23 2.25 ≤ c < 2.50 128836

0.50 ≤ c < 0.75 194 2.50 ≤ c < 2.75 174974

0.75 ≤ c < 1.00 686 2.75 ≤ c < 3.00 199040

1.00 ≤ c < 1.25 2517 3.00 ≤ c < 3.25 175848

1.25 ≤ c < 1.50 7918 3.25 ≤ c < 3.50 119279

1.50 ≤ c < 1.75 18530 3.50 ≤ c < 3.75 45103

1.75 ≤ c < 2.00 42687 3.75 ≤ c ≤ 4.00 4527

4 Conclusion

We have suggested algorithms based on quasigroup string transformations for
simulating unbiased coin flips using a biased source and for improving the prop-
erties of PRNGs. The performances of the algorithms are obtained from three
theorems. The first theorem shows that the employed quasigroup string trans-
formations are in fact permutations, the second theorem guarantees that the
algorithms generate uniform output strings, while the third theorem proves that
the period of the output pseudo random string can be arbitrary large number.
We note that one have to choose an exponential quasigroup for obtaining better
performances of the algorithms.

The proposed algorithms are very simple, of linear complexity and there are
mathematical proofs of their properties. If quasigroups of order ≤ 16 are used
the algorithms can be implemented in less than 1Kb working memory. Hence,
they can be used in embedded systems as well.

The simplicity of the algorithms allows effective hardware realization. The
initial results about parallel implementation of our algorithms are highly par-
allel and pipelined solution with delay of O(n), where n is the number of e-
transformations [16].

The use of the algorithms for cryptographic purposes (like designs of hash
functions, synchronous, self-synchronizing and totaly asynchronous stream ci-
phers) is considered in several papers ([9], [17], [18], [19]), where it is emphasized
that the employed quasigroups and the leaders of the transformations should be
kept secret and the number n of applied e-transformations should be enough
large. Note that the number of quasigroups of relatively small orders is huge
one (there are 576 quasigroups of order 4, about 1020 of order 8, about 1047 of
order 11 (see [20]), and much more than 10120 of order 16 and much more than
1058000 of order 256). On the other hand, by using the P. Hall’s algorithm [21]
for choosing a system of different representatives of a family of sets, a suitable
algorithm for generating a random quasigroup of order s can be designed with
complexity O(s3).
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5 Appendix 1: Proof of Theorem 2

In order to simplify the technicalities in the proof we take that the alphabet A
is {0, . . . , s− 1}, where 0, 1, . . . , s− 1 (s > 1) are integers, and ∗ is a quasigroup
operation on A. We define a sequence od random variables {Yn| n ≥ 1} as
follows. Let us have a probability distribution (q0, q1, . . . , qs−1) of the letters

0,1, . . . , s− 1, such that qi > 0 for each i = 0, 1, . . . , s − 1 and
s−1∑

i=0

qi = 1.

Consider an e-transformation E and let γ = E(β) where β = b1 . . . bk, γ =
c1 . . . ck ∈ A+ (bi, ci ∈ A). We assume that the string β is arbitrarily chosen.
Then by {Ym = i} we denote the random event that the m-th letter in the string
γ is exactly i. The definition of the e-transformation given by(3) implies

P (Ym = j| Ym−1 = jm−1, . . . , Y1 = j1) = P (Ym = j| Ym−1 = jm−1)

since the appearance of the m-th member in γ depends only of the (m − 1)-
th member in γ, and not of the (m − 2)-th,. . . , 1-st ones. So, the sequence
{Ym| m ≥ 1} is a Markov chain, and we refer to it as a quasigroup Markov chain
(qMc). Let pij denote the probability that in the string γ the letter j appears
immediately after the given letter i, i.e.

pij = P (Ym = j| Ym−1 = i), i, j = 0, 1, . . . , s− 1.

The definition of qMc implies that pij does not depend of m, so we have that
qMc is a homogeneous Markov chain. The probabilities pij can be determined
as follows. Let i, j, t ∈ A and let i ∗ t = j be a true equality in the quasigroup
(A, ∗). Then

P (Ym = j| Ym−1 = i) = qt,

since the equation i ∗x = j has a unique solution for the unknown x. So, pij > 0
for each i, j = 0, . . . , s−1, i.e. the transition matrix Π = (pij) of qMc is regular.

Clearly, as in any Markov chain,
s−1∑

j=0

pij = 1. But for the qMc we also have

s−1∑

i=0

pij =
∑

t∈A

qt = 1

i.e. the transition matrix Π of a qMc is doubly stochastic.
As we have shown above, the transition matrix Π is regular and doubly

stochastic. The regularity of Π implies that there is a unique fixed probabil-
ity vector p = (p0, . . . , ps−1) such that pΠ = p, and all components of p are
positive. Also, since Π is a doubly stochastic matrix too, one can check that(

1
s
,
1
s
, . . . ,

1
s

)
is a solution of pΠ = p. So, pi =

1
s

(i = 0, . . . , s− 1). In such a

way we have the following Lemma:



Lemma 1. Let β = b1b2 . . . bk ∈ A+ and γ = E(1)(β). Then the probability
of the appearance of a letter i at the m-th place of the string γ = c1 . . . ck is

approximately
1
s
, for each i ∈ A and each m = 1, 2, . . . , k.

Lemma 1 tells us that the distribution of the letters in the string γ = E(β)
obtained from a sufficiently large string β by a quasigroup string permutation
is uniform. We proceed the discussion by considering the distributions of the
substrings ci+1 . . . ci+l of the string γ = En(β) (β = b1b2 . . . bk ∈ A+), where
l ≥ 1 is fixed and i ∈ {0, 1, . . . , k − l}. As usual, we say that ci+1 . . . ci+l is a
substring of γ of length l. Define a sequence {Z(n)

m | m ≥ 1} of random variables
by

Z
(n)
m = t ⇐⇒





Y
(n)
m = i

(n)
m , Y

(n)
m+1 = i

(n)
m+1, . . . , Y

(n)
m+l−1 = i

(n)
m+l−1,

t = i
(n)
m sl−1 + i

(n)
m+1s

l−2 + · · ·+ i
(n)
m+l−2s + i

(n)
m+l−1

where here and further on the superscripts (n) denote the fact that we are
considering substrings of a string γ = i(n)

1 i(n)
2 . . . i(n)

k obtained from a string β by
transformations of kind en. Thus, Y

(n)
m is just the random variable Ym defined

as before. The mapping

(i(n)
m , i(n)

m+1, . . . , i
(n)
m+l−1) 7→ i(n)

m sl−1 + i
(n)
m+1s

l−2 + · · ·+ i
(n)
m+l−2s + i

(n)
m+l−1

is a bijection from Al onto {0, 1, . . . , sl − 1}, so the sequence {Z(n)
m | m ≥ 1} is

well defined. The sequence {Z(n)
m | m ≥ 1} is also a Markov chain (n-qMc), since

the appearance of a substring i(n)
m i(n)

m+1 . . . i(n)
m+l−1 of l consecutive symbols in γ

depends only of the preceding substring i(n)
m−1i

(n)
m i(n)

m+1 . . . i(n)
m+l−2. Denote by t

and t′ the following numbers:

t = i
(n)
m sl−1 + i

(n)
m+1s

l−2 + · · ·+ i
(n)
m+l−2s + i

(n)
m+l−1,

t′ = i
(n)
m−1s

l−1 + i′(n)
m sl−2 + · · ·+ i′(n)

m+l−3s + i′(n)
m+l−2.

Let pt′t be the probability that in some string γ = E(n)(β), the substring
i(n)
m . . . i(n)

m+l−2i
(n)
m+l−1 of γ (from the m-th to the m + l − 1-th position) appears

(with overlapping) after a given substring i(n)
m−1i

′(n)
m . . . . . . i′(n)

m+l−3i
′(n)
m+l−2 of γ

(from the m− 1-th to the m + l − 2-th position). Clearly, pt′t = 0 if i(n)
j 6= i′(n)

j

for some j ∈ {m,m− 1, . . . ,m + l − 2}. In the opposite case (when l − 1 letters



are overlapped) we have:

pt′t = P (Z(n)
m = t | Z

(n)
m−1 = t′)

= P (Y (n)
m = i

(n)
m , . . . , Y

(n)
m+l−1 = i

(n)
m+l−1 | Y

(n)
m−1 = i

(n)
m−1, Y

(n)
m = i

(n)
m , . . .

. . . , Y
(n)
m+l−2 = i

(n)
m+l−2)

= P (∩l−1
j=0(Y

(n)
m+j = i

(n)
m+j) | ∩l−1

j=0 (Y (n)
m+j−1 = i

(n)
m+j−1))

=
P (∩l

j=0(Y
(n)
m+j−1 = i

(n)
m+j−1))

P (∩l−1
j=0(Y

(n)
m+j−1 = i

(n)
m+j−1))

=
P (∩l−1

j=0(Y
(n)
m+j = i

(n)
m+j)) | Y

(n)
m−1 = i

(n)
m−1)

P (∩l−2
j=0(Y

(n)
m+j = i

(n)
m+j)) | Y

(n)
m−1 = i

(n)
m−1)

(5)
By using an induction of the numbers n of quasigroup transformations we will
prove the Theorem 2, i.e we will prove the following version of it:

Let 1 ≤ l ≤ n, β = b1b2 . . . bk ∈ A+ and γ = E(n)(β). Then the distribution
of substrings of γ of length l is uniform.

Recall the notation A = {0, . . . , s− 1}. For n = 1 we have the Lemma
1, and let n = r + 1, r ≥ 1. By the inductive hypothesis, the distribution
of the substrings of length l for l ≤ r in γ′ = Er(β) is uniform. At first, we
assume l ≤ r and we are considering substrings of length l of γ = Er+1(β) =
i(r+1)
1 . . . i(r+1)

k . We take that ∗1, . . . , ∗r+1 are quasigroup operations on A and
recall that E(r+1) = Er+1 ◦ E(r) = Er+1 ◦ Er ◦ E(r−1) = . . . . Since (A, ∗r+1)
is a quasigroup, the equation i(r+1)

j−1 ∗r+1 x = i(r+1)
j has a unique solution on x,

for each j, 2 ≤ j ≤ k, and we denote it by x = i(r)j . Denote by i(r)1 the solution

of the equation ar+1 ∗r+1 x = i(r+1)
1 , where ar+1 ∈ A is the fixed element

in the definition of Er+1. In such a way, instead of working with substrings
i(r+1)
m i(r+1)

m+1 . . . i(r+1)
m+d of γ, we can consider substrings i(r)m i(r)m+1 . . . i(r)m+d of γ′ =

E(r)(β), for any d, 0 ≤ d ≤ k − m. The uniqueness of the solutions in the
quasigroup equations implies that we have

P (∩d
j=0(Y

(r+1)
m+j = i

(r+1)
m+j )) | Y

(r+1)
m−1 = i

(r+1)
m−1 ) = P (∩d

j=0(Y
(r)
m+j = i

(r)
m+j)) (6)

as well. Here, i
(r+1)
0 = ar+1. Then, by (5) and (6) (for d = l − 1, d = l − 2 and

n = r + 1) we have

pt′t =
P (∩l−1

j=0(Y
(r)
m+j = i

(r)
m+j))

P (∩l−2
j=0(Y

(r)
m+j = i

(r)
m+j))

(7)



where l ≤ r. By the inductive hypothesis we have P (∩l−1
j=0(Y

(r)
m+j = i

(r)
m+j)) =

1
sl

, P (∩l−2
j=0(Y

(r)
m+j = i

(r)
m+j)) =

1
sl−1

, i.e. pt′t =
1
s
. Thus, for the probabilities pt′t

we have

pt′t =





0 if i′(r+1)
j 6= i(r+1)

j for some j = m, . . . , m + l − 2

1
s

if i′(r+1)
j = i(r+1)

j for each j = m, . . . , m + l − 2.

This means that in each column of the sl × sl-matrix of transitions Π of n-qMc

there will be exactly s members equal to
1
s

(those for which i′(r+1)
j = i(r+1)

j , j =

m, . . . , m+ l− 2), the other members will be equal to 0 and then the sum of the
members of each column of Π is equal to 1. Hence, the transition matrix Π is
doubly stochastic. It is a regular matrix too, since each element of the matrix Π l

is positive. This implies that the system pΠ = p has a unique fixed probability

vector p =
(

1
sl

,
1
sl

, . . . ,
1
sl

)
as a solution. In other words, the distribution of

substrings of γ of length l ≤ r is uniform. Assume now that l = r + 1, and let
the numbers t, t′ and the probabilities pt′t be defined as before. Then for pt′t
we have that (7) holds too, i.e.

pt′t =
P (∩r

j=0(Y
(r)
m+j = i

(r)
m+j))

P (∩r−1
j=0(Y

(r)
m+j = i

(r)
m+j))

=
P (∩r−1

j=0(Y
(r)
m+j+1 = i

(r)
m+j+1) | Y (r)

m = i(r)m )

P (∩r−2
j=0(Y

(r)
m+j+1 = i

(r)
m+j+1) | Y (r)

m = i(r)m )
(8)

In the same way as it was done before, by using the fact that the equations
i(u)
j−1 ∗u x = i(u)

j have unique solutions x = i(u−1)
j in the quasigroup (A, ∗u),

where u = r, r − 1, . . . , 2, 1, we could consider substrings of γ′ = E(r)(β), γ′′ =
E(r−1)(β), . . . , γ(r) = E(1)(β), γ(r+1) = E(0)(β) = β. Then, for the proba-
bilities pt′t, by repeatedly using the equations (6) and (8), we will reduce the
superscripts (r) to (r − 1), to (r − 2), . . . , to (1), i.e. we will have

pt′t =
P (Y (1)

m+r−1 = i
(1)
m+r−1, Y

(1)
m+r = i

(1)
m+r)

P (Y (1)
m+r−1 = i

(1)
m+r−1)

= P (Y (1)
m+r = i

(1)
m+r | Y

(1)
m+r−1 = i

(1)
m+r−1)

= P (Y (0)
m+r = i

(0)
m+r)

where i(0)m+r ∈ β. Since P (Y (0)
m+r = i

(0)
m+r) = q

(0)
im+r

we have

pt′t =





0 if i′(r+1)
j 6= i(r+1)

j for some j = m, . . . , m + r − 1

q
(0)
im+r

if i′(r+1)
j = i(r+1)

j for each j = m, . . . ,m + r − 1



which implies

sr+1−1∑

t′=0

pt′t =
s−1∑

i
(r+1)
m−1 =0

s−1∑

i′(r+1)
m =0

. . .

s−1∑

i′(r+1)
m+r−2=0

pt′t =
s−1∑

i
(r+1)
m−1 =0

q
(0)
im+r

=
s−1∑

i
(r)
m =0

q
(0)
im+r

=
s−1∑

i
(r−1)
m+1 =0

q
(0)
im+r

= · · · =
s−1∑

i
(0)
m+r=0

q
(0)
im+r

= 1

(9)

We should note that the equations

s−1∑

i
(r+1)
m−1 =0

q
(0)
im+r

=
s−1∑

i
(r)
m =0

q
(0)
im+r

= . . .

hold true since the equations i(u)
j−1 ∗u x = i(u)

j have unique solutions in the quasi-
group (A, ∗u), for each u = r + 1, r, . . . , 2, 1.
Hence, the transition matrix Π is doubly stochastic, it is regular (Πr+1 has posi-
tive entries) which means that the system pΠ = p has a unique fixed probability

vector p =
(

1
sr+1

,
1

sr+1
, . . . ,

1
sr+1

)
as a solution.

Remark 1. Generally, the distribution of the substrings of lengths l for l > n in
a string γ = E(n)(β) is not uniform. Namely, for l = n + 1, in the same manner
as in the last part of the preceding proof, one can show that pt′t = P (Y (0)

m+n+1 =
i
(0)
m+n+1 | Y

(0)
m+n = i

(0)
m+n) and then (as in (9)) we have

sn+1−1∑

t′=0

pt′t =
s−1∑

i
(0)
m+n=0

P (Y (0)
m+n+1 = i

(0)
m+n+1 | Y

(0)
m+n = i

(0)
m+n).

Of course, the last sum must not be equal to 1, i.e. the transition matrix Π
must not be doubly stochastic. The same consideration could be made for l =
n + 2, n + 3, . . . as well.

6 Appendix 2: Proof of Theorem 3

Consider a finite quasigroup (A, ∗) of order s and take a fixed element a ∈ A
such that a ∗ a 6= a. We will prove the Theorem 3 in the more extreme case and
so we take a string α = a1 . . . ak of period 1 where ai = a for each i ≥ 1. Then
we apply the transformation E = ea,∗ on α several times. En means that E is
applied n times and we denote En(α) = a

(n)
1 . . . a

(n)
k . The results are presented

on Figure 6. We have that a′p = a for some p > 1 since a ∗ a 6= a and a′i ∈ A (so



a a . . . a a . . .

a a′1 a′2 . . . a′p−1 a′p . . .

a a′′1 a′′2 . . . a′′p−1 a′′p . . .

a a′′′1 a′′′2 . . . a′′′p−1 a′′′p . . .

a a
(4)
1 a

(4)
2 . . . a

(4)
p−1 a

(4)
p . . .

...
...

...
...

...

we have that p is at least s), and let p be the smallest integer with this property.
It follows that the string E(α) is periodical with period p. For similar reasons
we have that each of the strings En

a (α) is periodical. We will show that it is not
possible all of the strings En

a (α) to be of same period p . If we suppose that it
is true, we will have a

(n)
p = a for each n ≥ 1. Then we will also have that there

are bi ∈ A such that the following equalities hold:

a
(n)
p−1 = bp−1 for n ≥ 2

a
(n)
p−2 = bp−2 for n ≥ 3

...
a
(n)
1 = b1 for n ≥ p

Then we have that a ∗ b1 = b1, and that implies a
(n)
1 = b1 for each n ≥ 1. We

obtained a∗a = a∗b1 = b1, implying a = b1, a contradiction with a∗a 6= a. As a
consequence we have that a

(p+1)
1 = a ∗ a

(p)
1 = a ∗ b1 6= b1, a

(p+1)
2 = a

(p+1)
1 ∗ b2 6=

b2, . . . , a
(p+1)
p−1 = a

(p+1)
p−2 ∗ bp−1 6= bp−1, a

(p+1)
p = a

(p+1)
p−1 ∗ a 6= a. We conclude that

the period of the string Ep+1
a (α) is not p.

Next we show that if a string β ∈ A+ has a period p and γ = E(β) has a
period q, then p is a factor of q. Recall that the transformation E by Theorem
1 is a permutation and so there is the inverse transformation E−1. Now, if γ =
b1 . . . bqb1 . . . bq . . . b1 . . . bq, then β = E−1(γ) = c1c2 . . . cqc1c2 . . . cq . . . c1c2 . . . cq

is a periodical string with period ≤ q. So, p ≤ q and this implies that p is a
factor of q.

Combining the preceding results, we have proved the following version of
Theorem 3:

Let α be a string with period p0. Then the strings β = En
a (α) are periodical

with periods pn that are multiples of p0. The periods pn of β satisfy the inequality

ppn−1 > pn−1

for each n ≥ 1.


