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Abstract. Compact formulas are derived to represent the Algebraic
Normal Form (ANF) of f(x + a mod 2n) and f(x × a mod 2n) from
the ANF of f , where f is a Boolean function on Fn

2 and a is a constant
of Fn

2 . We compare the algebraic degree of the composed functions with
the algebraic degree of the original function f . As an application, the
formula for addition modulo 2n is applied in an algebraic attack on the
summation generator and the E0 encryption scheme in the Bluetooth
keystream generator.

1 Introduction

Addition and multiplication modulo 2n are operations which are very often used
in cryptosystems like e.g. in the block ciphers Safer [20] and Idea [22], in the key
stream generators natural sequence generator [12], summation generator [25] and
E0 encryption scheme of the Bluetooth keystream generator, and in the stream
ciphers Turing [24] and Helix [14].

Recently, algebraic attacks [5,6] have been applied successfully to stream
ciphers and to some block ciphers. The central idea in the algebraic attacks is
to find low degree equations or approximations of the cipher and then to solve
an over-determined system of nonlinear multivariate equations of low degree by
efficient methods such as XL [5], simple linearization [7] or by Gröbner Bases
techniques [11].

By having compact formulas for representing the algebraic normal form of the
composition of a Boolean function f with addition and multiplication modulo 2n,
we can better understand the structure of the polynomial equations of the cipher
and also the consequences of mixing operations from different rings. Moreover,
we give a precise criteria to avoid that the degree of the composed functions
will not decrease with respect to the degree of f . As an example, we apply our
formulas in order to derive the algebraic relations used in an algebraic attack



on the summation generator and the E0 encryption scheme of the Bluetooth
keystream generator.

The paper is organised as follows. Some definitions and preliminaries that
will be used later in the paper are described in Sect. 2. In Sect. 3, we derive the
compact formulas for the algebraic normal forms of f(x+a mod 2n) and f(x×a
mod 2n) from the algebraic normal form of f , where f is a Boolean function on
Fn

2 and a, b are constants of Fn
2 . In Sect. 4, we compare the algebraic degree

of the composed functions with the algebraic degree of the original function f .
In Sect. 5, the formula for addition modulo 2n is applied in order to find the
algebraic equations for the summation generator and the E0 encryption scheme
of the Bluetooth keystream generator. Finally, we present some conclusions and
open problems in Sect. 6.

2 Definitions and Preliminaries

For the sake of clarity, we use “⊕ ” for the addition in characteristic 2 and “+”
for the addition modulo 2n or in R. The multiplication modulo 2n is represented
by “× ”.

Let Fn
2 be the set of all n-tuples of elements in the field F2 (Galois field with

two elements), endowed with the natural vector space structure over F2. The
correspondence between Fn

2 and Z2n is defined by

ψ : Fn
2 → Z2n : u = (u0, . . . , un−1) 7→ u =

n−1∑
i=0

ui2i−1.

The partial ordening x � a means that x precedes a or also xi ≤ ai for all
i ∈ {0, . . . , n− 1}.

Let f(x) be a Boolean function on Fn
2 . Any Boolean function f can be

uniquely expressed in the algebraic normal form (ANF). Namely,

f(x) =
⊕

u∈Z2n

hux
u, hu ∈ F2,

where xu denotes xu0
0 · · ·xun−1

n−1 . The coefficients hu are defined by the Möbius
inversion principle, hu = h(u) =

∑
x�u f(x) for any u ∈ Z2n . The algebraic

degree of f , denoted by deg(f), is equal to to the number of variables in the
longest term xu0

0 · · ·xun−1
n−1 in the ANF of f , or simply as the maximum Hamming

weight of u (denoted as wt(u)) for which hu 6= 0. The Hamming weight of a
binary vector is equal to the number of nonzero components.

A vectorial Boolean function F : Fn
2 → Fm

2 (also called (n,m) S-box or
shortly S-box) can be represented by the vector (f1, f2, . . . , fm), where fi are
Boolean functions from Fn

2 into F2 for 1 ≤ i ≤ m. The functions (fi)1≤i≤m are
called the component functions of the S-box.

The composition f ◦ F of a Boolean function f on Fm
2 with an (n,m) S-box

F leads to a Boolean function on Fn
2 . Here, we will study the composition of



an arbitrary Boolean function on Fn
2 and addition respectively multiplication

modulo 2n with a fixed constant a ∈ Fn
2 . The addition modulo 2n, i.e., r = x+a

mod 2n is defined by

r0 + r1 · 2 + · · ·+ rn−1 · 2n−1 = (1)
(x0 + x1 · 2 + · · ·+ xn−1 · 2n−1) + (a0 + a1 · 2 + · · ·+ an−1 · 2n−1) mod 2n,

with components (r0, . . . , rn−1) recursively defined by

r0 = x0 ⊕ a0 ⊕ c0, c0 = 0,
ri = xi ⊕ ai ⊕ ci, ci = xi−1ai−1 ⊕ xi−1ci−1 ⊕ ai−1ci−1,

∀i ∈ {1, . . . , n− 1}.

The multiplication s = x× a mod 2n is defined by

s0 + s1 · 2 + · · ·+ sn−1 · 2n−1 = (2)
(x0 + x1 · 2 + · · ·+ xn−12n−1)× (a0 + a1 · 2 + · · ·+ an−12n−1) mod 2n,

with components (s0, . . . , sn−1) equal to

s0 = x0a0,

s1 = x1a0 ⊕ x0a1 ⊕ c1(x0, a0),
...

sn−1 = xn−1a0 ⊕ xn−2a1 ⊕ · · · ⊕ x0an−1 ⊕ cn−1(x0, . . . , xn−1, a0, . . . , an−1),

where ci() is a function of its arguments which defines the carry bit. The number
of terms of ci grows exponentially for increasing i. We write for instance ci for
i = 1, 2, 3 explicitely:

c1 = c1(x0, a0) = 0,
c2 = c2(x0, x1, a0, a1) = a0a1x0x1,

c3 = c3(x0, . . . , x2, a0, . . . , a2) = a0a1x0x1 ⊕ a0a1x1x2 ⊕ a0a1x0x1x2

⊕a0a2x0x2 ⊕ a1a2x0x1 ⊕ a0a1a2x0x1.

In this paper we will study the equations formed by the composition of addi-
tion or multiplication with a Boolean function. This corresponds with studying
the ANF of f(x + a) and f(x × a). For instance, if the Boolean function is
defined by the ANF xu = xu0

0 · · ·xun−1
n−1 , then the corresponding equation of

f(x+a) is equal to to ru0
0 · · · run−1

n−1 , where r0, . . . , rn−1 are functions in variables
(x0, . . . , xn−1) defined by (1).

3 Algebraic Normal Form of f(x + a) and f(x × a)

In this section, we deduce compact formulas for representing the ANF of the
functions f(x+ a) and f(x× a) using the ANF of f .



3.1 The ANF of f(x + a)

Theorem 1. If the ANF of f : Fn
2 → F2 : x 7→ f(x) is given by the monomial

xu (u ∈ Z2n), then the ANF of f(x+ a) with a ∈ Fn
2 a fixed constant is given by

f(x+ a) =
u⊕

c=0

xu−cac, (3)

where u− c represents subtraction in R.

Proof. To prove the theorem, we need two lemmas which can be proven by
induction.

Lemma 1. For x, a0 ∈ Fn
2 , with a0 = (a0, 0, . . . , 0), we have that

(x+ a0)u = xu ⊕ xu−1a0.

Proof. (Lemma 1)If n = 1, the lemma is trivial. Suppose the lemma is true
for dimension less or equal than n − 1. We will show that the lemma holds for
dimension n. If u < 2n−1, the lemma is true by induction, otherwise write u as
2n−1 + u1, where 0 < u1 < 2n−1, and thus

(x+ a0)2
n−1+u1 = (x+ a0)2

n−1
(x+ a0)u1 .

On the second term of the product, we apply induction. For the first term, we
use the definition of addition (1) to compute (x+a0) = (x0⊕a0, x1⊕a0x0, x2⊕
a0x0x1, . . . , xn−1⊕a0x0 · · ·xn−2). Taking the 2n−1-th power is equal to selecting
the (n− 1)-th component in the binary representation. As a result we have

(x+ a0)u = (x2n−1
⊕ a0x

2n−1−1)(xu1 ⊕ xu1−1a0)

= x2n−1+u1 ⊕ x2n−1+u1−1a0,

where we used the fact that a0x
2n−1−1xu1 = a0x

2n−1−1xu1−1 = a0x
2n−1−1 in

the last reduction step. This equality is due to the fact that u1 � 2n−1 − 1 and
u1 − 1 � 2n−1 − 1. ut

Lemma 2. Denote x = x0 + 2× x′ with x0 = (x0, 0, . . . , 0) and
x′ = (x1, . . . , xn−1, 0). Similarly, denote a = a0 + 2× a′ with a0 = (a0, 0, . . . , 0)
and a′ = (a1, . . . , an−1, 0), then

(2× (x′ + a′))u =
{

0 if u is odd,⊕u
2
v=0(2× x′)u−2v(2× a′)2v if u is even.

Proof. (Lemma 2) We prove the lemma by induction on the number n of vari-
ables. Because multiplication by 2 only shifts the vector over one position, it
follows that

(2× x′)u =
{

0 if u is odd,
(x′)

u
2 if u is even. (4)



By induction on n, we have for even u that

(x′ + a′)
u
2 =

u
2⊕

v=0

x′
u
2−va′v.

If we rescale the previous formula using (4), we get the formula of the lemma. ut

By using the previous lemmas, we are now able to prove the theorem. We start
with applying Lemma 1 repeatedly.

(x+ a)u = (x0 + 2× x′ + a0 + 2× a′)u

= (2× x′ + 2× a′ + x0)u ⊕ (2× x′ + 2× a′ + x0)u−1a0

= (2× x′ + 2× a′)u ⊕ (2× x′ + 2× a′)u−1x0

⊕ a0((2× x′ + 2× a′)u−1 ⊕ (2× x′ + 2× a′)u−2x0). (5)

Note that multiplication modulo 2n is distributive with respect to addition mod-
ulo 2n, i.e. (2 × x′ + 2 × a′) = 2 × (x′ + a′). As a consequence, we can apply
Lemma 2 on Equation (5). This implies that we need to distinguish the case u
is odd and the case u is even. We give here the proof for u odd. The proof for u
even is similar.

(x+ a)u = x0(2× x′ + 2× a′)u−1 ⊕ a0(2× x′ + 2× a′)u−1

= x0

u−1
2⊕

v=0

(2× x′)u−2v−1(2× a′)2v ⊕ a0

u−1
2⊕

v=0

(2× x′)u−2v−1(2× a′)2v.

(6)

The following equalities hold

(2× x′)u−2v−1 = xu−2v−1,

x0(2× x′)u−2v−1 = xu−2v, (7)

because 2 × x′ = (0, x1, . . . , xn−1) and u − 2v − 1 is even. The same argument
holds for 2× a′ and thus

(2× a′)2v = a2v,

a0(2× a′)2v = a2v+1. (8)

After substituting the equalities (7) and (8) in Equation (6) and collecting the
terms, we find Formula (3). ut

Remark 1. If u = 2i, Formula (3) expresses the i-th component of the sum x+a.
Similarly, if u = 2i + 2j , Formula (3) expresses the product of the i-th and j-th
component of the sum x + a. Note that Formula (3) consists only of all terms
for which the integer sum of the exponents of x and a is exactly equal to u. The
formula can be easily generalized for the addition of n elements y1, . . . , yn of Fn

2



by applying Formula (3) recursively. Again, the result is equal to the sum of all
terms with sum of exponents equal to u.

f(y1 + · · ·+ yn) =
⊕

k0,...,kn−1≥0
k0+···+kn−1=u

yk0
1 y

k1
2 · · · ykn−1

n (9)

We now generalize Theorem 1 for Boolean functions where the ANF consists
of an arbitrary number of terms. By collecting the terms in a right way, we
obtain the following formula.

Corollary 1. If the ANF of f : Fn
2 → F2 is given by

⊕
u∈Z2n

hux
u, hu ∈ F2, the

ANF of f(x+ a) is given by

f(x+ a) =
⊕

v

(
⊕
u≥v

hua
u−v)xv, (10)

where u− v represents the subtraction modulo 2n.

Example 1. Consider the ANF of the function f(x0, x1, x2) = x5⊕x1. The ANF
of f(x+ a) is then determined by the previous corollary:

f(x+ a) = (a1 ⊕ a5)⊕ x1(a0 ⊕ a4)⊕ x2a3 ⊕ x3a2 ⊕ x4a1 ⊕ x5,

which can also be written as

f(x+ a) = (a0 ⊕ a0a2)⊕ x0(1⊕ a2)⊕ x1a0a1 ⊕ x0x1a1 ⊕ x2a0 ⊕ x0x2.

3.2 The ANF of f(x × a)

Theorem 2. If the ANF of f : Fn
2 → F2 : x 7→ f(x) is given by the monomial

xu (u ∈ Z2n), then the ANF of f(x× a) with a ∈ Fn
2 a fixed constant is given by

f(x× a) =
⊕

ku=[k0,...,kn−1]

ark

xsk

, (11)

where ku = [k0, . . . , kn−1] satisfies

k0 ≥ 0, . . . , kn−1 ≥ 0;
k0 + 2k1 + · · ·+ 2n−1kn−1 = u. (12)

The integers rk = rk
0 +2rk

1 + · · ·+rk
n−1 and sk = sk

0 +2sk
1 + · · ·+sk

n−1 are defined
by the following (n+ 1)× (n+ 1)-table:

sk
n−1 k0,n−1 0 · · · 0
sk

n−2 k0,n−2 k1,n−2 · · · 0
. . .

sk
0 k0,0 k1,0 · · · kn−1,0

rk
0 rk

1 · · · rk
n−1



For each ku = [k0, . . . , kn−1] that satisfies the properties as described by (12), we
fill the table with the binary representation of k0 = (k0,0, . . . , k0,n−1), . . . , kn−1 =
(kn−1,0, . . . , kn−1,n−1). The digit rk

i (resp. sk
i ) for all i ∈ {0, . . . , n−1} is equal to

to 1 if the corresponding column (resp. row) is different from the all-zero vector
and is equal to to 0 otherwise. The integer rk is then defined by the binary
representation (rk

0 , . . . , r
k
n−1) and the integer sk by (sk

0 , . . . , s
k
n−1).

Proof. Note that the multiplication a× x can be written as a sum:

a× x = a0 · x+ a1 · (2× x) + · · ·+ an−1 · (2n−1 × x).

By formula (9) for the addition of n points, we obtain

f(x× a) =
⊕

k0,...,kn−1≥0
k0+···+kn−1=u

(a0x)k0(a1 · (2× x))k1 · · · (an−1 · (2n−1 × x))kn−1 .

As explained in the proof of Lemma 2, we have for the general case i, i ∈
{0, . . . , n− 1} that (2i × x)ki shifts the components of x over i positions, which
means that

(2i × x)ki =

{
x

ki
2i if ki ≡ o(2i)
0 otherwise.

Consequently, we can write the above equation for f(x× a) as:

f(x× a) =
⊕

k0,...,kn−1≥0

k1≡o(2),...,kn−1≡o(2n−1)
k0+···+kn−1=u

(a0x)k0(a1x)
k1
2 · · · (an−1x)

kn−1
2n−1 ,

where ki ≡ o(2i) means that 2i is a divisor of ki. This representation contains
mixed terms, i.e. terms which consists of powers of vector x and powers of
components of a. Moreover because x2

i = xi, we can very often reduce the
powers of x. However by translating this form in the representation given by
(11), we avoid these disadvantages. This can be seen by the definition of the
vectors rk and sk. The value rk

i (resp sk
i ) for all i ∈ {0, . . . , n − 1} is equal to

to 1 if the corresponding column (resp. row) is different from the all-zero vector
and is equal to to 0 otherwise. ut

Remark 2. We note that the formula of multiplication, unlike the formula of
addition, does not immediately give the full reduced form of the ANF because
some terms can cancel out. For instance (see also Example 2), if the pattern
1 0
1 1 appears in the represenation table of the exponents of a term, then also

the pattern
0 1
1 0 satisfies the same conditions of (12) and will give the same

exponents. Consequently both terms will cancel out. Another clear example is

the pattern
1 1
1 0 which is equivalent with the pattern

0 1
1 1 . However, the formula

is still much more practical than using explicitly the definition of multiplication.



We now generalize Theorem 2 for Boolean functions where the ANF consist
of an arbitrary number of terms.

Corollary 2. If the ANF of f : Fn
2 → F2 is given by

⊕
u∈Z2n

hux
u, hu ∈ F2, the

ANF of f(x× a) is given by

f(x× a) =
⊕

u∈Z2n

hu

 ⊕
ku=[k0,...,kn−1]

ark,uxsk,u

 ,

where ku, rk,u and sk,u for each u (corresponding with a non-zero hu in the ANF
of f) are defined as in Theorem 2.

Example 2. Consider the ANF of the function f(x0, x1, x2) = x5. To compute
the ANF of f(x × a), we first determine all k5 that satisfy the properties of
(12). There are 4 different possibilities for k = (k0, k1, k2), i.e. k = (5, 0, 0), k =
(3, 1, 0), k = (1, 2, 0), k = (1, 0, 1). For each k, we compute the corresponding
exponent of a and x by computing its corresponding table:

1 1 0 0
0 0 0 0
1 1 0 0

1 0 0

0 0 0 0
1 1 0 0
1 1 1 0

1 1 0

0 0 0 0
1 0 1 0
1 1 0 0

1 1 0

0 0 0 0
0 0 0 0
1 1 0 1

1 0 1

k = (5, 0, 0), k = (3, 1, 0), k = (1, 2, 0), k = (1, 0, 1)

As a consequence, we get the following ANF of f :

f(x× a) = a1x
5 ⊕ a3x

3 ⊕ a3x
3 ⊕ a5x

1.

= a1x
5 ⊕ a5x

1.

4 Comparison of the degrees

In this section, we compare the degrees of f(x) at the one side with the degrees
of f(x+ a) and f(x× a) at the other side.

4.1 Degrees of f(x) and f(x + a)

Theorem 3. If f(x) =
⊕

u∈Z2n
hux

u, define um = max hu 6=0
u∈Z2n

u. The degree of

the function fa : Fn
2 → F2 : x → f(x+ a) will be for all values of a ∈ Fn

2 in the
interval

[wt(um), blog2 umc] if wt(um) ≤ blog2 umc or um 6= 2dlog2 ume − 1,
[wt(um),wt(um)] otherwise.



Proof. From Corollary 1, we have that

f(x+ a) =
⊕

v

⊕
u≥v

hua
u−v

xv

= xum ⊕
⊕

v<um

⊕
u≥v

hua
u−v

xv. (13)

From (13), the lowerbound for the degree of fa is equal to to wt(um), because
the term xum always appears and does not cancel out in the ANF of fa. The
degree of the function fa is exactly equal to wt(um) if the term

⊕
u≥v hua

u−v

from (13) is equal to to zero for all v with weight greater than wt(um).
The upperbound is equal to to the maximum weigth of v for which v < um.

This is equal to blog2 umc for u 6= 2dlog2 ume−1. The degree of fa is exactly equal
to blog2 umc if the term

⊕
u≥v hua

u−v from (13) is equal to to one for at least
one v with weight equal to blog2 umc. ut

Example 3. Consider the function f : F7
2 → F2 : x 7→ x64 ⊕ x62. The degree of

this function is 5, while um is equal to to 64 with weight one. We now show that
the degree of the function fa is between one and six according to Theorem 3 and
depending on the value a.

For odd a, i.e. a0 = 1, the term x63 appears in the ANF of fa, and thus the
corresponding functions have degree 6. If a0 = 0, a1 = 0, the function fa has
degree 5 because of the term x62 in the ANF of the function. For functions fa with
a0 = 0, a1 = 1, a2 = 0, the resulting degree is equal to to 4. If a0 = 0, a1 = 1, a2 =
1, a3 = 0 the degree of fa is 3, and if a0 = 0, a1 = 1, a2 = 1, a3 = 1, a4 = 0 the
degree of fa becomes 2. Finally for a = (0, 1, 1, 1, 1, 0, 1) and a = (0, 1, 1, 1, 1, 0, 0)
the function fa has degree 1.

In order to diminish the degeneration of the degree of the function f(x+ a)
for a ∈ Fn

2 with respect to the degree of the function f(x), we need to take
care that |wt(um) − deg(f)| is small. The condition that a function satisfies
wt(um) = deg(f) will appear for instance if f is of degree d and contains the
monomial xn−d−1 · · ·xn−1.

4.2 Degrees of f(x) and f(x × a)

Theorem 4. If a0 6= 0 then the degree of f(x×a) will be greater or equal than the
weight of u0

m, where u0
m = max hu 6=0

u∈Z2n

u. If a0 = 0 and a1 6= 0, then the degree of

f(x×a) will be greater or equal than the weight of u1
m, where u1

m = max hu 6=0
u∈Z2n

u≡o(2)

u.

In general, if a0 = · · · ai−1 = 0 and ai 6= 0, then the degree of f(x × a) will be
greater or equal than the weight of ui

m, where ui
m = max hu 6=0

u∈Z2n

u≡o(2i)

u.



Proof. We give the proof for the degree of f(x× a) and for the case a0 6= 0. All
other cases can be proven in the same way. In the following, we denote by g(x)

the function g(x) = (a0x)k0(a1x)
k1
2 · · · (an−1x)

kn−1
2n−1 . From Theorem 2, we can

write

f(x× a) =
⊕

u∈Z2n

hu

⊕
k0,...,kn−1≥0

k1≡o(2),...kn−1≡o(2n−1)
k0+···kn−1=u

g(x)

=
⊕

u∈Z2n

hu(a0x
u)⊕

⊕
u∈Z2n

hu

⊕
k0,...,kn−1≥0

k0 6=u,k1≡o(2),...kn−1≡o(2n−1)
k0+···kn−1=u

g(x)

= a0x
um0 ⊕

⊕
u∈Z2n

hu

⊕
k0,...,kn−1=0

k0 6=um0 ,k1≡o(2),...kn−1≡o(2n−1)
k0+···kn−1=u

g(x)

ut

5 Algebraic Attacks

Algebraic attacks exploit the existence of low degree equations. Once a system
of nonlinear multivariate equations of low degree is obtained, it is solved by
efficient methods such as XL [5], simple linearization [7] or by Gröbner Bases
techniques [11]. We will derive in this section low degree equations for the sum-
mation generator and the E0 encryption scheme in the Bluetooth key stream
generator.

5.1 Algebraic Attack on the Summation Generator

Consider a summation generator, proposed by Rueppel [25], that consists of n
binary Linear Feedback Shift Registers (LFSR). The output bit of the j-th LFSR
at time t will be denoted by xt

j . The binary output bit zt is defined by

zt = xt
1 ⊕ · · · ⊕ xt

n ⊕ ct0, (14)

where ct0 is the 0-th bit of the carry ct = (ct0, . . . , c
t
k−1) with k = dlog2 ne. The

carry for the next stage t+ 1 is computed by

ct+1 =
⌊
(xt

1 + · · ·+ xt
n + ct)/2

⌋
. (15)

The summation generator is an (n, k)-combiner, which is a stream cipher that
combines n LFSRs and has k bits of memory. The summation generator produces
a key stream with linear complexity close to its period, which is equal to the
product of the periods of the n LFSRs. Moreover, the generator has maximum
algebraic degree and maximum order of correlation-immunity (cf Siegenthaler’s



inequality t ≤ n−d−1 for combiners without memory). For this reason, summa-
tion generators are very interesting building blocks in stream ciphers. We here
describe the algebraic attack as presented in [17], but by using the formulas for
addition modulo 2n as given is Subsection 3.1, which makes the analysis and the
proofs from [17] much shorter.

To simplify notations, we denote by σt
i for 1 ≤ i ≤ n, the symmetric polyno-

mial that contains all terms of degree i in the variables xt
1, . . . , x

t
n, i.e.

σt
1 = ⊕n

i=1x
t
i,

σt
2 = ⊕n

1≤i1<i2≤nx
t
i1x

t
i2 ,

...
σt

n = xt
1x

t
2 · · ·xt

n.

We now show how we can use Formula (3) in order to simplify the proof of the
main theorem in [17].

Theorem 5. For a summation generator of n = 2k LFSRs we can write an
algebraic equation connecting LFSR output bits and k+1 consecutive key stream
bits of degree upperbounded by 2k in the LFSR output bits.

Proof. By using formula (9), we immediately determine ct+1
0 , . . . , ct+1

k−1, which
are by defintion (15) the first until the (k − 1)-th components of the sum xt

1 +
· · ·+ xt

n + ct.

ct+1
0 = σt

2 ⊕ ct0σ
t
1 ⊕ ct1, (16)

ct+1
1 = σt

4 ⊕ ct0σ
t
3 ⊕ ct1σ

t
2 ⊕ ct0c

t
1σ

t
1 ⊕ ct2, (17)

ct+1
2 = σt

8 ⊕ ct0σ
t
7 ⊕ ct1σ

t
6 ⊕ ct0c

t
1σ

t
5 ⊕ ct2σ

t
4

⊕ct0ct2σt
3 ⊕ ct1c

t
2σ

t
2 ⊕ ct0c

t
1c

t
2σ

t
1 ⊕ ct3, (18)

...
ct+1
k−1 = σt

2k ⊕ ct0σ
t
2k−1 ⊕ · · · ⊕ ct0 · · · ctk−1σ

t
1. (19)

As a consequence, ct+1
i for 0 ≤ i ≤ k − 1 can be expressed by an equation of

degree 2i+1 in the LFSR output bits xt
1, . . . , x

t
n because it contains the term

σt
2i+1 .

From (14), we derive an equation for ct0 of degree one in the variables xt
1, . . . , x

t
n,

ct0 = σt
1 ⊕ zt. (20)

Substitution of the equations for ct0 (20) and ct+1
0 ((20) shifted over one posi-

tion) in Equation (16), results in an equation for ct1 of degree 2 in the variables
xt

1, . . . , x
t
n, x

t+1
1 , . . . , xt+1

n , i.e.,

ct1 = σt
2 ⊕ (zt ⊕ 1)σt

1 ⊕ σt+1
1 ⊕ zt+1. (21)

Substitution of the equations for ct0 (20), ct1 and ct+1
1 (21) in Equation (17),

results in an equation for ct2 of degree 4 in the variables xt
1, . . . , x

t
n, x

t+1
1 , . . . , xt+1

n ,



xt+2
1 , . . . , xt+2

n . This process is repeated and in the last step we substitute the
equations for ct0, . . . , c

t
k−1, c

t+1
k−1 in Equation (19) which results in an equation in

the LFSR output bits xt
1, . . . , x

t
n, . . . , x

t+k
1 , . . . , xt+k

n . ut

We want to note that a similar approach for deriving the equations can also
be used on two versions of stream ciphers which are derived from the summation
generator: the improved summation generator with 2-bit memory [18] and the
parallel stream cipher for secure high-speed communications [19].

5.2 Algebraic Attack on Bluetooth Key Stream Generator

The E0 encryption system used in the Bluetooth specification [3] for wire-
less communication is derived from the summation generator and consists of 4
LFSRs. The variables zt, xt

i, σ
t
i have the same meaning as explained by the sum-

mation generator. Now the initial state consists of 4 memory bits, denoted by
(ct+1

0 , ct+1
1 , St+1

0 , St+1
1 ). In order to obtain the output and the initial state, the

following equations are derived:

zt = σt
1 ⊕ ct0

ct+1
0 = St+1

0 ⊕ ct0 ⊕ ct−1
0 ⊕ ct−1

1

ct+1
1 = St+1

1 ⊕ ct1 ⊕ ct−1
0

(St+1
0 , St+1

1 ) =
⌊
xt

1 + xt
2 + xt

3 + xt
4 + ct0 + 2ct1

2

⌋
Using our formula for addition, we immediately find the algebraic equations for
St+1

0 , St+1
1 :

St+1
0 = σt

4 ⊕ σt
3c

t
0 ⊕ σt

2c
t
1 ⊕ σt

1c
t
0c

t
1

St+1
1 = σt

2 ⊕ σt
1c

t
0 ⊕ ct1

In [1], these equations are justified by comparing the truth tables of both sides,
but no formal proof was given. The next step is to manipulate the equations in
such a way that an equation is obtained where all memory bits are eliminated.
These equations have degree 4 and are used in the algebraic attack.

6 Conclusions

We have computed compact formulas for representing the ANF of the compo-
sition of a Boolean function with addition modululo 2n, multiplication modulo
2n and a combination of both, from the ANF of the original function. We have
shown that comparing the degrees of the compositions and the original func-
tion is not possible in general. If the function satisfies the property that its
degree is equal to the weight of the highest coefficient modulo 2n in its ANF
representation, then the degree of the composition with addition modulo 2n and



multiplication with odd constants modulo 2n will always be higher or equal than
the degree of the original function. Finally, we have used our formula of addition
modulo 2n for finding low degree equations of the summation generator and the
E0 encryption scheme in the Bluetooth key stream generator.

An open problem is to further simplify the formula for multiplication modulo
2n. Further research is required to investigate if those formulas could be used for
finding efficient low degree equations in other cryptosystems. For instance, an
application of our formulas on the T-functions of Shamir and Klimov [15] seems
to be possible for getting better insight in the algebraic equations.
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