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Abstract. T-function is a relatively new cryptographic building block
suitable for streamciphers. It has the potential of becoming a substi-
tute for LFSRs, and those that correspond to maximum length LFSRs
are called single cycle T-functions. We present a family of single cycle
T-functions, previously unknown. An attempt at building a hardware
oriented streamcipher based on this new T-function is given.
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1 Introduction

The appearance of algebraic attack on streamciphers[5, 11–13] has certainly
made the designing of streamciphers a more difficult task. At the same time,
as presentations[7, 28] and discussions during a recent streamcipher workshop
has shown, the demand for streamciphers is declining. But, we have also seen at
the same workshop that at the very extremes, there are still genuine needs for
streamciphers. One case is when the cipher has to be ultra-fast(Gbps) in soft-
ware (on relatively good platforms), as in software routers. The other extreme,
namely where efficient hardware implemented ciphers for resource constrained
environment is needed, could also benefit from a good streamcipher design.

Most of the recent attempts at streamcipher constructions[6, 9, 10, 14–17, 26,
29–31] are mainly focused on software, except for those based on LFSRs. In
particular, most of them demand a very large memory space to store its internal
state. If we turn to traditional designs that use bitwise LFSRs, which could
have advantages in hardware, we find that large registers have to be used to
counter algebraic attacks. In short, we have a lack of good hardware oriented
streamciphers at the moment. This paper is an attempt at filling this gap.

Few years ago, Klimov and Shamir started developing the theory of T-
functions[20–22]. A T-function is a function acting on a collection of memory
words, with a weak one-wayness property. It started out as a tool for blockci-
phers, but now, its possibility as a building block for streamciphers is drawing
attention.

An important class of T-functions consists of those that exhibit the single
cycle property. This is the T-function equivalent of maximum length LFSRs
and has potential to bring about a very fast streamcipher. Unfortunately only a



very small family of single cycle T-functions is known to the crypto community
currently.1

The main contribution of this work is to uncover a new class of single cycle
T-functions. It is a generalization of a small subset of the previously known single
cycle T-functions and it does show some good properties which the previous ones
did not. We also give an example of how one might build a cipher on top of this
new class of single cycle T-functions. Although previous T-functions targeted
software implementations, our T-function based streamcipher is designed to be
light and is suitable for constrained hardware environment.

The paper is organized as follows. We start by reviewing the basics of T-
functions. In Section 3, we look into the existing single cycle T-functions and
show that without the multiplicative part, which is not understood at all, it is a
very simple object, far from a random function. With this new way of viewing
existing T-functions, we give a new class of single cycle T-functions in Section 4.
A streamcipher example built on top of the new T-functions is introduced in the
following section. The last section concludes the paper.

2 Review of T-functions

We shall review the basics of multi-word T-functions in this section. Readers
may refer to the original papers [20–22] for a more in-depth treatment.

Let us consider a gathering of m-many of n-bit words, which we denote by
xi (i = 0, . . . , m− 1). Our main interest lies in the case n = 32 and m = 4. As
a shorthand for multiple words, we shall often use the corresponding boldface
letter. For example, x = (xk)m−1

k=0 . The i-th bit of a word x is denoted by [x]i,
where we always count starting from 0. Seen as an integer, we have

x =
n−1∑

i=0

[x]i2i. (1)

The i-th bits of the m-tuple of words x are denoted collectively as [x]i. We
sometimes view [x]i also as an m-bit integer by setting

[x]i =
m−1∑

k=0

[xk]i2k. (2)

In reading the rest of this paper, it helps to view the various notations pictorially
as follows.

x =







x3

x2

x1

x0

↑
LSB

↑
MSB

=

← LSB

← MSB

[x]i [x]0







1 It seems T-function was already studied in the mathematics community under vari-
ous different names[3, 4].



Accordingly, we shall sometimes refer to [x]i as the i-th column.

Definition 1. A (multi-word) T-function is a map

T : ({0, 1}n)m −→ ({0, 1}n)m, x 7→ T(x) = (Tk(x))m−1
k=0

sending an m-tuple of n-bit words to another m-tuple of n-bit words, where each
resulting n-bit word is denoted as Tk(x), such that for each 0 ≤ i < n, the i-
th bits of the resulting words [T(x)]i are functions of just the lower input bits
[x]0, [x]1, . . . , [x]i.

We shall mainly be dealing with multi-word T-functions, as opposed to single-
word T-functions, which is the m = 1 case, and hence shall mostly omit writing
multi-word. Also, unless stated otherwise, we shall always assume a T-function
to be acting on m words of n-bit size. The set of words a T-function is acting
on is sometimes referred to as memory or register and the bit values it contains
are said to form a state of the memory.

Given a T-function T, one may fix an initial state x0 for the memory and
iteratively act T on it to obtain a sequence defined by

xt+1 = T(xt). (3)

Such a sequence will always be eventually periodic and if its periodic part passes
through all of the 2nm possible states the memory may take, the T-function is
said to form a single cycle. A single cycle T-function may serve as a good building
block for a streamcipher. To state results about single cycle T-functions, we need
a few more definitions.

Definition 2. A (multi-word) parameter is a map

α : ({0, 1}n)m −→ {0, 1}n, x 7→ α(x)

sending an m-tuple of n-bit words to a single n-bit word such that for each
0 ≤ i < n, the i-th bit of the resulting word [α(x)]i is a function of just the
strictly lower input bits [x]0, [x]1, . . . , [x]i−1.

In other words, a parameter is a sort of multi-word to single-word T-function
for which the i-th output bit does not depend on the i-th input bits [x]i. When
restricted to just linear functions acting on a single word, T-functions are exactly
the upper triangular matrices and parameters correspond to the strictly upper
triangular matrices.

Given a parameter α, and fixed 0 ≤ i < n, we may consider the bit value

B[α, i] =
(2i−1,...,2i−1)⊕

x=(0,...,0)

[α(x)]i. (4)

Notice that since [α(x)]i does not depend on any of the high indexed input bits,
going any higher in this direct sum would be meaningless. Also, note that [α(x)]0



is constant for all input x and the sum B[α, 0] is equal to this constant value. If
the value B[α, i] = 0 for all i, the parameter is said to be even. Likewise, if it is
1 for all i, the parameter is odd.

Currently, it seems that the only single cycle T-functions known to the crypto
community are based on the following theorem from [22].

Theorem 1. The T-function defined by setting T(x) = (Tk(x))m−1
k=0 , with

Tk(x) = xk ⊕ (αk(x) ∧ x0 ∧ x1 ∧ · · · ∧ xk−1) (5)

for k = 0, . . . , m− 1, exhibits the single cycle property, when each αk is an odd
parameter.

3 Analysis of an example T-function

The following example may be found in [22]. We shall try to give a clearer view
of the inner workings of this example.

Example 1. Consider the following T-function which acts on four 64-bit words.
Fix any odd number C0 and set C1 = 0x12481248, C3 = 0x48124812. Use the
notation a0 = x0 and ai+1 = ai ∧ xi+1 for i = 0, 1, 2. Then,

α = α(x) = (a3 + C0)⊕ a3 (6)

defines an odd parameter. Finally, the mapping




x3

x2

x1

x0


 7→




x3 ⊕ (α ∧ a2)⊕ (2x0(x1 ∨ C1))
x2 ⊕ (α ∧ a1)⊕ (2x0(x3 ∨ C3))
x1 ⊕ (α ∧ a0)⊕ (2x2(x3 ∨ C3))
x0 ⊕ α ⊕ (2x2(x1 ∨ C1))


 (7)

gives a single cycle T-function.

This example is not a direct application of Theorem 1, because of the last
term in each row that utilizes multiplications. But these last terms are even
parameters and it is possible to follow through the proof of Theorem 1 given
in [22] with them attached.

Let us have a closer look at this example. Without the even parameter part,
it is almost identical to Theorem 1.




x3

x2

x1

x0


 7→




x3 ⊕ (α(x) ∧ x0 ∧ x1 ∧ x2)
x2 ⊕ (α(x) ∧ x0 ∧ x1)
x1 ⊕ (α(x) ∧ x0)
x0 ⊕ α(x)


 . (8)

We will denote this simplified function by T for the moment. Now, let us look at
just the 0-th column. We know [α(x)]0 = 1 for any odd parameter and this can



also be checked directly from (6). Hence, as noted in [22], the map (8) restricted
to the 0-th column is

[T(x)]0 = [x]0 + 1 (mod 2m). (9)

Here, we are using the notation of (2). Let us move onto the higher bits. Since
all the odd parameters are set to be the same in (8), the mapping T may be
described by

[T(x)]i =

{
[x]i if [α(x)]i = 0,
[x]i + 1 (mod 2m) if [α(x)]i = 1.

(10)

In other words, the role of the odd parameter α is to decide whether or not to
apply the map

[x]i 7→ [x]i + 1 (mod 2m) (11)

to the i-th bit column.
In the extreme case when C0 = 1 in the definition (6) for the odd parameter,

we have [α(x)]i = 1 if and only if [xk]j = 1 for all k and all j < i. So the
mapping (11) is applied to the i-th bit column if and only if all 4i of the strictly
lower bits are filled with 1. Hence the map (8) literally defines a counter (in
hexadecimal numbers). It runs through all the 24·64 possible values, incrementing
the memory by 1 at each application of T.

The mapping (8) is more complex when the constant C0 is bigger, but this
does not seem to give a fundamental difference. Using a more complex odd
parameter would make (8) a lot more random-like. Without this, the real reason
for (7) producing a sequence which passes all the statistical tests lies in the even
parameter part.

Remark 1. The paper [27] gives an attack on a (very basic) streamcipher base
on (7). Essentially, they analyze the multiplicative part, and find a way to apply
this technique to (7). From the viewpoint of their attack, the components of (7),
excluding the multiplicative part, contribute very little to the security of the
system. Arguments of this section show that this is a natural consequence of its
inner workings.

4 A new class of T-functions

Arguments of the previous section lead us naturally to the following idea. What
would happen if we replaced mapping (11) with a more general mapping?

Given an m×m S-box, S : {0, 1}m 7→ {0, 1}m, define

S : ({0, 1}n)m −→ ({0, 1}n)m, x 7→ S(x)

by setting
[S(x)]i = S([x]i).



Here, we are using the notation of (2), so that the bold face S acts on each and
every column of the registers. We say that an S-box has the single cycle property
if its cycle decomposition gives a single cycle. That is, starting from any point,
if we iteratively act S, we end up going through all possible elements of {0, 1}m.

Certainly, S will not define a single cycle T-function, even when S is of single
cycle. So let us start by first defining some logical operations on multi-words.
Let x = (xk)m−1

k=0 and y = (yk)m−1
k=0 , be two multi-words. Define x⊕y by setting

x⊕ y = (xk ⊕ yk)m−1
k=0 .

Also, for a (single) word α, define the multi-word

α · x = (α ∧ xk)m−1
k=0 .

The notation ∼ α will denote the bitwise complement of α.

Theorem 2. Let S be a single cycle S-box and let α be an odd parameter. If So

is an odd power of S and Se is an even power of S, the mapping

T(x) =
(
α(x) · So(x)

)⊕ (
(∼ α(x)) · Se(x)

)
.

defines a single cycle T-function.

Proof. That this is a T-function is easy to check. Notice that due to its definition,
any T-function may be restricted to just the lower bits. It suffices to prove that,
when restricted to the lower bits [x]0, [x]1, . . . , [x]i−1, the period of the above
map is 2m·i. This will be shown by induction.

The mapping T can be better understood when it is written as

[T(x)]i =

{
Se([x]i) if [α(x)]i = 0,
So([x]i) if [α(x)]i = 1.

(12)

In particular, since we always have [α(x)]0 = 1, if we restrict T to the 0-th
column of the registers, it acts as just So regardless of the input x. Notice that
any odd power of S also has the single cycle property. Hence the period of T is
2m, when restricted to [x]0. This gives us the starting point.

So suppose, as an induction hypothesis, that the period of T, restricted to
the lower bits [x]0, . . . , [x]i−1, is 2m·i. The period of T, restricted to the next step
[x]0, . . . , [x]i, must be a multiple of 2m·i. Now, with the parameter α being odd,
(12) shows that when T is consecutively applied to the bits [x]0, . . . , [x]i exactly
2m·i times, So and Se are both applied an odd number of times to [x]i. In all,
this is equivalent to applying S to [x]i an odd number of times. Since an odd
number is relatively prime to the period 2m of S, the period of T restricted to
[x]0, . . . , [x]i must be 2m·(i+1). This completes the induction step and the proof.

Expression (12) shows that this new T-function may be viewed as a twisted
product of small S-boxes, each acting on a single column of memory.

The reader may already have noticed that allowing for odd powers of single
cycles S-boxes is not really any more general than allowing for just the (single
power of) single cycle S-boxes. If we further restrict the above theorem to the
case when the even power used is zero, we have the following corollary.



Corollary 1. Given a single cycle S-box S and an odd parameter α, the follow-
ing mapping defines a single cycle T-function.

x 7→ x⊕ (
α(x) · (x⊕ S(x))

)
.

5 T-function based streamcipher; TSC-1

In this section, we propose a very bare framework for a streamcipher based on
Theorem 2. A distinguishing attack on this example of very low complexity is
already known[19] and the authors no longer believe this cipher to be secure,
but we include this as a reference for further developments in this direction.

Since the work [27] has shown that disclosing parts of the raw memory state
could be fatal, we want to hide the memory while producing output from this
T-function. So we shall use the T-function as a substitute for an LFSR in a filter
model.

5.1 The specification

Specification of the cipher will be given by supplying a filter function in addition
to fixing various components for the T-function.

Fix n = 32 and m = 4, that is, we work with four 32-bit words, for a total
internal state of 128 bits. Define an odd parameter by setting

α(x) = (p + C)⊕ p⊕ 2s, (13)

where2

C = 0x12488421, p = x0 ∧ x1 ∧ x2 ∧ x3, and s = x0 + x1 + x2 + x3.

All additions are done modulo 232. This is equal to (6), except that we have
added the even parameter 2s to allow for stronger inter-column effects. Define a
4× 4 S-box S, as given by the following line written in C-style.

S[16] = {3,5,9,13,1,6,11,15,4,0,8,14,10,7,2,12}; (14)

One may check easily that this is a single cycle S-box. Using this S-box, let us
set So = S and Se = S2. We can now define a single cycle T-function T, through
the use of Theorem 2.

To actually obtain the keystream, use the filter

f(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3) (15)

on the memory bits, after each application of T. This will give us a single 32-bit
block of keystream per action of the T-function. Here, the symbol ≪ denotes
left rotation, and the additions should be done modulo 232. Going back to the
notation of (3), the output word produced at time t may be written as f(xt).
2 The constant 0x12488421 was chosen so that 1s are denser at the higher bits than

at the lower bits. This will help it quickly move away from the all-zero state, should
it occur.



5.2 Naive security

Period We already know that the period of the state registers is 2128, as guar-
anteed by the single cycle property. The output itself also has a period of 2128

words.
To see this, first note that the period has to be a divisor of 2128. Now, initialize

the register content with the all zero state and consider what the content of the
registers would be after 2124 iterated applications of the T-function. Since the
period of the T-function restricted to the lower 31 columns is 2124, all columns
except the most significant column will be zero. Furthermore, when observed
every 2124 iterations apart, due to description (12) and the definition of an odd
parameter, the change of the most significant column follows some fixed odd
power of the S-box, which is of cycle length 16. Explicit calculation of the 16
keystream output words for each odd power of the S-box confirms that, in all
odd power cases, one has to go through all 16 points before reaching the starting
point. Hence the period of the cipher is 16 · 2124 = 2128.

Actually, for a general single cycle T-function, one can always show that at
least one bit position in the register will show period equal to the T-function.
When any mildly complicated filter is attached to such a T-function, the output
keystream has a high chance of inheriting this property and one should be able
to show some result on the period of the whole filter generator. For example, the
cipher TF-1[23], can be shown to have a period of at least 2254.

Maximum security level Given a single word block of keystream, guessing any
three words (96 bits) of memory determines the remaining word uniquely. And
it suffices to look at the next three word blocks of keystream to check if the guess
is correct. Hence, it is clear that this proposal cannot provide more than 96-bit
security.

Bit-flip property In addition to imposing the single cycle property, we had chosen
the S-box (14) to satisfy the following conditions.3

1. At the application of S, each of the four bits has bit-flip probability of 1
2 .

2. The same if true for S2, the square of S.

In more exact terms, the first condition states that for each i = 0, 1, 2, 3,

#{ 0 ≤ t < 16 | the i-th bit of t⊕ S(t) is 1} = 8.

Due to this property, regardless of the behavior of the odd parameter α, every
bit in the register is guaranteed a 1

2 bit-flip probability. This is one thing that
wasn’t satisfied by (8) and which was only naively expected of (7).

3 S-box (14) enjoys the added property that S6, S10, S14, and all odd powers of S also
exhibit the 1

2
bit-flip probability.



Rotations Rotations used in the filter serve two main purposes. The first is to
ensure that output from the same S-box, i.e., bits from the same column, do not
contribute directly to the same output bit. We want contributions to any single
output bit to come from bits that change independently of each other.

The other reason is to remove the possibility of relating a part of the output
with a part of the memory that allows some sort of separate handling in view
of the action of T-function. In particular, this stops the guess-then-determine
attack. Difficulty of correlation attacks can also be understood from this view-
point. In the last step of a correlation attack, one needs to guess a part of the
state bits and compare calculated outputs with the keystream, checking for the
occurrence of expected correlation. In our case, any correlation with a single
output bit will involve multiple input bits and at least one of them will come
near the high ends of the registers. This will force one to guess quite a large part
of the registers to be able to apply T-function even once.

Misc We have done most of the tests presented in [2] and have verified that this
proposal gives good statistical results. As the S-boxes are nonlinear, the most
dangerous attack on streamciphers, the algebraic attack, seems to be out of the
question.

With our T-function based filter model, one can view the randomness of
keystream as originating from the T-function and as being amplified through
the filter. Compared with LFSR based filter models, it seems fair to say that
the randomness at the source is better with T-functions. In the Appendix, we
present another design that shifts the burden of producing randomness more to
the filter.

5.3 Implementation

Let us first consider the cipher’s efficiency in hardware. Given a single 4-bit input
t = t0 + 2t1 + 4t2 + 8t3, the output u = u0 + 2u1 + 4u2 + 8u3 of S(t) for the
S-box (14) may be written as follows. Each line represents a single output bit as
a function of four input bits.

u3 = t1 ⊕ (t3 ∧ t2 ∧ t̄0)
u2 = t0 ⊕ (t3 ∧ t̄2 ∧ t̄1)
u1 = t2 ⊕ (t3 ∧ t1 ∧ t0)⊕ (t̄3 ∧ t̄1 ∧ t̄0)
u0 = t̄3 ⊕ (t2 ∧ t̄1 ∧ t0)

(16)

Here, the bar denotes bit complement. Similarly, the bits of S2(t) = v0 + 2v1 +
4v2 + 8v3 may be calculated as follows.

v3 = t2 ⊕ (t̄3 ∧ t̄1 ∧ t̄0)
v2 = t̄3 ⊕ (t2 ∧ t̄1 ∧ t0)⊕ (t̄2 ∧ t1 ∧ t̄0)
v1 = t0 ⊕ (t̄3 ∧ t2 ∧ t1)
v0 = t̄1 ⊕ (t3 ∧ t2 ∧ t̄0)⊕ (t̄3 ∧ t̄2 ∧ t0)

(17)



We had deliberately chosen the S-box so that these expressions are simple.4

For sake of simplicity, let us assume that the logical operations NOT, AND,
and XOR all take the same time in a hardware implementation. Even for a
very straightforward implementation of (16) and (17), the critical path for the
simultaneous calculation of S(t) and S2(t) contains only 4 logical operations.

In most hardware implementations, this takes a lot shorter than the time
required for a single 32-bit addition, an algebraic operation. Hence the calcu-
lation of α, given by (13), whose critical path consists of two 32-bit additions
and a single XOR, will take longer than the S-box calculation. In all, the total
time cost of the T-function given by Theorem 2 is two 32-bit additions and four
logical bit operations.

The filter (15), taking two 32-bit additions, may be run in parallel to the
T-function, so our cipher will produce 32-bits of keystream for every clock tick
that allows for two 32-bit additions and four logical bit operations.

Thus a straightforward approach will give us a very fast hardware imple-
mentation. For example, in an ASIC implementation that uses a 32-bit adder of
modest delay time 0.4ns, the cipher will run at somewhere around 32 Gbps. The
total cost for such a rough implementation is given in Table 1.

register 128×(flip-flop)

S-box 32×(11 XOR, 22 AND, 20 NOT)

odd parameter 4×(32-bit addition), 32×(2 XOR, 3 AND)

filter 3×(32-bit addition)

the rest 32×(1 XOR, 8 AND, 1 NOT)

Table 1. Implementation const of TSC-1

For lack of a good hardware oriented streamcipher, let us try to compare
this implementation cost with that of a summation generator on four 256-bit
LFSRs. Results of [24] show that this may be broken within time complexity
of 277 ∼ (

4·256
3

)log2 7
. Even this weak summation generator needs 1024 flip-flops,

just to get started on the four LFSRs. This will already be larger than what we
have in Table 1.

Actually, some tricks may be used to reduce the gates needed for S-box
implementation without impacting speed. For example, if we use the expression

y : = (t̄1 ∧ (t2 ∧ t0))⊕ t3

z : = t̄1 ∨ (t2 ∨ t0)
u0 = ȳ

v2 = y ⊕ z,

4 We have rejected S-boxes that contained wholly linear expressions. But even such
S-boxes might be used when this cipher is better understood.



calculation of u0 and v2 may be done in 2 XOR, 2 AND, 2 OR, and 2 NOT,
whereas, it was carelessly counted as 3 XOR, 6 AND, and 6 NOT in Table 1.

A very small but slower implementation might use just one or two 4 × 4 S-
boxes, and implementations that come somewhere in between are also possible,
allowing for a very wide range of implementation choices.

Although we have designed this cipher mainly for hardware, its performance
in software is not bad. Using the standard bit-slice technique for S-boxes with
the above polynomial expressions (16) and (17), we achieve speeds of up to 1.25
Gbps on a Pentium IV 2.4GHz, Windows XP (SP1) platform using Visual C++
6.0(SP6). In comparison, the Crypto++ Library[1] cites a speed of 113 MBps
for RC4 on a Pentium IV 2.1GHz machine. Scaled up for 2.4GHz, this is only
1.03 Gbps.

6 Conclusion

We have given an analysis of the generic single cycle T-function previously
known. With a better understanding of this T-function, we were able to present
a new class of single cycle T-functions.

Compared to the old T-function (Theorem 1), our T-function (Theorem 2)
certainly gives a better column mixing. Also, unlike (8), which is based on the
old T-function, the bit-flip probability of the register bits under the action of
our new T-function construction can be manipulated, and even made equal to
1
2 , through proper selection of S and α.

On the other hand, unlike previous T-functions, our new T-function does not
allow for the addition of an even parameter. This, we admit, is a very disappoint-
ing characteristic. But we would like to take the position that the multiplicative
even parameter is the less understood part of previous T-function(Example 1),
while being at the very core of its randomness. And as we saw in our example
ciphers, the reduced randomness of the register contents can be compensated for
by an appropriate use of the filter function.

We have also presented an example cipher which shows the possibility of using
T-functions to build hardware oriented streamciphers. Our T-function allows for
a wide range of implementation choices, so that the final cipher could be either
fast or of small footprint in hardware.
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A T-function based streamcipher; TSC-2

A streamcipher based on Corollary 1 will be given in this section.5 At the time
of this writing, this example cipher is known to be insecure[19]. It is included in
this paper for reference purposes only.

Compared to TSC-1, this cipher example will be lighter in hardware at
slightly reduced speed and faster in software. As with TSC-1, we will provide a
filter function in addition to fixing various components for the T-function.

A.1 The specification

Fix n = 32 and m = 4. Define an odd parameter by setting

α(x) = (p + 1)⊕ p⊕ 2s, (18)

where
p = x0 ∧ x1 ∧ x2 ∧ x3 and s = x0 + x1 + x2 + x3.

Define a 4× 4 S-box S as follows.

S[16] = {5,2,11,12,13,4,3,14,15,8,1,6,7,10,9,0}; (19)

One may check easily that this is a single cycle S-box. We can now define a single
cycle T-function T, through the use of Corollary 1.

To actually obtain the keystream, use the filter

f(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3) (20)

on the memory bits, after each application of T. This will give us a single 32-bit
block of keystream per action of the T-function.
5 This example cipher was presented at the SASC workshop. Readers may find more

detail, including an example C-code, in [18].



A.2 Naive security

Most of the arguments of Section 5.2 carry over to TSC-2, word for word. But
arguments concerning the bit-flip probability needs to be redone.

With a T-function following the construction of Corollary 1, it is difficult
to obtain a 1

2 bit-flip probability for all the memory bits. If this non-randomly
characteristic were to show unfiltered in the final keystream, we could obtain
a distinguishing attack. So we took care to make sure one word of memory
displayed the 1

2 bit-flip probability and used it to ensure that the final keystream
showed the same characteristic. Let us explain this in more detail.

The S-box (19), in addition to meeting the single cycle property, satisfies the
following.

– An even number is sent to an odd number and vice versa.

In other words, the LSB (among the four bits in a single column of memory) is
flipped on every application of S. To see the bit-flip probability of T itself, we
should next look at how often S is applied to each column.

Lemma 1. The odd parameter (18) satisfies

| 1
2
− probx([α(x)]i = 1) | = 1

24i

for all i > 0.

This lemma, which may be proved directly, tells us that except for in the lower
few bits, each output bit of α is equal to 1 almost half of the time. Recalling
description (12) of T together with the bit-flip characteristic of S, we conclude
that bits of memory x0 has bit-flip probability close to 1

2 except at the lower few
bits.

Now, the 32-bit addition operation, seen at each bit position, is an XOR of
two input bits and a carry bit, so we may apply the Piling-up Lemma[25] to
argue that for each i = 1, 2, 3, the bits of

x0≪k + xi

will have bit-flip probability very close to 1
2 , except maybe at the points where

lower bits of x0 was used. What discrepancy these bits may show from changing
one half of the time disappears, once again through the use of Piling-up Lemma,
when these values are rotated relative to each other and added together to form
the final output (20). The rotation, while allowing the mixing of lower bits of x0

with higher bits, also gains independence of the XORed bits needed in applying
the Piling-up Lemma.

Using the explicit probability stated by Lemma 1, we have checked that a
straightforward distinguishing attack based on the bit-flip probability of (single
T action on) register contents is not possible.



A.3 Implementation

As in TSC-1, the S-box (19) was chosen with its efficient implementation in
mind. The mapping t 7→ t⊕S(t) allows for an efficient bit slice realization. Also
note that because of the even-odd exchange condition, the LSB of t⊕ S(t) will
always be 1, leaving only 3 bits to be calculated.

Hardware implementation of TSC-2 will be slightly slower compared to that
of TSC-1, because the output filter now exhibits the critical path of three 32-
bit additions. But we have halved the count of S-boxes to obtain a lower total
implementation cost.

In software, TSC-2 runs on a Pentium-IV 2.4 GHz machine with code com-
piled using Visual C++ 6.0 (SP6) at speeds over 1.6 Gbps. This is over 1.6 times
faster than the speed for RC4 given in [1].


