
On Linear Approximation of Modulo Sum

Alexander Maximov

Department of Information Technology
Lund University, Box 118, SE–22100 Lund, Sweden

e-mail: movax@it.lth.se

Abstract. The general case for a linear approximation of the form “X1+· · ·+Xk mod 2n”
→ “X1 ⊕ · · · ⊕Xk ⊕N” is investigated, where the variables and operations are n-bit based,
and the noise variable N is introduced due to the approximation. An efficient and practical
algorithm of complexity O(n · 23(k−1)) to calculate the probability Pr{N} is given, and in
some cases it can be reduced to O(2k−2) .

1 Introduction

Linear approximations of nonlinear blocks in a
cipher is a common tool for cryptanalysis. One
of the most typical approximations is the sub-
stitution of the arithmetical sum modulo 2n

(�) with the XOR-operation (⊕) of the input
variables. We introduce a noise variable N and
write: X1 � · · ·� Xk = X1 ⊕ · · · ⊕Xk ⊕N . For
a distinguishing attack the bias of a linear com-
bination of noise variables can be calculated if
their distributions are known. For the consid-
ered approximation the distribution of N can
be calculated in two ways:
I. for X1 = 0 . . . 2n − 1 ← O(2k·n)

. . .
for Xk = 0 . . . 2n − 1

DistN [(X1 � · · ·� Xk)⊕
(X1 ⊕ · · · ⊕Xk)]++;

or
II. for C = 0 . . . 2n − 1 ← O(c · 2n)

DistN [C]=ProbOfN(C);

where the function ProbOfN(C) calculates the
corresponding probability (see Section 2). Note
that we deal with integer-valued distribution ta-
bles, i.e., Pr{N = C} = DistN [C]/2k·n.

2 The Function ProbOfN(C)

Let C = cn . . . c20 (note that Pr{N =
cn . . . c21} = 0). Then:

ProbOfN(C) = (1 1 . . . 1 )×
2∏

i=n

Tci × S0,

where T0, T1, and S0 are fixed matrices. The
algorithm to construct the matrices T0, T1, and
S0 is given below.

Initialization:
S0 = (0) - is of size (2k−1 × 1)

T0 = T1 = (0) - is of size (2k−1 × 2k−1)
Algorithm 1: S0 – construction

1. for X = 0 to 2k − 1

2. S0[�#X
2

�]+ = 1
Algorithm 2: T0, T1 – construction

1. for C = 0 to 2k−2 − 1

2. for X = 0 to 2k − 1

3. T0[C + �#X
2

�][2C] + +,

4. T1[C + �#X+1
2

�][2C + 1] + +;

where #X is the Hamming weight of X.

3 Example

Assume that n = 5 and k = 3, i.e., N =
(X1 � X2 � X3)⊕ (X1 ⊕X2 ⊕X3). Then:

T0 =




4 0 0 0
4 0 4 0
0 0 4 0
0 0 0 0


T1 =




0 1 0 0
0 6 0 1
0 1 0 6
0 0 0 1


S0 =




4
4
0
0


 .

Let C = 10110, then ProbOfN(C)= (1 1 1 1)×
T1 × T0 × T1 × T1 × S0, and ⇒ Pr{N =
10110} = 1536/23·5 = 0.046875.

4 Optimization Ideas

If n is not very large, say n = 32 bits, then
optimization can be done in the following way.
Represent C = AB0, where A = c32 . . . c16

and B = c15 . . . c2. Then create two tables
of vectors: RLeft[A] = (1 1 . . . 1) × ∏16

i=32 Tci

and RRight[B] =
∏2

i=15 Tci × S0 , for all A
and B. Then the probability Pr{N = C}
is just a scalar product RLeft[c32 · · · c16] ×
RRight[c15 · · · c2], and the time complexity is
O(2k−2). This idea of partitioning can be ex-
tended to larger n as well.


