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Abstract. SOBER-128 is a stream cipher designed by Rose and Hawkes
in 2003. It can be also uses for generating Message Authentication Codes
(MACs). The developers claimed that it is difficult to forge the MAC gen-
erated by SOBER-128, though, the security model defined in the pro-
posal paper is not realistic. In this paper, we examine the security of the
MAC generation function of SOBER-128 under the security notion given
by Bellare and Namprempre. As a result, we show the MAC generation
function of SOBER-128 is vulnerable against differential cryptanalysis.
The success probability of this attack is estimated at 27°.
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1 Introduction

The desire to use a known cryptographic module for various applications exists
from long ago. The first trial is realized as modes of operation of a block cipher.
The OFB-mode and the counter-mode are the usages of a block cipher for a
random number generation and CBC-MAC provides a message authentication
mechanism. On the other hand, Anderson and Biham presented the construction
of a block cipher from a pseudo-random number generator (PRNG) and a hash
function [1]. The security of these modes of operation are provable under the
assumption that the underlying primitives are ideal cryptographic functions.

Daemen considered the construction of elemental cryptographic functions, a
block cipher, a PRNG , and a hash function, from unreliably weak functions, e.g.,
a round function of a block cipher [6]. The security of these constructions are
not certain, but their processing speeds are often significantly faster than that
of modes of operation. Daemen and Clapp proposed a cryptographic module
PANAMA in 1998 [7]. PANAMA can be used as a PRNG and as a hash function.
Ferguson et al. proposed an authenticated encryption algorithm Helix in 2003
[11]. Helix can be also used as a PRNG and for a MAC generation.

SOBER [18] is a stream cipher developed by Rose in 1998. SOBER adopts a
linear feedback shift register (LFSR) defined over GF(2%) as the update function
of the internal state. This construction enables an efficient software implemen-
tation in 8-bit processors so that LFSRs defined over an extension field are
employed not only by SOBER, but also by SSC2 [20], SNOW [8, 10], and so on.



Several variants of SOBER have been developed to strengthen its security or
to be suitable for 16-bit and 32-bit processors. SOBER-t16 [12], t32 [13], Turing
[14], SOBER-128 [15] are the published algorithms. SOBER-t16 and t32 were
submitted to NESSIE project, but were rejected because some security flaws
are reported [4,5,9]. A weakness of the initialization of Turing has been also
reported [16].

SOBER-128 is the latest algorithm in SOBER family, and is the modified
version of SOBER-t32. In addition, SOBER-128 can be used not only as a stream
cipher, but also as a MAC generation. However, the security of MAC generation
algorithm of SOBER-128 has not been evaluated, so is still unclear.

In this paper we examine the security of the MAC generation function of
SOBER-128. We show that MAC generation algorithm of SOBER-128 is vulner-
able against differential cryptanalysis and the forgery of the MAC generated by
SOBER-128 is successful with high probability, about 274

The attack that we present in this paper is out of the expectation of the
designers. Our attack follows the security notion defined by Bellare and Nam-
prempre [2].

The rest of this paper is organized as follows. Firstly we define the supposed
attacker in this paper in Sect. 2. Secondly we briefly describe the MAC generation
algorithm of SOBER-128 in Sect. 3. Then we show how to forge MAC generated
by SOBER-128 in Sect. 4 and discuss the weakness of SOBER-128 in Sect. 5.
At last we summarize the result in Sect. 6.

2 The model of the attack

The designers mentioned that it is necessary for the recovery of the internal
state (or the secret key) to forge a MAC generated by SOBER-128 and resolved
the difficulty of a MAC forgery into that of the recovery of the internal state.
In the attack to recover the internal state, the attacker can generate a MAC
for a message with a secret key and an IV only once. Under the security no-
tional description, the attacker can make queries only to a (probabilistic) MAC
generation oracle.

In this paper, we consider a MAC forgery attack without any knowledge
about the secret internal state. The attacker we supposed is a malicious person in
a public communication channel. In our attack, there are a sender of messages, a
receiver, and the attacker. The sender sends pairs of messages and the associated
tags (M, MAC(M, K)) to the receiver. The attacker intercepts them, changes
only the messages, then sends (M’, M AC(M, K)) to the receiver. The attack is
successful if the receiver does not detect the manipulation of a message.

The security notion of this attack was given by Bellare and Namprempre [2].
Under the notion, the attacker can make queries not only to the MAC generation
oracle, but also to the MAC verification oracle. For each query, the MAC verifi-
cation oracle returns 1 if the attached tag is correct, and return 0 otherwise. In
real communication, the MAC verification oracle is the receiver and he outputs
a requirement of retransmission to the sender if he detects the manipulation.
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Fig. 1. The structure of non-linear filter NLF

There is no difference between these two attacks if the oracles are determin-
istic as a MAC verification oracle can be constructed from a MAC generation
oracle. However, they are essentially different if the oracle is probabilistic (i.e.
the oracle has a nonce as an input). In our model, the attacker can make a query
for each oracle. On the other hand, the attacker whom the designers supposed
can make only a query to a MAC generation oracle. The difference is critical to
apply our attack given in Sect. 4.

3 The algorithm of SOBER-128

SOBER-128 is a filtering generator which takes a secret key and an initial vec-
tor (IV) as inputs. The lengths of inputs are less than 128 bits. The update
function of the internal state is an LFSR whose feedback polynomial is defined
over GF(23?). The non-linear filtering function consists of additions modulo 232,
XORing, circular shift, and 8 x 32-bit substitution box (S-box) S (See Figure 1
for detail).



3.1 The linear feedback shift register

Before giving the definition of the LFSR, we firstly define the bit representation
of elements of a finite field GF(2"). The extension field over GF(2) is defined
by the residue field GF(2)[z]/(¢(z)), where (z) is the irreducible polynomial.
An element of GF(2") is a polynomial whose degree is less than w. The bit
representation of a polynomial a,_12% ' 4+ @y_22V"2 + --- + ag is given by
Aw-12""Y|@w_22""2]| - - - ||ag, where the notation || means a bit-concatenation.

In the proposal of SOBER-128, the finite field GF(23?) is defined by an
extension field of a subfield GF(2%). Firstly the subfield GF(2%) is given by the
residue field GF(2)[z]/(z® + 2% + 23 + 22 + 1). Next, GF(2%?) is defined by the
residue field GF(28)[y]/(g(y)), where g(y) = 0xd0-y>+0x2b-y? + 0x43 -y + 0x67.
The coefficients in the irreducible polynomial g are the hexadecimal expressions
of the elements of GF(28).

Now we can define the feedback polynomial p(z) of the LFSR of SOBER-128:

p(x) = &'+ 2" + 2t + q, (1)

where o = 0x00000100 (hexadecimal expression) = y.

The registers of SOBER-128 is denoted by R = (R[0], R[1],..., R[16]), where
each RJ[i] is a register of 32-bit length. We use subscript, like Ry, if the time ¢
should be clarified. The update function defined by above feedback polynomial
is calculated as follows:

tmp = RJ[0],
Rli]=Rli+1], 0<i<16,
R[16] = R[14] @ R[4] ® o - tmp. (2)

Furthermore, we can reduce the calculation of the multiplication with a con-
stant in GF(2%?) on 32-bit processor. The multiplication consists of only two
operations, referring a pre-computed table Multab indexed by the most signifi-
cant byte and a shift operation:

a-z = (r << 8) ~ Multab[(z >> 24)&0xFF], (3)

where ~ is the XORing operation and <<, >> are the left and right shift oper-
ations respectively.

3.2 Non-linear filtering NLF

The description of the non-linear filtering function NLF' is not necessary for
explaining our attack, but we give the brief description.
NLF is defined by the following equation (See Figure 1.):

NLF(R) = f(((R[0] ® R[16)]) > 8 @ R[1] & Konst) @ R[6]) B R[13],

where H is the addition modulo 232 and > is the rotation to right in a 32-bit
register. 8 X 32-bit non-linear substitution f is defined by

fla) = Silan]||(S2lan] & aL),
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Fig. 3. The structure of plaintext feedback function PF'F

where ay and ap are the most significant 8 bits and the least significant 24
bits of the input a respectively (See Figure 2.). S; and S in Figure 2 are the
substitution boxes that output 8 bits and 24 bits values respectively. Please refer
the proposal document of SOBER-128 [15] for more detail about the substitution
table. Konst is dependent on the initial values, and does not change after the
initialization. Hence we can consider it is a key-dependent constant.

3.3 The message feedback function PFF

The message feedback function PF'F is used for injecting a message to the LFSR
in MAC generation. PF'F' is given by the following equation:

PFF(R[4],p, Konst) = f((f(R[4] B p) >> 8) B Konst).

The value of the register R[4] is replaced by the output of PFF.



3.4 MAC generation

The MAC generation of SOBER-128 is divided into two phases. The first phase
is called MAC accumulation and the second phase is called MAC finalization.
Before starting MAC generation, the internal state is initialized with a secret
key and an IV.

In the MAC accumulation phase, the message words are injected into the
LFSR by using the message feedback function PFF:

R.[4] « PFF(R:[4],pt, Konst) = f((f(R¢[4] Bp:) > 8) B Konst). (4)

In the MAC finalization phase, the internal state is mixed by XORing the con-
stant INITKONST to R[15], applying the non-linear update function Diffuse
18 times. The non-linear function Diffuse is defined as follows:

Step 1. Updating the LFSR.
Step 2. Applying NLF to the register and replacing R[4] with the value R[4]®
v, where v is the output of NLF.

After the mixing, SOBER-128 outputs MAC of arbitrary length. The last step
is same as the random number generation using N LF'.

4 The MAC forgery

Our attack aims to find a collision of messages with a same secret key and a same
IV. For that, we apply differential cryptanalysis developed by Biham and Shamir
[3]. Differential cryptanalysis observes the differential propagation of the target
encryption function. In differential cryptanalysis, the attacker firstly encrypts
amount of plaintext pairs with a fixed differential. and observes the distribution
of the differentials of ciphertext. If the output differentials do not distribute
uniformly, the attacker can recover some information of the secret key from the
deviation of the distribution.

The basic idea of our attack is finding a pair of message sequence P and
P’, which yields same internal state value at a certain time T with a secret
key and an IV. In a practical sense, the purpose of the attack is finding the
differential sequence {Ap;}; with which any message sequence pair P = {p; }+
and P’ = {p; ® Ap;}+ make a collision with high probability.

The search can be divided into two part. The search for the differential prop-
agation of PFF with high probability and the construction of the differential
elimination equation in the LFSR. In the following two subsection, each topic is
discussed in detail.

4.1 The differential propagation in the message feedback function
PFF

Firstly, we discuss about the differential propagation in the message feedback
function PFF.



We denote the differential propagation in the function f by A L A, The
differential characteristic of non-linear permutation f is very large because the
transformation is not uniform. Only the most significant byte is transformed
non-linearly. so that any differential A whose most significant byte is zero does

not influenced by f, ie., A 7, A holds with probability 1. Hence, if the byte-
wise expression of the differential of the register R[4] is given by (0, d1, d2,0) and
the differential of the message injection p is given by (0, d7, 5, 0), the following
differential propagation of PFF holds with high probability:

((07617 6270)a (05 617 6;70>)

/l //

// l/

//

= (0, 0)
L, 0)
> (00,487, 8%)
(0 0,8",8%)
L, d3) (5)

4.2 How to eliminate differentials in the LFSR

Next we discuss how to eliminate differentials in the LFSR. To simplify the dis-
cussion, we replace the message feedback function PFF' by XORing the message
directly to R;[4]. In fact, Eq. 5 indicates that any differential of R;[4] can be en-
tirely overwritten by addition to a message block. Hence the discussion with the
simplified message injection is useful. To avoid confusion, we denote the message
block at time ¢ by ¢; and the differential by Ag; respectively.

The internal state initialized by a secret key K and an initial vector I is
denoted by Ry. We denote by Ry (K, I) if the initial values should be clarified.

We denote the expression matrix of the LFSR of SOBER-128 defined over
GF(2%?) by A. In the following discussion, we treat the internal state (registers)
of the LFSR. as a vector space over GF(232). Eq. 5 shows that the injection of
the differential to the LFSR is identified by addition of the vector D, given by

D; =%0,0,0,0, Agy,0,...,0).
The corresponding internal state to message sequence q; & Ag; is given by
Ry ® Dy =A-(Rp_y © Dr_1) ® Dr
=A% (Rp_,®Dr_s)®A-Dr_1 & Dy

T
=A" - Ry®» A" Dr_y. (6)
t=0

Eq. 6 indicates that the differential vector of the internal state becomes zero
at time T iff the following equation is satisfied.

T
S A Dy, =0, ()
t=0



The differential vector D; = ¥(0,0,0,0, Ag;,0,...,0) is divided into the ele-
mental vector e4 = 1(0,0,0,0,1,0,...,0) and the coefficient Ag;:

Dt = Aqt - €4.

Multiplying a constant is commutative with any matrix, hence we can transform
Eq. 7 as follows:

At Dp_y

At(AQTft : 64)

M- 14

t

=

M=~ &

Agr—1A)ey. (8)

t=

(=)

A differential sequence which satisfies this equation is given by Cayley-
Hamilton relation. The characteristic polynomial of matrix A is given by Eq. 1
so that A satisfies the following relation:

AT LAY LAY L aE =0, (9)

where F is the identity matrix of dimension 17. Therefore the following differ-
ential sequence Ag; satisfies Eq. 8:

Ago = Age = Aqiz = a, Aqr=a-a. (10)

On the other hand, we examined exhaustive search for bite-wise truncated
differential of message sequences {Ag; }; which satisfy Eq. 9 and T' < 20 on PC.
The experiment concludes that Eq. 10 gives the best differential set, i.e. both
the time T and the number of non-zero differentials are smallest.

Now we get back to the message injection by PFF'. There are two different
purpose to inject a message differential Ap, into the LFSR. One is for injecting
a certain differential value into a register, And the other is for eliminating a
differential in R;[4]. For each case, Ap; = Agq; <« 8 and Ap, = Ag; yields the
same result as in the discussion of the simplified message injection.

Table 1 shows the propagation of the differential given in Eq. 10 in the
internal state, where b = « - a.

Eq. 3 implies a significant characteristic of «. If the byte-wise expression
of the differential Aqg is given by (0,z,y, z), then o - Agy = (z,y, z,0) holds
for every x,y, z. For example, the 32-bit differentials corresponding to the trun-
cated differentials a and b in Table 1 are given by 0x00000001 and 0x00000100
respectively.

4.3 The success probability of the MAC forgery

In the differential propagation of the message feedback function PFF' given by
Eq. 5, the differential changes probabilistically only at the addition over GF(232).



Table 1. The differential propagation in the LFSR

Time| Ap: |Agq:|Differential in the LFSR
00 a8 a 0000a000000000000
01 0 0 000a000000000000a
02 |a K 8| a 00a0a0000000000a0
03 0 0 0a0a0000000000a00
04 0 0 a0a0000000000a000
05 0 0 0a0000000000a000b
06 0 0 a0000000000a00060
07 0 0 0000000000a000600
08 0 0 000000000a0006000
09 0 0 00000000a00060000
10 0 0 0000000a000600000
11 0 0 000000a0006000000
12 0 0 00000a00060000000
13 a a 00000000600000000
14 0 0 00000006000000000
15 0 0 00000060000000000
16 0 0 000006b00000000000
17 b b 00000000000000000

Lipmaa and Moriai presented the efficient algorithm for calculating the differen-
tial probability of an addition modulo 2" for arbitrary n [17]. For example, if the
differential @ = 0x00000001 in Eq. 10 is chosen, the differential probabilities of
PFF at each time t = 0,2,13,17 are 272, 272, 271, 27! respectively. Therefore
the success probability of the MAC forgery of SOBER-128 is about 276.

We examined the attack with a sample code provided by the designers. The
success probability of the experimental attack is about 2755,

5 Discussion

Generally, the supposed attack in MAC forgery is adaptive chosen plaintext
attack. However, the attack applied in the previous section is known plaintext
attack. Any information about IVs and the secret key is not necessary as the
attack is applicable even if the internal state is perfectly random. Besides, though
SOBER-128 has authenticated encryption mechanism, encrypting messages does
not strengthen the security of message authentication function because altering
ciphertext is equal to altering plaintext for the encryption by a stream cipher.

In this section, we examine some idea to improve the security of SOBER-128
and consider its efficiency.

The vulnerability of MAC generation algorithm of SOBER-128 is mainly
derived from the fact that the substitution f is not uniformly non-linear. From
the viewpoint of differential propagation, only the transformation of the most
significant byte is non-linear. Besides, a rotation has no diffusion function. Hence
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at least 4 times iterations of these functions is necessary to apply the non-linear
transformation to all bytes. This reduces the performance of SOBER-128.

Another idea to improve the security is injecting the output of PFF to
plural registers for increasing the complexity. However, the transformation in
Eq. 8 holds for any vector whose elements are defined by v; = z;-v  (GF(23?)).
Hence this change of algorithm does not improve the security.

6 Conclusion

In this paper, we show that the MAC generation algorithm of SOBER-128 is
vulnerable under a certain practical assumption. We assume that the attacker
intercepts the message and change some bits of the message, and sends it to the
receiver. Under this assumption, the attacker can forge a message with proba-
bility 276.
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