
CWC: A high-performane onventionalauthentiated enryption modeTadayoshi Kohno1, John Viega2, and Doug Whiting31 UC San Diego, tkohno�s.usd.edu2 Virginia Teh, viega�seuresoftware.om3 Hifn, In., dwhiting�hifn.omAbstrat. We introdue CWC, a new blok ipher mode of operationfor proteting both the privay and the authentiity of enapsulated data.CWC is the �rst suh mode having all �ve of the following properties:provable seurity, parallelizability, high performane in hardware, highperformane in software, and no intelletual property onerns. We be-lieve that having all �ve of these properties makes CWC a powerful toolfor use in many performane-ritial ryptographi appliations. CWC isalso the �rst appropriate solution for some appliations; e.g., standard-ization bodies like the IETF and NIST prefer patent-free modes, andCWC is the �rst suh mode apable of proessing data at 10Gbps inhardware, whih will be important for future IPse (and other) networkdevies. As part of our design, we also introdue a new parallelizableuniversal hash funtion optimized for performane in both hardware andsoftware.1 IntrodutionAn authentiated enryption assoiated data (AEAD) sheme is a symmetrienryption sheme designed to protet both the privay and the authentiityof enapsulated data. There has reently been a strong push toward produingblok ipher-based AEAD shemes [13, 10, 12, 24, 28, 23, 5℄. Despite this push,among the previous works there does not exist any AEAD sheme simultane-ously having all of the following properties: provable seurity, parallelizability,high performane in hardware, high performane in software, and free from in-telletual property onerns. Even though not all appliations will require all�ve of the these properties, almost all appliations will require at least one ofthe them, and may very likely have to be able to interoperate with an applia-tion requiring a di�erent property. We thus view �nding an appropriate shemehaving all �ve of these properties as a very important researh goal.Finding an appropriate balane between all �ve of the aforementioned prop-erties is, however, not easy beause the most natural approahes to addressingsome of the properties are atually disadvantageous with respet to other prop-erties. We believe we have overome these hallenges and, in doing so, introduea new mode of operation alled CWC, or Carter-Wegman Counter mode.



Motivating example. One of the primary motivations for suh a blok ipher-based AEAD sheme is IPse. From a pragmati perspetive, we note thatmany vendors and standardization bodies prefer patent-free modes over patentedmodes (the elegant OCB mode was apparently rejeted from the IEEE 802.11working group beause of patent onerns). And, from a hardware performaneperspetive, we note that beause none of the existing patent-free AEAD shemesare parallelizable, it to impossible to make existing patent-free AEAD shemesrun faster than about 2Gbps using onventional ASIC tehnology and a singleproessing unit. Nevertheless, future network devies will be expeted to runat 10Gbps. CWC addresses these issues, being both patent-free and apable ofproessing data at 10Gbps using onventional ASIC tehnology.The CWC solution. Our new mode of operation, alled CWC, has all �ve ofthe properties mentioned above. It is provably seure. Moreover, our provableseurity-based analyses helped guide our researh and helped us rejet othershemes with similar performane properties but with slightly worse provableseurity bounds. CWC is also parallelizable, whih means that we an makeCWC-AES run at 10Gbps using onventional ASIC tehnology. CWC is also fastin software. Our urrent implementation of CWC-AES runs at about the samespeed as the other patent-free modes on 32-bit arhitetures (Table 1), and weantiipate signi�ant performane gains on 32-bit CPUs when using more so-phistiated implementation tehniques (Setion 6), and we also see signi�antlybetter performane on 64-bit arhitetures. Of ourse, we do remark that thepatented modes like OCB are apable of running even faster in software, whihwould make them very attrative were they not also enumbered in intelletualproperty issues.Like the other two unpatented blok ipher-based AEAD modes, CCM [28℄and EAX [5℄, CWC avoids patents by using two inter-related but mostly inde-pendent modules: one module to \enrypt" the data and one module to \authen-tiate" the data. Adopting the terminology used in [5℄, it is beause of the two-module struture that we all CWC a \onventional" blok ipher-based AEADsheme. Although CWC uses two modules, it an be implemented eÆiently in asingle pass. By using the onventional approah, CCM, EAX, and CWC are verymuh like omposition-based AEAD sheme [4, 15℄, or AEAD shemes omposedfrom existing enryption shemes and MACs. Unlike omposition-based AEADshemes, however, by designing CWC diretly from a blok ipher, we eliminateredundant steps and �ne-tune CWC for eÆieny, again keeping in mind bothour hardware and software goals. For example, we use only one blok ipher key,whih saves expensive memory aess in hardware.The enryption ore of CWC is essentially ounter (CTR) mode enryption,whih is well-known to be eÆient and parallelizable. Finding an appropriate al-gorithm for the authentiation ore of CWC proved to be more of a hallenge. Forauthentiation, we deided to base our design on the Carter-Wegman [27℄ uni-versal hash funtion approah for message authentiation. Part of the diÆultyin the design ame down to hoosing the right type of universal hash funtion,with the right parameters. Sine polynomial evaluation an be parallelized (if



Linux/g-3.2.2 Windows 2000/VS6.0Payload lengths (bytes) Payload lengths (bytes)Mode 128 256 512 2048 8192 128 256 512 2048 8192CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1Table 1. Software performane (in loks per byte) for the three patent-free blokipher-based AEAD modes on a Pentium III. Values are averaged over 50 000 samples.the polynomial is in x, one an split it into i polynomials in xi), we hose to use auniversal hash funtion onsisting of evaluating a polynomial modulo the prime2127 � 1. We note the our hash funtion is similar to Bernstein's hash127 [6℄exept that Bernstein's hash funtion was optimized for software performaneat the expense of hardware performane. To address this issue, we use larger o-eÆients than Bernstein uses. We believe our hardware- and software-optimizeduniversal hash funtion to be of independent interest.Notation. As part of our researh, we �rst reated a general approah for om-bining CTR mode enryption with a universal hash funtion in order to provideauthentiated enryption. We shall refer to this general approah as CWC (noteno hange in font), and shall use CWC-BC to refer to a CWC instantiation witha 128-bit blok ipher BC as the underlying blok ipher and with the univer-sal hash funtion desribed briey above. We shall use CWC as shorthand forCWC-BC and use CWC-AES to mean CWC-BC with AES [8℄ as the underlyingblok ipher. Other instantiations of the general CWC approah are possible,e.g., for legay 64-bit blok iphers. Sine we are primarily targeting new appli-ations, and sine a mode using a 128-bit blok ipher will never be asked tointeroperate with a mode using a 64-bit blok ipher, we fous this paper onlyon our 128-bit CWC instantiation.When we say that an AEAD sheme's enryption algorithm takes a pair(A;M) as input and produes a iphertext as output, we mean that the AEADsheme is designed to protet the privay of M and the authentiity of both Aand M . This will be made more formal in the body.Performane. Let (A;M) be some input to the CWC enryption algorithm.The CWC enryption algorithm derives a universal hash subkey from the blokipher key. Assuming that the universal hash subkey is maintained aross in-voations, enrypting (A;M) takes djM j=128e + 2 blok ipher invoations.The polynomial used in CWC's universal hashing step will have degree d =djAj=96e+djM j=96e. There are several ways to evaluate this polynomial (detailsin Setion 6). As noted above, we ould evaluate it in parallel. Serially, assumingno preomputation, we ould evaluate this polynomial using d 127x127-bit multi-plies. As another example, assuming n preomputed powers of the hash subkey,whih are heap to maintain in software for reasonable n, we ould evaluate



the polynomial using d�m 96x127-bit multiplies and m 127x127-bit multiplies,where m = d(d+ 1)=ne � 1.In hardware using onventional ASIC tehnology at 0.13 miron, it takesapproximately 300 Kgates to reah 10 Gbps throughput for CWC-AES. This isaround twie as muh as OCB, but avoids IP negotiation overhead and roy-alty payments to three parties. Table 1 relates the software performane, ona Pentium III, of CWC-AES to the two other patent-free AEAD modes CCMand EAX; the patented modes suh as OCB are not inluded in this table,but are about twie as fast as the times given for the patent-free modes. Theimplementations used to ompute Table 1 were written in C by Brian Glad-man [9℄ and all use 128-bit AES keys; the urrent CWC-AES implementationdoes not use the above-mentioned preomputation approah for evaluating thepolynomial. Table 1 shows that the urrent implementations of the three modeshave omparable performane in software, the relative \best" depending on theOS/ompiler and the length of the message. Using the above-mentioned preom-putation approah and swithing to assembly, we antiipate reduing the ost ofCWC's universal hashing step to around 8 pb, thereby signi�antly improvingthe performane of CWC-AES in software ompared to CCM-AES and EAX-AES (sine the authentiation portions of CCM-AES and EAX-AES are limitedby the speed of AES but the authentiation portion of CWC-AES is limited bythe speed of the universal hash funtion). For omparison, Bernstein's relatedhash127, whih also evaluates a polynomial modulo 2127 � 1 but whose spei�struture makes it less attrative in hardware, runs around 4 pb on a PentiumIII when written in assembly and using the preomputation approah. On 64-bitG5s, our initial implementation of the hash funtion runs at around 6 pb, thusshowing that CWC-AES is very attrative on 64-bit arhitetures (when runningthe G5 in 32-bit mode, our implementation runs at around 15 pb).We do not laim that CWC-AES will be partiularly eÆient on low-endCPUs suh as 8-bit smartards. However, our goal was not to develop an AEADsheme for suh low-end proessors.The patent issue. The patent issue is a very peuliar one. While it may ini-tially sound odd to let patents inuene researh, we note that it is also notunommon, espeially in other sienes. Indeed, we view this line of researh asdisovering the most appropriate solution given real-world onstraints. And, justlike performane onstraints, intelletual property onstraints are very real.Bakground and related work. The notion of an authentiated enryp-tion (AE) sheme was formalized by Katz and Yung [13℄ and by Bellare andNamprempre [4℄ and the notion of an authentiated enryption with assoiateddata (AEAD) sheme was formalized by Rogaway [23℄. Bellare and Namprem-pre [4℄ and Krawzyk [15℄ explored ways to ombine standard enryption shemeswith MACs to ahieve authentiated enryption. A number of dediated AE andAEAD shemes also exist, inluding RPC [13℄, XECB [10℄, IAPM [12℄, OCB [24℄,CCM [28℄, and EAX [5℄. CWC is similar to the ombination of MGrew's UST [20℄and TMMH [19℄, where one of the main advantages of CWC over UST+TMMHis CWC's small key size, whih, as the author of UST and TMMH noted, an be



a bottlenek for UST+TMMH in hardware at high speeds. The integrity por-tion of CWC builds on top of the Carter-Wegman universal hashing approah tomessage authentiation [27℄. The spei� hash funtion CWC uses is similar toBernstein's hash127 [6℄, but is better suited for hardware. Shoup [26℄ and Nevel-steen and Preneel [22℄ also worked on software optimizations for universal hashfuntions. Rogaway and Wagner released a ritique of CCM [25℄. For eah issueraised in [25℄, we �nd that we have addressed the issue (e.g., we designed CWC tobe on-line) or we disagree with the issue (e.g., we feel that it is suÆient for newmodes of operation to handle arbitrary otet-length, as opposed to arbitrary bit-length, messages; we stress, however, that, if desired, it is easy to modify CWC tohandle arbitrary bit-length messages, see Setion 5). CWC reently served as thestarting point for GCM [21℄, another promising new onventional authentiatedenryption mode.2 PreliminariesNotation. If x is a string then jxj denotes its length in bits. Let " denote theempty string. If x and y are two equal-length strings, then x�y denotes the xorof x and y. If x and y are strings, then xky denotes their onatenation. If N isa non-negative integer and l is an integer suh that 0 � N < 2l, then tostr(N; l)denotes the enoding of N as an l-bit string in big-endian format. If x is astring, then toint(x) denotes the integer orresponding to string x in big-endianformat (the most signi�ant bit is not interpreted as a sign bit). For example,toint(10000010) = 27 + 2 = 130. If b is a bit and n a non-negative integer, thenbn denote b onatenated with itself n times; e.g., 107 is the string 10000000.Let x y denote the assignment of y to x. If X is a set, let x $ X denote theproess of uniformly seleting at random an element from X and assigning it tox. If f is a randomized algorithm, let x $ f(y) denote the proess of running fwith input y and a uniformly seleted random tape. When we refer to the timeof an algorithm or experiment, we inlude the size of the ode (in some �xedenoding). There is also an impliit big-O surrounding all suh time referenes.Authentiated enryption shemes with assoiated data. We use Ro-gaway's notion of an authentiated enryption with assoiated data (AEAD)sheme or mode [23℄. An AEAD sheme SE = (Ke; E ;D) onsists of threealgorithms and is de�ned over some key spae KeySpSE , some none spaeNoneSpSE = f0; 1gn, n a positive integer, some assoiated data (header) spaeAdSpSE � f0; 1g�, and some payload message spae MsgSpSE � f0; 1g�. Werequire that membership in MsgSpSE and AdSpSE an be eÆiently tested andthat if M;M 0 are two strings suh that M 2 MsgSpSE and jM 0j = jM j, thenM 0 2 MsgSpSE .The randomized key generation algorithm Ke returns a keyK 2 KeySpSE ; wedenote this proess as K $ Ke. The deterministi enryption algorithm E takesas input a key K 2 KeySpSE , a none N 2 NoneSpSE , a header (or assoiateddata) A 2 AdSpSE , and a payload message M 2 MsgSpSE , and returns a ipher-text C 2 f0; 1g�; we denote this proess as C  EN;AK (M) or C  EK(N;A;M).



The deterministi deryption algorithm D takes as input a key K 2 KeySpSE ,a none N 2 NoneSpSE , a header A 2 AdSpSE , and a string C 2 f0; 1g� andoutputs a message M 2 MsgSpSE or the speial symbol INVALID on error; wedenote this proess as M  DN;AK (C). We require that DN;AK (EN;AK (M)) = Mfor all K 2 KeySpSE , N 2 NoneSpSE , A 2 AdSpSE , and M 2 MsgSpSE . Let l(�)denote the length funtion of SE ; i.e., for all keys K, nones N , headers A, andmessages M , jEN;AK (M)j = l(jM j).Under the orret usage of an AEAD sheme, after a random key is seleted,the appliation should never invoke the enryption algorithm twie with the samenone value until a new key is randomly seleted. In order to ensure that a nonedoes not repeat, implementations typially use nones that ontain ounters. Weuse the notion of a none, rather than simply a ounter, beause the notion ofa none is more general and allows the developer the freedom to struture thenone as he or she desires.Blok iphers. A blok ipher E : f0; 1gk � f0; 1gL ! f0; 1gL is a funtionfrom k-bit keys and L-bit bloks to L-bit bloks. We use EK(�), K 2 f0; 1gk,to denote the funtion E(K; �) and we use f $ E as short hand for K $ f0; 1gk ; f  EK . Blok iphers are families of permutations; namely, for eahkey K 2 f0; 1gk, EK is a permutation on f0; 1gL. We all k the key length of Eand we all L the blok length.We adopt the notion of seurity for blok iphers introdued in [17℄ andadopted for the onrete setting in [2℄. Let E : f0; 1gk � f0; 1gL ! f0; 1gL be ablok ipher and let Perm(L) denote the set of all permutations on f0; 1gL. LetA be an adversary with aess to an orale and that returns a bit. ThenAdvprpF (A) = Pr h f $ E : Af(�) = 1 i� Pr h g $ Perm(L) : Ag(�) = 1 idenotes the prp-advantage of A in distinguishing a random instane of E froma random permutation. Intuitively, we say that E is a seure prp, or a seureblok ipher, if the prp-advantages of all adversaries using reasonable resouresis small. Modern blok iphers, suh as AES [8℄, are believed to be seure prps.3 The CWC mode of operationWe now desribe our new AEAD sheme. Let BC : f0; 1gkl � f0; 1g128 !f0; 1g128 be a 128-bit blok ipher. Let tl � 128 is the desired tag length in bits.Then the CWC mode of operation using BC with tag length tl, CWC-BC-tl =(K;CWC-ENC;CWC-DEC), is de�ned as follows. The message spaes are:MsgSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxMsgLen gAdSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxAdLen gKeySpCWC-BC-tl = f0; 1gklNoneSpCWC-BC-tl = f0; 1g88



where MaxMsgLen and MaxAdLen are both 128 � (232 � 1). That is, the payloadand assoiated data spaes for CWC-BC-tl onsist of all strings of otets that areat most 232 � 1 bloks long.The CWC-BC-tl key generation, enryption, and deryption algorithms arede�ned as follows:Algorithm KK $ f0; 1gklReturn KAlgorithm CWC-ENCK(N;A;M)�  CWC-CTRK(N;M)�  CWC-MACK(N;A; �)Return �k�
Algorithm CWC-DECK(N;A;C)If jCj < tl then return INVALIDParse C as �k� where j� j = tlIf A 62 AdSpCWC-BC-tl or � 62 MsgSpCWC-BC-tl thenreturn INVALIDIf � 6= CWC-MACK(N;A; �) thenreturn INVALIDM  CWC-CTRK(N; �)Return MThe remaining algorithms (CWC-CTR, CWC-MAC, CWC-HASH) are de�ned be-low. The CWC-CTR algorithm handles generating the enryption and deryptionkeystreams, CWC-MAC handles the generation of an authentiation tag, and usesCWC-HASH as the underlying universal hash funtion.Algorithm CWC-CTRK(N;M)� djM j=128eFor i = 1 to � dosi  BCK(107kNktostr(i; 32))x �rst jM j bits of s1ks2k � � � ks��  x�MReturn �Algorithm CWC-MACK(N;A; �)R BCK(CWC-HASHK(A; �))�  BCK(107kNk032)�RReturn �rst tl bits of �

Algorithm CWC-HASHK(A; �)Z  last 127 bits of BCK(110126)Kh  toint(Z)l min int suh that 96 divides jAk0ljl0  min int suh that 96 divides j�k0l0 jX  Ak0lk�k0l0 ; �  jXj=96Break X into hunks X1; X2; : : : ; X�For i = 1 to � doYi  toint(Xi)l�  j�j=8 ; lA  jAj=8Y�+1  264 � lA + l�R Y1K�h + � � �+ Y�Kh + Y�+1mod2127 � 1Return tostr(R; 128)4 Theorem statementsThe CWC sheme is a provably seure AEAD sheme assuming that the under-lying blok ipher, e.g., AES, is a seure pseudorandom permutation. This is aquite reasonable assumption sine most modern blok iphers, inluding AES,are believed to be pseudorandom. Furthermore, all provably-seure blok iphermodes of operation that we are aware of make at least the same assumptionswe make, and some modes, suh as OCB [24℄, require the stronger, albeit stillreasonable, assumption of super-pseudorandomness.The spei� results for CWC appear as Theorem 1 and Theorem 2 below, andare proven in the full version of this paper [14℄. In [14℄ we also present resultsfor the general CWC onstrution, from whih Theorems 1 and 2 follow.



4.1 PrivayWe �rst show that if BC is a seure blok ipher, then CWC-BC-tl will preserveprivay under hosen-plaintext attaks. For our notion of privay for AEADshemes, we use the strong de�nition of indistinguishability from [23℄. Let SE =(Ke; E ;D) be an AEAD sheme with length funtion l(�). Let $(�; �; �) be an oralethat, on input (N;A;M) 2 NoneSpSE � AdSpSE �MsgSpSE , returns a randomstring of length l(jM j). Let B be an adversary with aess to an orale and thatreturns a bit. ThenAdvprivSE (B) = Pr hK $ Ke : BEK(�;�;�) = 1 i� Pr h B$(�;�;�) = 1 iis the ind$-pa-advantage of B in breaking the privay of SE under hosen-plaintext attaks; i.e., AdvprivSE (B) is the advantage of B in distinguishing be-tween iphertexts from EK(�; �; �) and random strings. An adversary B is none-respeting if it never queries its orale with the same none twie. Intuitively,a sheme SE preserves privay under hosen plaintext attaks if the ind$-pa-advantage of all none-respeting adversaries using reasonable resoures is small.Theorem 1. [Privay of CWC.℄ Let CWC-BC-tl be as in Setion 3. Thengiven a none-respeting ind$-pa adversary A against CWC-BC-tl one an on-strut a prp adversary CA against BC suh that if A makes at most q oralequeries totaling at most � bits of payload message data, thenAdvprivCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 : (1)Furthermore, the experiment for CA takes the same time as the experiment forA and CA makes at most �=128 + 3q + 1 orale queries.Let us elaborate on why Theorem 1 implies that CWC-BC will preserve privayunder hosen-plaintext attaks. Assume BC is a seure blok ipher. This meansthat AdvprpBC (C) must be small for all adversaries C using reasonable resouresand, in partiular, this means that, for CA as desribed in the theorem state-ment, AdvprpBC (CA) must be small assuming that A uses reasonable resoures.And if AdvprpBC (CA) is small and �; q are small, then, beause of the above equa-tions, AdvprivCWC-BC-tl(A) must also be small as well. I.e., any adversary A usingreasonable resoures will only be able to break the privay of CWC-BC-tl withsome small probability.As a onrete example, let us onsider limiting the number of appliations ofCWC-BC-tl between rekeyings to some reasonable value suh as q = 232, and letus limit the total number of payload bits between rekeyings to � = 250. ThenEquation 1 beomesAdvprivCWC-BC-tl(A) � AdvprpBC (CA) + 1242whih means that, assuming that the underlying blok ipher is a seure prp,an attaker will not be able to break the privay of CWC-BC-tl with advantagemuh greater than 2�42.



4.2 Integrity/authentiityWe now present our results showing that if BC is a seure blok ipher, thenCWC-BC-tl will protet the authentiity of enapsulated data. We use the strongnotion of authentiity for AEAD shemes from [23℄. Let SE = (Ke; E ;D) bean AEAD sheme. Let F be a forging adversary and onsider an experimentin whih we �rst pik a random key K $ Ke and then run F with oraleaess to EK(�; �; �). We say that F forges if F returns a pair (N;A;C) suh thatDN;AK (C) 6= INVALID but F did not make a query (N;A;M) to EK(�; �; �) thatresulted in a response C. ThenAdvauthSE (F ) = Pr hK $ Ke : F EK(�;�;�) forges iis the auth-advantage of F in breaking the integrity/authentiity of SE . Intu-itively, the sheme SE preserves integrity/authentiity if the auth-advantage ofall none-respeting adversaries using reasonable resoures is small.Theorem 2. [Integrity/authentiity of CWC.℄ Let CWC-BC-tl be as spei-�ed in Setion 3. (Reall that BC is a 128-bit blok ipher and that the tag lengthtl is � 128.) Consider a none-respeting auth adversary A against CWC-BC-tl.Assume the exeution environment allows A to query its orale with assoiateddata that are at most n � MaxAdLen bits long and with messages that are atmost m � MaxMsgLen bits long. Assume A makes at most q � 1 orale queriesand the total length of all the payload data (both in these q � 1 orale queriesand the forgery attempt) is at most �. Then given A we an onstrut a prpadversary CA against BC suh thatAdvauthCWC-BC-tl(A) � AdvprpBC (CA)+ (�=128 + 3q + 1)22129 + n+m2133 + 12125+ 12tl : (2)Furthermore, the experiment for CA takes the same time as the experiment forA and CA makes at most �=128 + 3q + 1 orale queries.Let us elaborate on why Theorem 2 implies that CWC-BC will preserve authen-tiity. Assume BC is a seure blok ipher. This means that AdvprpBC (C) mustbe small for all adversaries C using reasonable resoures and, in partiular, thismeans that, for CA as desribed in the theorem statement, AdvprpBC (CA) must besmall assuming that A uses reasonable resoures. And ifAdvprpBC (CA) is small and�; q;m and n are small, then, beause of the above equations, AdvauthCWC-BC-tl(A)must also be small as well. I.e., any adversary A using reasonable resoures willonly be able to break the authentiity of CWC-BC-tl with some small probability.Let us onsider some onrete examples. Let n = MaxAdLen and m =MaxMsgLen, whih is the maximum possible allowed by the CWC-BC onstru-tion. Then Equation 2 beomesAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 + 1293 + 12tl :



If we set q = 232 and � = 250 as before, and if we take tl � 43, then the aboveequation beomes AdvauthCWC-BC-tl(A) � AdvprpBC (CA) + 1241whih means that, assuming that the underlying blok ipher is a seure prp,an attaker will not be able to break the unforgeability of CWC-BC-tl with prob-ability muh greater than 2�41.Remark 1. [Chosen-iphertext privay.℄ Sine CWC-BC-tl preserves privayunder hosen-plaintext attaks (Theorem 1) and provides integrity (Theorem 2)assuming that BC is a seure pseudorandom permutation, it also provides privayunder hosen-iphertext attaks under the same assumption about BC. See [4, 23℄for a disussion of the relationship between hosen-plaintext privay, integrity,and hosen-iphertext privay; this relationship was also used, for example, bythe designers of OCB [24℄.5 Design deisionsFinding an appropriate balane between provable seurity, hardware eÆieny,and software eÆieny, while simultaneously avoiding existing intelletual prop-erty issues, proved to be one the the biggest hallenges of this researh projet. Inthis setion we disuss how our diverse set of goals a�eted our design deisions.The CWC-HASH universal hash funtion. We found that the best wayto simultaneously ahieve our parallelizability, hardware, and software goals wasto base the authentiation portion of CWC on the Carter-Wegman [27℄ universalhash funtion approah to message authentiation. This is beause universalhash funtions, and espeially the one we reated for CWC, an be implementedin a multitude of ways, thus allowing di�erent platforms and appliations toimplement CWC-HASH in the way most appropriate for them. For example,hardware implementations will like parallelize the omputation of CWC-HASHby splitting it into multiple polynomials in Kih for some i. In more detail, if thepolynomial isY1K�h + Y2K��1h + Y3K��2h + Y4K��3h + � � �+ Y�Kh + Y�+1 mod 2127 � 1 :then, setting i = 2, and y = K2h mod 2127 � 1, and assuming � is odd for illus-tration purposes, we an rewrite the above polynomial as�Y1ym + Y3ym�1 + � � �+ Y��x+ �Y2ym + Y4ym�1 + � � �+ Y�+1� mod 2127 � 1 ;After splitting the polynomial, hardware implementations will then likely om-pute eah polynomial using Horner's rule (e.g., the polynomial aK2ih + bKih + would be evaluated as (((a)Kih+b)Kih)+). Software implementations on modernCPUs, for whih memory is heap, will likely preompute a number of powers ofKh and evaluate the CWC-HASH polynomial diretly, or almost diretly, usinga hybrid between a preomputation approah and Horner's rule. We onsider anumber of possible implementation strategies in more detail in Setion 6.



CWC-HASH is an instantiation of the lassi polynomial universal hash ap-proah to message authentiation [27℄, and is losely related to Bernstein'shash127 [6℄, whih also evaluates a polynomial modulo 2127�1. Although hash127is very fast in software, its struture makes it less suitable for use on high-speedhardware. In partiular, Bernstein's hoie of 32-bit oeÆients, while great forsoftware implementations with preomputed powers of Kh, means that hard-ware implementations using Horner's rule will be \wasting work." Spei�ally,even with 32-bit oeÆients, inorporating eah new oeÆient using Horner'srule will require a 127x127-bit multiply beause the aumulated value will be127 bits long. By de�ning the CWC-HASH oeÆients to be 96-bits long, weinrease the performane of Horner's rule implementations by a fator of three.(Of ourse, we ould have gone even further and made the oeÆients 126 bitslong, but doing so would have required onsiderable additional omplexity toperform bit and byte shifting within the oeÆients.) An alternative approahfor inreasing the performane of a serial implementation of Horner's rule wouldbe to redue the size of the CWC-HASH subkey Kh to 96 bits. We disuss whywe rejeted this option in more detail later, but remark here that there are al-ready more eÆient strategies than Horner's rule for implementing CWC-HASHin software, and that in a parallelized approah the values Kih, i � 2, will mostoften be full 127-bit values even if Kh is only 96-bits long.On using a single key. From a seurity perspetive, it would have been per-fetly aeptable, and in fat more traditional, to make the CWC-CTR blokipher key and the two CWC-MAC blok ipher keys independent. Like oth-ers [28, 5℄, however, we aknowledge that there are several important reasons forsharing keys between the enryption and authentiation portions of modes suhas CWC. One of the most important reasons is simpliity of key management.Indeed, fething key material an be a major bottlenek in high-speed hardware,and minimizing key material is thus important. This fat is also why we de-rive the hash subkey from the blok ipher key rather than use an independenthash subkey. We ould, of ourse, have de�ned a mode that derived a numberof essentially independent blok ipher and hash keys from a single blok ipherkey, but doing so would either have required more memory or more omputa-tion and, beause we have proofs that our onstrution works, would have beenunneessary.Sharing the blok ipher key in the way desribed above and deriving thehash subkey from the blok ipher key did, however, mean that we had to bevery areful with our proofs of seurity. To failitate our proofs, we took extraare in our design to ensure that there would never be a ollision in the plaintextinputs to the blok ipher between the di�erent usages of the blok ipher. Forexample, by de�ning CWC-HASH to produe a 127-bit value as output, we knowthat the �rst appliation of BC to CWC-HASHK(A; �) in CWC-MAC will alwayshave its �rst bit set to 0. To avoid a ollision with the input to the keystreamgenerator, the blok ipher inputs in CWC-CTR always have the �rst two bitsset to 10. When using the blok ipher to reate the hash subkey Kh, the �rsttwo bits of the input are set to 11.



On the hoie of parameters. Part of this e�ort involved speifying theappropriate parameters for the CWC enryption mode. Example parameters in-lude the none length and the way the none is enoded in the input to theblok ipher. We hose to �x these parameters for interoperability purposes, butnote that our general approah in [14℄ does not have theses parameters �xed.We hose to set the none length to 88 bits in order to handle future IPsesequene numbers. And we hose to set the blok ounter length to 32 bits inorder to allow CWC to be used with IPse jumbograms and other large pakets.We also hose to use big-endian byte ordering for onsisteny purposes and tomaintain ompatibility with MGrew's ICM Internet-Draft [18℄ and the IETF,whih strongly favors big-endian byte-ordering.Handling arbitrary bit-length messages. Sine we do not believe thatmany appliations will atually require the ability to enrypt arbitrary bit-lengthmessages, we do not de�ne CWC to take arbitrary bit-length messages as input.That said, we did design CWC in suh a way that it will be easy to modify thespei�ation to take arbitrary bit-length messages without a�eting interoper-ability with existing implementations when otet-strings are ommuniated. Forexample, one ould augment the omputation of Y�+1 in CWC-HASH as follows:rA  jAj mod 8 ; r�  j�j mod 8 ; Y�+1  2120 � rA + 2112 � r� + 264 � lA + l� :Of ourse, a leaner approah for handling arbitrary bit-length messages wouldbe to ompute lA  jAj and l�  j�j in CWC-HASH. We do not de�ne CWCthis way beause we do not onsider it a good trade-o� to de�ne a mode forarbitrary bit-length messages at the expense of otet-oriented systems.64-bit blok iphers. We did not de�ne CWC for use with 64-bit blok i-phers beause we are targeting future high-speed ryptographi appliations.Nevertheless, the general CWC approah in [14℄ an be instantiated with 64-bitblok iphers. A 64-bit instantiation may, however, require several unomfortabletradeo�s; e.g., in the length of the none.Some possible alternatives. Here we disuss some other possible alterna-tives to CWC and why we rejeted these alternatives. First, as noted earlier,it is possible to improve the performane in some situations by using shorterhash subkeys Kh, say of length 96 bits. Suh an alternative will not inreasethe performane in high-speed hardware implementations that will parallelizethe omputation of CWC-HASH by evaluating a polynomial in (at least) K2h. A96-bit hash subkey would have inreased Horner's rule performane in software,but would still be omparable in speed to a software-based approah using pre-omputed powers of Kh (see Setion 6), so reduing the size of Kh to 96 bitswould not provide a signi�ant advantage in software either. In [14℄ we also on-sider what happens to our provable seurity bounds when the length of the hashsubkey is redued to less than 96 bits.There are a number of possible approahes for reduing the number of blokipher appliations in the CWC-MAC algorithm by one. For example, one oulduse BCK(h0K(N;A; �)) as the tag, where h0 is a modi�ed version of CWC-HASHdesigned to hash 3-tuples instead of pairs of strings. One ould also use something



like BCK(N)+Y1K�+2h + � � �+Y�K3h+ lAK2h+ l�Kh mod 2127 � 1 as the tag. In[14℄ we onsider these and other alternatives and disuss why we hose to de�neCWC the way that we did instead of using an option with one fewer blok ipherinvoation. In the ase of the two alternatives mentioned in this paragraph, wenote that we rejeted them beause we were able to prove better bounds on theseurity of CWC as urrently de�ned.Motivated by EAX2 [5℄, one possible alternative to CWC might be to useBCK(11105kN) both as the value to enrypt R in CWC-MAC and as the initialounter to CTR mode-enrypt M (with the �rst two bits of the ounter alwaysset to 10). Other EAX2-motivated onstrutions also exist. For example, thetag might be set to BCK(h(X0kN)) � BCK(h(X1kA)) � BCK(h(X2k�)), whereX0; X1; X2 are strings, none of whih is a pre�x of the other, and h is a paral-lelizable universal hash funtion, like CWC-HASH but hashing only single strings(as opposed to pairs of strings). Compared to CWC, these alternatives have theability to take longer nones as input, and, from a funtional perspetive, anbe applied to strings up to 2126 bloks long. But we do not view this as a reasonto prefer these alternatives over CWC. From a pratial perspetive, we do notforesee appliations needing nones longer than 11 otets, or needing to enryptmessages longer than 232�1 bloks. Moreover, from a seurity perspetive, appli-ations should not enrypt too many pakets between rekeyings, implying thateven 11 otet nones are more than suÆient. We do omment, however, that webelieve the alternatives disussed in this paragraph are still more attrative thanEAX beause, like CWC but unlike EAX, these alternatives are parallelizable.We hose not to base the authentiation portion of our new mode on XOR-MAC [3℄ or PMAC [7℄ beause of patent onerns and our software performanerequirements and we hose not to base the authentiation portion on software-eÆient MACs suh as HMAC [1℄ beause of our hardware parallelizability re-quirement.6 PerformaneHardware. Sine one of our main goals was to ahieve high performane inhardware and, in partiular, to provide a solution for future 10 Gbps IPse (andother) network devies, let us fous �rst on hardware osts. As noted in theintrodution, using 0.13 miron CMOS ASIC tehnology, it should take approxi-mately 300 Kgates to ahieve 10 Gbps throughput for CWC-AES. This estimate,whih is appliable to AES with all key lengths, inludes four AES ounter-modeenryption engines, eah running at 200MHz and requiring about 25Kgates eah.In addition, there are two 32x128-bit multiply/aumulate engines, eah runningat 200 MHz with a lateny of four loks, one eah for the even and odd polyno-mial oeÆients. Of ourse, simply keeping these engines \fed" may be quite afeat in itself, but that is generally true of any 10 Gbps path. Also, there may wellbe better methods to struture an implementation, depending on the partiu-lar ASIC vendor library and tehnology, but, regardless of the implementationstrategy, 10 Gbps is quite ahievable beause of the inherent parallelism of CWC.



Sine OCB is CWC's main ompetitor for high-speed environments, it is worthomparing CWC with OCB instantiated with AES (we do not ompare CWC withCCM and EAX here sine the latter two are not parallelizable). We �rst note thatCWC-AES saves some gates beause we only have to implement AES enryptionin hardware. However, at 10 Gbps, OCB still probably requires only about halfthe silion area of CWC-AES. The main question for many hardware designers isthus whether the extra silion area for CWC-AES osts more than three royaltypayments, as well as negotiation osts and overhead. With respet to negotiationosts and royalty payments, we note that despite signi�ant demands, to date therelevant parties have not all o�ered publily available IP fee shedules. Giventhis fat, and given today's silion osts, we believe that the extra silion forCWC-AES is probably heaper overall than the negotiation osts and IP feesrequired for OCB.Software. CWC-AES an also be implemented eÆiently in software. Table 1shows timing information for CWC-AES, as well as CCM-AES and EAX-AES,on a 1.133GHz mobile Pentium III dual-booting RedHat Linux 9 (kernel 2.4.20-8) and Windows 2000 SP2. The numbers in the table are the loks per bytefor di�erent message lengths averaged over 50 000 runs and inlude the entiretime for setting up (e.g., expanding the AES key-shedule) and enrypting. Allimplementations were in C and written by Brian Gladman [9℄ and use 128-bitAES keys. The Linux ompiler was g version 3.2.2; the Windows ompiler wasVisual Studio 6.0. To be fair, we note that OCB does run at about twie thespeeds given in Table 1.From Table 1 we onlude that the three patent-free modes, as urrentlyimplemented by Gladman, share similar software performanes. The \best" per-forming one appears to depend on OS/ompiler and the length of the messagebeing proessed. On Linux, it appears that CWC-AES performs slightly betterthan EAX-AES for all message lengths that we tested, and better than CCM-AES for the longer messages, whereas Gladman's CCM-AES and EAX-AESimplementations slightly outperform his CWC-AES implementation on Windowsfor all the message lengths that we tested.Note, however, that all the implementations used to ompute Table 1 werewritten in C. Furthermore, the urrent CWC-AES ode does not make use ofall of the optimization tehniques (and in partiular preomputation) that wedesribe below. By swithing to assembly and using the additional optimizationtehniques, we antiipate the speed for CWC-HASH to drop to better than 8loks per byte, whereas the speed for the CBC-MAC portion of CCM-AES andEAX-AES will be limited by the speed of AES (the best reported speed for AESon a Pentium III is 14.1 pb, due to a proprietary library by Helger Lipmaa;Gladman's free hand-optimized Windows assembly implementation runs at 17.5pb [16℄). Returning to the speed of CWC-HASH, for referene we note thatBernstein's related hash127 [6℄ runs around 4 pb on a Pentium III when writtenin assembly and using the preomputation approah. Bernstein's hash127 alsoworks by evaluating a polynomial modulo 2127�1; the main di�erene is that theoeÆients for hash127 are 32 bits long, whereas the oeÆients for CWC-HASH



are 96 bits long (reall Setion 5, whih disusses why we use 96-bit oeÆients).We also note that the performane of CWC-HASH will inrease dramatially on64-bit arhitetures with larger multiplies; an initial implementation on a G5using 64-bit integer operations runs at around 6 pb (when running the G5 in32-bit mode, the hash funtion runs at around 15 pb).Sine the implementation of CWC-HASH is more ompliated than the im-plementation of the CWC-CTR portion of CWC, we devote the rest of this setionto disussing CWC-HASH.Preomputation. As noted in Setion 5, there are two general approahes toimplementing CWC-HASH in software. The �rst is to use Horner's rule. Theseond is to evaluate the polynomial diretly, whih an be faster if one preom-putes powers of the hash key Kh at setup time (here the powers of Kh an beviewed as an expanded key-shedule). In partiular, as noted in Setion 5, eval-uating the polynomial using Horner's rule requires a 127x127-bit multiply foreah oeÆient, whereas evaluating the polynomial diretly using preomputedpowers of Kh requires a 96x127-bit multiply for eah oeÆient. (We disusselsewhere why we did not make the hash subkey 96-bits, whih ould have spedup a serial Horner's rule implementation.) The advantage with preomputationwas �rst observed by Bernstein in the ontext of hash127 [6℄.The above desription of the preomputation approah assumed that if thepolynomial is Y1K�1h +� � �+Y�1Kh+Y (i.e., the polynomial has  oeÆients),then we had preomputed the powers ofKih for all i 2 f1; : : : ; �1g. The preom-putation approah extends naturally to the ase where we have preomputed thepowersKjh, j 2 f1; : : : ; ng, for some n � �1. For simpliity, �rst assume that weknow the polynomial has a multiple of n oeÆients. For suh a polynomial, oneproesses the �rst n oeÆients (to get Y1Kn�1h +: : :+Yn�1Kh+Yn), then multi-plies the intermediate result by Knh (to get Y1K2n�1h + : : :+Yn�1Kn+1h +YnKnh ).After that, one an ontinue proessing data with the same preomputed values(to get Y1K2n�1h + : : :+ Y2n�1Kh + Y2n), and so on. Note that eah hunk of noeÆients takes (n� 1) 96x127-bit multiplies, and all but the last hunk takesan additional 127x127-bit multiply. Now assume that the number of oeÆientsm in the polynomial is not neessarily a multiple of n. If m is known in advane,one ould �rst proess m mod n oeÆients, multiply by Knh , then proess inn-oeÆient hunks as before. Alternately, as long as the end of the messageis known n oeÆients in advane, one ould proess n-oeÆients hunks, andthen �nish o� the �nal m mod n oeÆients using Horner's rule. Or, if the num-ber of oeÆients in the polynomial is not known until the �nal oeÆient isreahed, one ould proess the message in n-oeÆient hunks and then mul-tiply by a preomputed power of K�1h one the end of the message hash beenreahed.Naturally, preomputation requires extra memory, but that is usually heapand plentiful in a software-based environment. Using 32-bit multiplies, the pre-omputation approah requires 12 32-bit multiplies per 96-bit oeÆient, as wellas 17 adds, all of whih may arry. In assembly, most of these arry operationsan be implemented for free, or lose to it by using a speial variant of the add



instrution that adds in the operand as well as the value of the arry from theprevious add operation. But when implemented in C, they will generally ompileto ode that requires a onditional branh and an extra addition. An implemen-tation using Horner's rule requires an additional four multiplies and three addi-tions with arry per oeÆient, adding about 33% overhead, sine the multipliesdominate the additions. A 64-bit platform only requires four multiplies and fouradds (whih may all arry), no matter the implementation strategy taken, whihexplains why implementations of CWC-HASH for 64-bit arhitetures are muhfaster.Exploiting the parallelism of some instrution sets. On most 32-bitplatforms, it turns out that the integer exeution unit is not the fastest wayto implement CWC-HASH. Many platforms have multimedia instrutions thatan be used to speed up the implementation. As another alternative, Bernsteindemonstrated that, on most platforms, the oating point unit an be used toimplement this lass of universal hash funtions far more eÆiently than an bedone in the integer unit. This is partiularly true on the x86 platform where,in ontrast to using the standard registers, two oating point multiples anbe started in lose proximity without introduing a pipeline stall. That is, thex86 an e�etively perform two oating-point operations in parallel. The disad-vantage of using oating-point registers is that the operands for the individualmultiplies need to be small, so that the operations an be done without lossof preision. On the x86, Bernstein multiplies 24-bit values, allowing the sumsof produt terms to �t into double preision values with 53 bits of preisionwithout loss of information. Bernstein details many ways to optimize this sortof alulation in [6℄.As noted before, there are only two main di�erenes between the struture ofthe polynomials of Bernstein's hash127 and CWC-HASH. The �rst is that Bern-stein uses signed oeÆients, whereas CWC-HASH uses unsigned oeÆients; thisshould not have an impat on eÆieny. The other di�erene is that Bernsteinuses 32-bit oeÆients, whereas CWC-HASH uses 96-bit oeÆients. While bothsolutions average one multipliation per byte when using integer math, Bern-stein's solution requires only .75 additions per byte, whereas CWC-HASH requires1.42 additions per byte, nearly twie as many. Using 32-bit multiplies to builda 96x127 multiplier (assuming preomputation), CWC-HASH should thereforeperform no worse than at half the speed of hash127. When using 24-bit oatingpoint oeÆients to build a multiply (without applying any non-obvious opti-mizations), hash127 requires 12 multiplies and 16 adds per 32-bit word. CWCan get by with 8 multiples per word and 12.67 additions per word. This is be-ause a 96-bit oeÆient �ts exatly into four 24-bit values, meaning we an usea 6x4 multiply for every three words. With 32-bit oeÆients, we need to usetwo 24-bit values to represent eah oeÆient, resulting in a single 6x2 multiplythat needs to be performed for eah word.Gladman's C implementation of CWC-HASH uses oating point arithmeti,but uses Horner's rule instead of performing preomputation to ahieve extraspeed. Nothing about the CWC hash indiates that it should run any worse than
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