
The EAX Mode of Operation

Mihir Bellare1, Phillip Rogaway2, and David Wagner31 Dept. of Computer Science & Engineering, University of California at San Diego, 9500
Gilman Drive, La Jolla, California 92093, USA. E-mail:mihir@cs.ucsd.edu . URL:

www-cse.ucsd.edu/users/mihir2 Department of Computer Science, University of California at Davis, Davis, California 95616,
USA; and Department of Computer Science, Faculty of Science, Chiang Mai University,

Chiang Mai 50200, Thailand. E-mail:rogaway@cs.ucdavis.edu . URL:
www.cs.ucdavis.edu/˜rogaway/3 Department of Electrical Engineering and Computer Science, University of California at

Berkeley, Berkeley, California 94720, USA. E-mail:daw@cs.berkeley.edu . URL:
www.cs.berkeley.edu/˜daw/

Abstract. We propose a block-cipher mode of operation, EAX, for solving the
problem of authenticated-encryption with associated-data (AEAD). Given a nonceN , a messageM , and a headerH, our mode protects the privacy ofM and the
authenticity of bothM andH. StringsN ,M , andH arearbitrary bit strings, and
the mode uses2djM j=ne + djHj=ne + djN j=ne block-cipher calls when these
strings are nonempty andn is the block length of the underlying block cipher.
Among EAX’s characteristics are that it is on-line (the length of a message isn’t
needed to begin processing it) and a fixed header can be pre-processed, effectively
removing the per-message cost of binding it to the ciphertext.

1 Introduction

An authenticated encryption (AE) scheme is a symmetric-keymechanism by which a
messageM is a transformed into a ciphertextCT with the goal thatCT protect both
the privacyand the authenticity ofM . The last few years has seen the emergence of
AE as a recognized cryptographic goal. With this has come thedevelopment of new
authenticated-encryption schemes and the analysis of old ones. This paper offers up a
new authenticated-encryption scheme, EAX, and provides a thorough analysis of it. To
understand why we are defining a new AE scheme, we need to give some background.

FLAVORS OF AUTHENTICATED ENCRYPTION. It useful to distinguish two kinds of
AE schemes. In atwo-passscheme we make two passes through the data, one aimed at
providing privacy and the other, authenticity. One way of making a two-pass AE scheme
is by generic composition, wherein one pass constitutes a (privacy-only) symmetric-
encryption scheme, while the other pass is a message authentication code (MAC). The
encryption scheme and the MAC each use their own key. Analyses of some generic
composition methods can be found in [5, 6, 20].

In a one-passAE scheme we make a single pass through the data, simultaneously
doing what is needed to engender both privacy and authenticity. Typically, the com-
putational cost is about half that of a two-pass scheme. Suchschemes emerged only
recently. They include IAPM, OCB, and XCBC [12, 17, 25].

Soon after the emergence of one-pass AE schemes it was realized that often not
all the data should be privacy-protected. Changes were needed to the basic definitions
and mechanisms in order to support the possibility that someinformation, like a packet
header, mustnot be encrypted. Thus was born the notion ofauthenticated-encryption
with associated-data(AEAD), first formally defined in [24]. The non-secret data is
called theassociated dataor theheader. Like an AE schemes, an AEAD scheme might
make one pass or two.

STANDARDIZING A TWO -PASSAEAD SCHEME. Traditionally, it has been the design-
ers of applications and network protocols who were responsible for combining privacy
and authenticity mechanisms in order to make a two-pass AEADscheme. This has not
worked well. It turns out that there are numerous ways to go wrong in trying to make
a secure AEAD scheme, and many protocols, products, and standards have done just
that. (For example, see [11] for a wrong one-pass scheme, see[5] for weaknesses in the
AEAD mechanism of SSH, and [6, 20] for attacks on some methodsof popular use.)

Nowadays, some standards bodies (including NIST, IETF, andIEEE 802.11) would
like to standardize on an AEAD scheme. Indeed IEEE 802.11 hasalready done so. This
is a good direction. Standardized AEAD might help minimize errors in mis-combining
cryptographic mechanisms.

So far, standards bodies have been unwilling to standardizeon any of the one-pass
schemes due to pending patents covering them. There is, accordingly, an established
desire for standardizing on a two-pass AEAD scheme. The two-pass scheme should be
as good as possiblesubject to the limitation of falling within the two-pass framework.

Generic-composition would seem to be the obvious answer. But defining a generic-
composition AEAD scheme is not an approach that has moved forward within any of
the standards bodies. There would seem to be a number of reasons. One reason is a
relatively minor inefficiency—the fact that generic composition methods must use two
keys. Probably a bigger issue is that the architectural advantage of generic composition
brings with it an “excessive” degree of choice—after deciding on a generic composition
method, one still needs two lower-level specifications, namely a symmetric encryption
scheme and a MAC, for each of which numerous block-cipher based choices exist.
Standards bodies want something self-contained, as well asbeing a patent-avoiding,
block-cipher based, single-key mechanism.

So far, there has been exactly one proposal for such a method (though see the “con-
temporaneous work” section below). It is called CCM [26], and is due to Whiting,
Housley, and Ferguson [26]. CCM has enjoyed rapid success, and is now the required
mechanism for IEEE 802.11 wireless LANs as well as 802.15.4 wireless personal area
networks. NIST has indicated that it plans to put out a “Recommendation” based on
CCM.

OUR CONTRIBUTIONS. It is our view that CCM has a good deal of pointless complexity
and inefficiency. It is the first contribution of this paper toexplain these limitations. It is
the second and main contribution of this paper to provide a new AEAD scheme, EAX,
that avoids these limitations.

CCM LIMITATIONS . A description of CCM, together with a detailed descriptionof its
shortcomings, can be found in the full version of this paper [8]. Some of the points we

make and elaborate on there are the following. CCM is not on-line, meaning one needs
to know the lengths of both the plaintext and the associated data before one can proceed
with encryption. This may be inconvenient or inefficient. CCM does not allow pre-
processing of static associated data. (If, for example, we have an unchanging header
attached to every packet being authenticated, we would likethat the cost of authen-
ticating this header be paid only once, meaning header authentication should have no
significant cost after a single pre-computation. CCM fails to have this property.) CCM’s
parameterization is more complex than necessary, including, in addition to the block ci-
pher and tag length, a message-length parameter. CCM’s nonce length is restricted in
such a way that it may not provide adequate security when nonces are chosen randomly.
Finally, CCM implementations could suffer performance hits because the algorithm can
disrupt word alignment in the associated data.

EAX AND ITS ATTRIBUTES. EAX is a nonce-using AEAD scheme employing no tool
beyond the block cipherE : Key� f0; 1gn ! f0; 1gn on which it is based. We expect
thatE will often be instantiated by AES, but we make no restrictions in this direction.
(In particular we do not require thatn = 128.) Nothing is assumed about the nonces
except that they are non-repeating. EAX provides both privacy, in the sense of indistin-
guishability from random bits, and authenticity, in the sense of an adversary’s inability
to produce a new but validhnonce, header, ciphertexti triple. EAX is simple, avoiding
complicated length-annotation. It is a conventional two-pass AEAD scheme, making a
separate privacy pass and authenticity pass, using no knownintellectual property.

EAX is flexible in the functionality it provides. It supportsarbitrary-length mes-
sages: the message space isf0; 1g�. The key space for EAX is the key spaceKey of the
underlying block cipher. EAX supports arbitrary nonces, meaning the nonce space isf0; 1g�. Any tag length� 2 [0 :: n℄ is possible, to allow each user to select how much
security she wants from the authenticity guarantees. The only user-selectable parame-
ters are the block cipherE and that tag length� .

EAX has desirable performance attributes. Message expansion is minimal: the length
of the ciphertext (which, following the conventions of [25], excludes the nonce) is
only � bits more than the length of the plaintext. Implementationscan profitably pre-
process static associated data. (If an unchanging header isattached to every packet,
authenticating this header has no significant cost after a single pre-computation.) Key-
setup is efficient: all block-cipher calls use the same underlying key, so that we do not
incur the cost of key scheduling more than once. For both encryption and decryption,
EAX uses only the forward direction of the block cipher, so that hardware implemen-
tations do not need to implement the decryption functionality of the block cipher. The
scheme is on-line for both the plaintextM and the associated dataH , which means that
one can process streaming data on-the-fly, using constant memory, not knowing when
the stream will stop.

PROVABLE SECURITY. We prove that EAX is secure assuming that the block cipher
that it uses is a secure pseudorandom permutation (PRP). Security for EAX means
indistinguishability from random bitsand authenticity of ciphertexts. The combina-
tion implies other desirable goals, like nonmalleability and indistinguishability under a
chosen-ciphertext attack.

The proof of security for EAX is surprisingly complex. The key-collapse of EAX2
destroys a fundamental abstraction boundary. Our securityproof relies on a result about
the security of a tweakable extension of OMAC (Lemma 3) in which an adversary can
obtain not only a tag for a message of its choice, but also an associated key-stream.

PRAGMATICS. The main reason there is any interest in two-pass schemes, as we have
already discussed, is that one-pass schemes would seem to besubject to patents. Mo-
tivated by this, standardization bodies have expressed theintent of standardizing on
a conventional, two-pass scheme, even understanding the factor-of-two performance
hit. The merit of this judgment is debatable, but the pragmatic reality is that there has
emerged a desire for a conventional scheme, like EAX, that isas good as possible
subject to the two-pass constraint. Lack of a scheme like EAXwill simply lead to an in-
ferior scheme being standardized, which is to the disadvantage of the user community.
Accordingly, EAX addresses a real and practical design problem. We took up work on
this design problem at the suggestion of the co-Chair of the IRTF (Internet Research
Task Force), which supports the standardization efforts ofthe IETF. We believe that
EAX has the potential for widespread adoption and use.

AFTERWARDS. One non-goal of EAX was to be parallelizable. Another recent two-
pass design, CWC [19], is parallelizable. It pays for this advantage with a somewhat
complex algorithm, based on Carter-Wegman hashing using polynomial evaluation over
a prime field. More recent still is GCM [22], a parallelizable, two-pass design based on
multiplication in the finite field with2128 elements.

Other recent AEAD mechanisms include Helix [10] and SOBER-128 [13]. These
are stream ciphers that aim to provide authenticity. The provable-security methodology
does not apply to these objects since they are built directlyrather than from lower level
primitives.

2 Preliminaries

All strings in this paper are over the binary alphabetf0; 1g. ForL a set of strings andn � 0 a number, we letLn andL� have their usual meanings. The concatenation of
stringsX andY is denotedX k Y or simplyX Y . The string of length 0, called the
empty string, is denoted". If X 2 f0; 1g� we let jX j denote its length, in bits. IfX 2 f0; 1g� and` � jX j then the first̀ bits ofX are denotedX [first ` bits℄. The
set BYTE = f0; 1g8 contains all the strings of length 8, and a stringX 2 BYTE� is
called abyte stringor anoctet string. If X 2 BYTE� we let kXk8 = jX j=8 denote
its length in bytes. For̀ � 1 a number, we write BYTE<` for all byte strings having
fewer than` bytes. If X 2 BYTE� and ` � kXkn then the first̀ bytes ofX are
denotedX [first ` bytes℄. WhenX 2 f0; 1gn is a nonempty string andt 2 N is a
number we letX+ t be then-bit string that results from regardingX as a nonnegative
numberx (binary notation, most-significant-bit first), addingx to t, taking the result
modulo2n, and converting this number back into ann-bit string. If t 2 [0::2n � 1℄
we let [t℄n denote the encoding oft into ann-bit binary string (msb first, lsb last).
If X andP are strings then we letX �! P (thexor-at-the-endoperator) denote the
string of length` = maxfjX j; jP jg bits that is obtained by prepending

��jX j � jP j��

Algorithm CBCK (M)
10 LetM1 � � �Mm M wherejMij = n
11 C0 0n
12 for i 1 to m do
13 Ci EK(Mi�Ci�1)
14 return Cm Algorithm CTRNK (M)

20 m djM j=ne
21 S EK(N) k � � � k EK(N+m�1)
22 C M � S [first jM j bits℄
23 return C

Algorithm pad (M ; B;P)
30 if jM j 2 fn; 2n; 3n; : : :g
31 then return M �! B,
32 else return (M k 10n�1�(jMj mod n)) �! P Algorithm OMACK (M)

40 L EK(0n); B 2L; P 4L
41 return CBCK(pad (M ; B;P))
Algorithm OMAC tK (M)
50 return OMACK([t℄n kM)

Fig. 1. Basic building blocks. The block cipher E : Key � f0; 1gn ! f0; 1gn is fixed andK 2 Key. For CBC, M 2 (f0; 1gn)+. For CTR, M 2 f0; 1g� and N 2 f0; 1gn. For pad,M 2 f0; 1g� and B;P 2 f0; 1gn and the operation�! xors the shorter string into the end
of longer one. For OMAC, M 2 f0; 1g� and t 2 [0::2n � 1℄ and the multiplication of a
number by a string L is done in GF(2n).
zero-bits to the shorter string and then xoring this with theother string. (In other words,
xor the shorter string into theend of the longer string.) Ablock cipheris a functionE : Key � f0; 1gn ! f0; 1gn whereKey is a finite, nonempty set andn � 1 is a
number andEK(�) = E(K; �) is a permutation onf0; 1gn. The numbern is called the
block length.Throughout this note we fix such a block cipherE.

In Figure 1 we define the algorithms CBC, CTR,pad, OMAC (no superscript), and
OMAC � (with superscript). The algorithms CBC (the CBC MAC) and CTR(counter-
mode encryption) are standard. Algorithmpad is used only to define OMAC. Algorithm
OMAC [14] is a pseudorandom function (PRF) that is a one-key variant of the algorithm
XCBC [9]. Algorithm OMAC� is like OMAC but takes an extra argument, the integert.
This algorithm is a “tweakable” PRF [21], tweaked in the mostsimple way possible.

We explain the notation used in the definition of OMAC. The value ofiL (line 40:i
an integer inf2; 4g andL 2 f0; 1gn) is then-bit string that is obtained by multiplyingL
by then-bit string that represents the numberi. The multiplication is done in the finite
field GF(2n) using a canonical polynomial to represent field points. The canonical
polynomial we select is the lexicographically first polynomial among the irreducible
polynomials of degreen that have a minimum number of nonzero coefficients. Forn = 128 the indicated polynomial isx128+ x7+ x2+ x+1. In that case,2L = L<<1 if
the first bit ofL is 0 and2L = (L<<1)� 012010000111 otherwise, whereL<<1 means
the left shift ofL by one position (the first bit vanishing and a zero entering into the last
bit). The value of4L is simply2(2L). We warn that to avoid side-channel attacks one
must implement the doubling operation in a constant-time manner.

Algorithm EAX:EncryptN HK (M)
10 N OMAC 0K(N)
11 H OMAC 1K(H)
12 C CTRNK(M)
13 C OMAC 2K(C)
14 Tag N�C�H
15 T Tag [first � bits℄
16 return CT C k T

Algorithm EAX:DecryptN HK (CT)
20 if jCT j < � then return INVALID

21 LetC k T CT wherejT j = �
22 N OMAC 0K(N)
23 H OMAC 1K(H)
24 C OMAC 2K(C)
25 Tag 0 N�C�H
26 T 0 Tag 0 [first � bits℄
27 if T 6= T 0 then return INVALID

28 M CTRNK(C)
29 return M

Fig. 2. Encryption and decryption under EAX mode. The plaintext is M , the ciphertext
is CT , the key is K, the nonce is N , and the header is H. The mode depends on a block
cipher E (that CTR and OMAC implicitly use) and a tag length � .

We have made a small modification to the OMAC algorithm as it was originally pre-
sented, changing one of its two constants. Specifically, theconstant 4 at line 40 was the
constant1=2 (the multiplicative inverse of2) in the original definition of OMAC [14].
The OMAC authors indicate that they will promulgate this modification [15], which
slightly simplifies implementations.

3 The EAX Algorithm

ALGORITHM. Fix a block cipherE : Key � f0; 1gn ! f0; 1gn and a tag length� 2[0::n℄. These parameters should be fixed at the beginning of a particular session that
will use EAX mode. Typically, the parameters would be agreedto in an authenticated
manner between the sender and the receiver, or they would be fixed for all time for some
particular application. Given these parameters, EAX provides a nonce-based AEAD
scheme EAX[E; � ℄ whose encryption algorithm has signatureKey�Non
e�Header�Plaintext! Ciphertext and whose decryption algorithm has signatureKey�Non
e�Header� Ciphertext! Plaintext [fINVALID g whereNon
e, Header, Plaintext, andCiphertext are allf0; 1g�. The EAX algorithm is specified in Figure 2 and a picture
illustrating EAX encryption is given in Figure 3. We now discuss various features of
our algorithm and choices underlying the design.

NO ENCODINGS. We have avoided any nontrivial encoding of multiple strings into a
single one.1 Some other approaches that we considered required a PRF to beapplied
to what was logically a tuple, like(N;H;C). Doing this raises encoding issues we did
not want to deal with because, ultimately, there would seem to be no simple, efficient,
compelling, on-line way to encode multiple strings into a single one. Alternatively, one

1 One could view the prefixing of[t℄n toM in the definition ofOMAC tK(M) as an encoding,
but [t℄n is a constant, fixed-length string, and the aim here is just to“tweak” the PRF. This is
very different from needing to encode arbitrary-length strings into a single string.

N

T

OMAC 0K
C

HM
N

HC
CTRK OMAC 1K
OMAC 2K

Fig. 3. Encryption under EAX. The message is M , the key is K, and the header is H.
The ciphertext is CT = C k T .

could avoid encodings and consider a new kind of primitive, amulti-argument PRF. But
this would be a non-standard tool and we didn’t want to use anynon-standard tools. All
in all, it seemed best to find a way to sidestep the need to do encodings.

WHY NOT GENERIC COMPOSITION? Why have we specified a block-cipher based
(BC-based) AEAD scheme instead of following the generic-composition approach of
combining a (privacy-only) encryption method and a messageauthentication code? In
fact, there are reasonable arguments in favor of generic composition, based on aesthetic
or architectural sensibilities. One can argue that genericcomposition better separates
conceptually independent elements (privacy and authenticity) and, correspondingly, al-
lows greater implementation flexibility [6, 20]. Correctness becomes much simpler and
clearer as well. All the same, BC-based AEAD modes have some important advantages

CCM EAX

Functionality AE with AD AE with AD

Built from Block cipherE with 128-bit blocksize Block cipherE
with n-bit blocksize

Parameters Block cipherE
Tag length� 2 f4; 6; 8; 10; 12; 14; 16g
Length of message length field� 2 [2::8℄Block cipherE

Tag length� 2 [0::n℄
Message space Parameterized: 7 choices:� 2 [2::8℄.

Each possible message space a sub-
set of BYTE�, from BYTE216�1 to
BYTE<264�1 f0; 1g�

Nonce space Parameterized, with a value of15 � �
bytes. From 56 bits to 104 bits

f0; 1g�
Key space One block-cipher key One block-cipher key

Ciphertext
expansion

� bytes � bits

Block-cipher calls 2 l jMj128 m+l jHj128m+2+Æ, for Æ 2 f0; 1g 2 l jMjn m+ l jHjn m+ l jNjn m
Block-cipher calls
with static header

2 l jMj128 m+l jHj128m+2+Æ, for Æ 2 f0; 1g 2 l jMjn m+ l jNjn m
Key setup Block cipher subkeys Block cipher subkeys

3 block-cipher calls

IV requirements Non-repeating nonce Non-repeating nonce

Parallelizable? No No

On-line? No Yes

Preprocessing
(/msg)

Limited (key stream) Limited (key stream, header)

Memory rqmts Small constant Small constant

Provable security? Yes (ifE is a good PRP)
Bound of�(�2=2128) Yes (ifE is a good PRP)

Bound of�(�2=2n)
Patent-
encumbered?

No No

Fig. 4.A comparison of basic characteristics of CCM and EAX. The count on block-cipher
calls for EAX ignores key-setup costs. We denote by � the length of the EAX tag in bits,
and by � (boldface) the length of the CCM tag in bytes.

of their own. They make it easier for implementors to use a scheme without knowing a
lot of cryptography, presenting a simpler abstraction boundary. They make it easier to
obtain interoperably. They reduce the risk that implementors will choose insecure pa-
rameters. They can save on key bits and key-setup time, as generic-composition meth-
ods invariably require a pair of separate keys.

EAX can be viewed as having been derived from a generic-composition scheme
we call EAX2, described in Section 4. Specifically, one instantiates EAX2 using CTR
mode (counter mode) and OMAC, and then collapses the two keysinto one. If one
favors generic composition, EAX2 is a nice algorithm for it.

ON-LINE . We say that an algorithm ison-line if it is able to process a stream of data
as it arrives, with constant memory, not knowing in advance when the stream will end.
Observe then that on-line methods should not require knowledge of the length of a
message until the message is finished. A failure to be on-linehas been regarded as a
significant defect for an encryption scheme or a MAC. EAX is on-line.

Now it is true that in many contexts where one would be encrypting a string one
doesknow the length of the string in advance. For example, many protocols will al-
ready have “packaged up” the string length at a lower level. In effect, such strings have
been represented in the computing system as sequence of bytes and a count of those
bytes. But there are also contexts where one doesnot know the length of a message
in advance of getting an indication that it is over. For examples, a printable string is
often represented in computer systems as a sequence of non-zero bytes followed by a
terminal zero-byte. Certainly one should be able to efficiently encrypt a string which
has been represented in this way.

ABILITY TO PROCESS STATICAD. In many scenarios the associated dataH will be
static over the course of a communications session. For example, the associated data
may include information such as the IP address of the sender,the receiver, and fixed
cryptographic parameters associated to this session. In such a case one would like that
the amount of time to compute EncryptN HK (M) and DecryptN HK (C) should be inde-
pendent ofjH j, disregarding the work done in a preprocessing step. The significance of
this goal was already explained in [24]. EAX achieves this goal.

ADDITIONAL FEATURES. Invalid messages can be rejected at half the cost of de-
cryption. This is one of the benefits of following what is basically an encrypt-then-
authenticate approach as opposed to an authenticate-then-encrypt approach.

To obtain a MAC as efficient as the PRF underlying EAX defineMACK(H) =
Encrypt0nHK (").
COMPARISON WITH CCM. Figure 4 compares CCM and EAX along a few relevant
dimensions. A description of CCM and an extended comparisoncan be found in the
full version of this paper [8].

4 EAX2 Algorithm

To understand the the proof of security of EAX and the approach taken for its design,
we introduce EAX2, a generic composition method. EAX is EAX2for the particular
case of CTR encryption and OMAC authentication, but then collapsed to a single key.

EAX2 COMPOSITION. Let F : Key1 � f0; 1g� ! f0; 1gn be a PRF, wheren � 2.
Let � = (E ;D) be an IV-based encryption scheme having key spaceKey2 and IV
spacef0; 1gn. This means thatE : Key2�f0; 1gn�f0; 1g� ! f0; 1g� andD : Key2�

Algorithm EAX2:EncryptN HK1;K2 (M)
10 N F 0K1(N)
11 H F 1K1(H)
12 C ENK2(M)
13 C F 2K1(C)
14 Tag N�C�H
15 T Tag [first � bits℄
16 return CT C k T

Algorithm EAX2:DecryptN HK1;K2 (CT)
20 if jCT j < � then return INVALID

21 LetC k T CT wherejT j = �
22 N F 0K1(N)
23 H F 1K1(H)
24 C F 2K1(C)
25 Tag 0 N�C�H
26 T 0 Tag 0 [first � bits℄
27 if T 6= T 0 then return INVALID

28 M DNK2(C)
29 return M

Fig. 5.Encryption and decryption under EAX2. The mode is built from a PRF F : Key1�f0; 1g� ! f0; 1gn and an IV-based encryption scheme � = (E ;D) having key spaceKey2 and message space f0; 1g�. The plaintext is M and the key is (K1; K2) and the
header is H. By F iK we mean the function where F iK(M) = FK([i℄n kM).f0; 1gn � f0; 1g� ! f0; 1g� andKey2 is a set of keys and for everyK 2 Key2 andN 2 f0; 1gn andM 2 f0; 1g�, if C = ENK (M) thenDNK(C) = M . Let � � n be
a number. Now givenF and� and� we define an AEAD scheme EAX2[�;F; � ℄ =(EAX2:Encrypt;EAX2:Decrypt) as follows. SetF tK(M) = FK([t℄n kM). SetKey =Key1�Key2. Then the encryption algorithm EAX2:Encrypt: Key�f0; 1g��f0; 1g� !f0; 1g� and the decryption algorithm EAX2:Decrypt: Key � f0; 1g� � f0; 1g� !f0; 1g�[fINVALID g are defined in Figure 5. Scheme EAX2[�;F; � ℄ is provably secure
under natural assumptions about� andF . See Section 6.

EAX1 COMPOSITION. Let EAX1 be the single-key variant of EAX2 where one in-
sists thatKey = Key1 = Key2 and where one keysF , E , andD with a single
keyK 2 Key. One associates toF and� the scheme EAX1[�;F; � ℄ that is defined
as with EAX2 but where the one keyK keys everything. Notice that EAX[E; � ℄ =
EAX1[CTR[E℄;OMAC[E℄; � ℄. This is a useful way to look at EAX.

5 Definitions

AEAD SCHEMES. A set of keysis a nonempty set having a distribution (the uni-
form distribution when the set is finite). A (nonce-based)authenticated-encryption
with associated-data(AEAD) scheme is a pair of algorithms� = (E;D) whereE
is a deterministicencryptionalgorithmE : Key � Non
e � Header � Plaintext !Ciphertext and aD is a deterministicdecryptionalgorithmD : Key�Non
e�Header�Ciphertext ! Plaintext [fINVALID g. The key spaceKey is a set of keys while
the nonce spaceNon
e and theheader spaceHeader (also called the space ofasso-
ciated data) are nonempty sets of strings. We writeEN HK (M) for E(K;N;H;M)
andDN HK (CT) for D(K;N;H;CT). We require thatDN HK (EN HK (M)) = M for
all K 2 Key andN 2 Non
e andH 2 Header andM 2 Plaintext. In this note we
assume, for notational simplicity, thatNon
e, Header, Plaintext, andCiphertext are all

f0; 1g� and thatjEN HK (M)j = jM j. An adversary is a program with access to one or
more oracles.

NONCE-RESPECTING. SupposeA is an adversary with access to anencryption oracleE � �K (�). This oracle, on input(N;H;M), returnsEN HK (M). Let (N1; H1;M1); : : : ;(Nq ; Hq;Mq) denote its oracle queries. The adversary is said to benonce-respecting
if N1; : : : ; Nq are always distinct, regardless of oracle responses and regardless ofA’s
internal coins.

PRIVACY OF AEAD SCHEMES. We consider adversaries with access to an encryption
oracleE � �K (�). We assume that any privacy-attacking adversary is nonce-respecting.
The advantage of such an adversaryA in violating the privacy of AEAD scheme� =(E;D) having key spaceKey isAdvpriv� (A) = Pr hK $ Key : AE � �K (�) = 1i� Pr hK $ Key : A$ � �(�) = 1i
where$ � �(�) denotes the oracle that on input(N;H;M) returns a random string of
lengthjM j.
AUTHENTICITY OF AEAD SCHEMES. This time we provide the adversary with two
oracles, an encryption oracleE � �K (�) as above and also averification oraclebD � �K (�).
The latter oracle takes input(N;H;CT) and returns1 if DN HK (CT) 2 Plaintext and
returns0 if DN HK (CT) = INVALID . The adversary is assumed to satisfy three condi-
tions, and these must hold regardless of the responses to itsoracle queries and regardless
of A’s internal coins:� AdversaryA must be nonce-respecting. (The condition is understood to apply

only to the adversary’s encryption oracle. Thus a nonce usedin an encryption-
oracle query may be used in a verification-oracle query.)� AdversaryA may never make a verification-oracle query(N;H;CT) such that
the encryption oracle previously returnedCT in response to a query(N;H;M).� AdversaryA must call its verification-oracle exactly once, and may not subse-
quently call its encryption oracle. (That is, it makes a sequence of encryption-
oracle queries, then a verification-oracle query, and then halts.)

We say that such an adversaryforgesif its verification oracle returns 1 in response to
the single query made to it. The advantage of such an adversary A in violating the
authenticity of AEAD scheme� = (E;D) having key spaceKey isAdvauth� (A) = Pr hK $ Key : AE� �K (�); bD� �K (�) forges

i :
IV- BASED ENCRYPTION. An IV-based encryption scheme(an IVE scheme) is a pair of
algorithms� = (E ;D) whereE : Key�IV�Plaintext! Ciphertext is a deterministic
encryptionalgorithm andD : Key � IV � Ciphertext ! Plaintext [fINVALID g is a
deterministicdecryptionalgorithm. Thekey spaceKey is a set of keys and theplaintext
spacePlaintext andciphertext spaceCiphertext andIV spaceIV are all nonempty sets
of strings. We writeERK(M) for E(K;R;M) andDRK(C) for D(K;R;C). We require

thatDRK(ERK(M)) = M for all K 2 Key andR 2 IV andM 2 Plaintext. We assume,
as before, thatPlaintext = Ciphertext = f0; 1g� and thatjERK(M)j = jM j. We also
assume thatIV = f0; 1gn for somen � 1 called theIV length.

PRIVACY OF IVE SCHEMES WITH RANDOM IV S. Let� = (E ;D) be an IVE scheme
with key spaceKey and IV spaceIV = f0; 1gn. Let E$ be the probabilistic algorithm
defined fromE that, on inputK andM , chooses an IVR at random fromf0; 1gn,
computesC ERK(M), and then returnsC along with the chosen IV:

Algorithm E$K(M) // The probabilistic encryption scheme built from IVE schemeER $ f0; 1gn ; C ERK(M) ; return R k C
Then we define the advantage of an adversaryA in violating the privacy of� (as an
encryption scheme using random IV) byAdvpriv� (A) = Pr hK $ Key : AE$K (�) = 1i� Pr hK $ Key : A$(�) = 1i
where$(�) denotes the oracle that on inputM returns a random string of lengthn+jM j.
This is just the ind$-privacy of the randomized symmetric encryption scheme associated
to � . We comment that we have used a superscript of “priv” for an IVE scheme and
“priv” (bold font) for an AEAD scheme.

PSEUDORANDOM FUNCTIONS. A family of functions, or a pseudorandom function
(PRF), is a mapF : Key�D ! f0; 1gn whereKey is a set of keys andD is a nonempty
set of strings. We calln theoutput lengthof F . We writeFK for the functionF (K; �)
and we writef $ F to meanK $ Key ; f FK . We denote byR�n the set of all
functions with domainf0; 1g� and rangef0; 1gn; byRnn the set of all functions with
domainf0; 1gn and rangef0; 1gn; and byRIn the set of all functions with domainI
and rangef0; 1gn. We identify a function with its key, makingRnn, R�n andRIn pseu-
dorandom functions. The advantage of adversaryA in violating the pseudorandomness
of the family of functionsF : Key � f0; 1g� ! f0; 1gn isAdvprfF (A) = Pr hK $ Key : AFK(�) = 1i� Pr h� $ R�n : A�(�) = 1i
A family of functionsE : Key � D ! f0; 1gn is ablock cipherif D = f0; 1gn and
eachEK is a permutation. We letPn denote all the permutations onf0; 1gn and defineAdvprpE (A) = Pr hK $ Key : AEK (�) = 1i� Pr h� $ Pn : A�(�) = 1i
RESOURCES. If xxx is an advantage notion for whichAdvxxx� (A) has been defined we
writeAdvxxx� (R) for the maximal value ofAdvxxx� (A) over all adversariesA that use
resources at mostR. When counting the resource usage of an adversary, one maximizes
over all possible oracle responses, including those that could not be returned by any ex-
periment we have specified for adversarial advantage. Resources of interest are:t—the
running time;q—the total number of oracle queries;qe—the number of oracle queries

to the adversary’s first oracle;qv—the number of oracle queries to the adversary’s sec-
ond oracle; and�—the data complexity. The running timet of an algorithm is its actual
running time (relative to some fixed RAM model of computation) plus its description
size (relative to some standard encoding of algorithms). The data complexity� is de-
fined as the sum of the lengths of all strings encoded in the adversary’s oracle queries,
plus the total number of all of these strings.2 In this paper the length of strings is mea-
sured inn-bit blocks, for some understood valuen. The number of blocks in a stringM
is defined askMkn = maxf1; djM j=neg, so that the empty string counts as one block.
As an example, an adversary that asks queries(N1; H1;M1); (N2; H2;M2) to its first
oracle and query(N;H;M) to its second oracle has data complexitykN1kn+kH1kn+kM1kn + kN2kn + kH2kn + kM2kn + kNkn + kHkn + kMkn + 9. The name of a
resource measure (t, t0, q, etc.) will be enough to make clear what resource it refers to.

When we use big-O notation it is understood that the constanthidden inside the no-
tation may depend onn. We write eO(f(x)) for O(f(x) lg(f(x)). WhenF is a function
we writeTimeF (�)) for the maximal amount of time to compute the functionF over
inputs of total length�. When� = (E ;D) is an AEAD scheme or an IVE scheme
with key spaceKey we writeTimeE(�) for the time to compute a random elementK $ Key plus the maximal amount of time to compute the functionEK on arguments
of total length�.

6 Security Results

We first obtain results about the security of EAX2 and then prove a result about the
security of a tweakable-OMAC extension. These results are applied to derive results
about the security of EAX. The notation and security measures referred to below are
defined in Section 5.

SECURITY OF EAX2. We begin by considering the EAX2[�;F; � ℄ scheme withF
being equal toRnn, the set of all functions with domainf0; 1gn and rangef0; 1gn. In
other words, we are considering the case whereFK1 is a random function with domainf0; 1gn and rangef0; 1gn. First we show that EAX2[�;Rnn; � ℄ inherits the privacy of
the underlying IVE scheme� . The proof of the following is in the full version of this
paper [8].

Lemma 1. [Privacy of EAX2 with a random PRF] Let� be an IVE scheme with IV
spacef0; 1gn and let� 2 [0::n℄. ThenAdvprivEAX2[�;Rnn;� ℄(t; q; �) � Advpriv� (t0; q; �)
wheret0 = t+ eO(�). 2
We now turn to authenticity. The following shows that EAX2[�;Rnn; � ℄ provides au-
thenticity under the assumption that the underlying IVE scheme� provides privacy.
The proof is in the full version of this paper [8].

2 There is a certain amount of arbitrariness in this convention, but it is reasonable and simplifies
subsequent accounting.

Lemma 2. [Authenticity of EAX2 with a random PRF] Let � be an IVE scheme
with IV spacef0; 1gn and let� 2 [0::n℄. ThenAdvauthEAX2[�;Rnn;� ℄(t; q; �) � Advpriv� (t0; q; �) + 2��
wheret0 = t+ eO(�). 2
Our definition of authenticity allows the adversary only onequery to its verification
oracle, meaning only one forgery attempt. A standard argument says that the advantage
of an adversary makingqv verification queries can grow by a factor of at mostqv. As
per the above this means it is at mostqv � [2�� +Advpriv� (t0; q; �)℄. We believe that in
fact the bound is better than this, namely that it isqv2�� +Advpriv� (t0; q; �). However,
we do not have a proof of this stronger bound.

The above allows us to obtain results about the security of the general EAX2[�;F; � ℄
scheme based on assumptions about the security of the component schemes. The proof
of the following is in the full version of this paper [8].

Theorem 1. [Security of EAX2] Let F : Key1 � f0; 1g� ! f0; 1gn be a family of
functions, let� = (E ;D) be an IVE scheme with IV spacef0; 1gn and let� 2 [0::n℄.
ThenAdvauthEAX2[�;F;� ℄(t; q; �) � Advpriv� (t2; q; �) +AdvprfF (t1; 3q + 3; �) + 2�� (1)AdvprivEAX2[�;F;� ℄(t; q; �) � Advpriv� (t2; q; �) +AdvprfF (t3; 3q; �) (2)

wheret1 = t+TimeE(�) + eO(�) andt2 = t+ eO(� + nq) andt3 = t+TimeE(�) +eO(�). 2
We remark that although “birthday” terms of the form�2=2n or q2=2n do not appear
explicitly in the bounds above, they may appear when we boundtheAdvpriv� (�; �; �) andAdvprfF (�; �; �) in terms of their arguments.

SECURITY OF A TWEAKABLE -OMAC EXTENSION. This section develops the core
result underlying why key-reuse “works” across OMAC and CTRmodes. To do this,
we consider the following extension of the tweakable-OMAC construction. Fixn � 1
and lett 2 f0; 1; 2g and� 2 Rnn andM 2 f0; 1g� ands 2 N. Then define

Algorithm OM A C �(t;M; s)
10 R OMACt�(M)
11 for j 0 to s� 1 do Sj �(R+ j)
12 return R S0S1 � � �Ss�1

Thus anOM A C � oracle, when asked(t;M; s), returns not onlyR = OMACt�(M) but
also a key streamS0S1 : : : Ss formed using CTR-mode and start-indexR. We empha-
size that the key stream is formed using thesamefunction� (that is, the same key) that

underlies the OMAC computation. Note too that we have limited the tweakt to a small
set,f0; 1; 2g.

We imagine providing an adversaryA with one of two kinds of oracles. The first
is an oracleOM A C �(�; �; �) for a randomly chosen� 2 Rnn. The second is an oracle$n(�; �; �) that, on input(t;M; s), returnsn(s+ 1) random bits. Either way, we assume
that the adversary islength-committing: if the adversary asks a query(t;M; s) it does
not ask any subsequent query(t;M; s0). As the adversary runs, it asks some sequence
of queries(t1;M1; s1); : : : ; (tq ;Mq; sq). The resources of interest to us are the sum of
the block lengths of the messages being MACed,�1 =P kMikn, and the total number�2 =P si of key-stream blocks that the adversary requests. We claim that a reasonable
adversary will have little advantage in telling apart the two oracles, and we bound its
distinguishing probability in terms of the resources�1 and�2 that it expends. Recall
that for oraclesX andY and an adversaryA we measureA’s ability to distinguish
between oraclesX andY by the numberAdvdistX;Y (A) = Pr[AX = 1℄� Pr[AY = 1℄.
The proof of the following is in the full version of this paper[8].

Lemma 3. [Pseudorandomness ofOM A C] Fix n � 2. Then, for length-committing
adversaries, AdvdistOMA C [Rnn℄;$n(�1; �2) � (�1 + �2 + 3)22n 2
SECURITY OF EAX. We are now ready to consider the security of EAX. The proof of
the following is in the full version of this paper [8].

Theorem 2. [Security of EAX] Letn � 2 and� 2 [0::n℄. ThenAdvprivEAX[Rnn;� ℄(�) � 9�22nAdvauthEAX[Rnn;� ℄(�) � 10:5�22n + 12� 2
Finally, we may, in the customary way, pass to the corresponding complexity-theoretic
result where we start with an arbitrary block cipherE.

Corollary 1. [Security of EAX] Letn � 2 andE : Key�f0; 1gn�f0; 1gn be a block
cipher and let� 2 [0::n℄. ThenAdvprivEAX[E;� ℄(t; �) � 9:5�22n +AdvprpE (t0; �)AdvauthEAX[E;� ℄(t; �) � 11�22n + 12� +AdvprpE (t0; �)
wheret0 = t+O(�). 2
We omit the proof, which is completely standard.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of sym-
metric encryption: Analysis of the DES modes of operation.Proceedings of the 38th
Symposium on Foundations of Computer Science, IEEE, 1997.

2. M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message authen-
tication using finite pseudorandom functions.Advances in Cryptology – CRYPTO ’95,
Lecture Notes in Computer Science, vol. 963, D. Coppersmithed., Springer-Verlag, 1995.

3. M. Bellare, O. Goldreich, and H. Krawczyk. Stateless evaluation of pseudorandom func-
tions: Security beyond the birthday barrier.Advances in Cryptology – CRYPTO ’96, Lec-
ture Notes in Computer Science, vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

4. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code.Journal of Computer and System Sciences(JCSS), vol. 61, no. 3,
pp. 362–399, Dec 2000.

5. M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably
fixing the SSH binary packet protocol.Proceedings of the 9th Annual Conference on Com-
puter and Communications Security, ACM, 2002.

6. M. Bellare and C. Namprempre. Authenticated encryption:Relations among notions and
analysis of the generic composition paradigm.Advances in Cryptology – ASIACRYPT
’00, Lecture Notes in Computer Science, vol. 1976, T. Okamoto ed., Springer-Verlag,
2000.

7. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient encryption.Advances in Cryptology – ASIACRYPT
’00, Lecture Notes in Computer Science, vol. 1976, T. Okamoto ed., Springer-Verlag,
2000.

8. M. Bellare, P. Rogaway and D. Wagner. The EAX mode of operation (A two-Pass
authenticated-encryption scheme optimized for simplicity and efficiency). Full version of
this paper, available via http://www.cs.ucdavis.edu/�rogaway

9. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key con-
structions.Advances in Cryptology – CRYPTO ’00, Lecture Notes in Computer Science,
vol. 1880, M. Bellare ed., Springer-Verlag, 2000.

10. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix: Fast en-
cryption and authentication in a single cryptographic primitive. Fast Software Encryption
(FSE 2003), Lecture Notes in Computer Science, vol. 2887, Springer-Verlag, pp. 330–346,
2003.

11. V. Gligor and P. Donescu. Integrity-aware PCBC encryption. Security Protocols, 7th In-
ternational Workshop. Lecture Notes in Computer Science, vol. 1796, Springer-Verlag,
pp. 153–171, 1999.

12. V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and
XECB authentication modes. Presented at the 2nd NIST Workshop on AES Modes of
Operation, Santa Barbara, CA, August 24, 2001.

13. P. Hawkes and G. Rose. Primitive specification for SOBER-128. Cryptology ePrint
Archive Report 2003/48. April 2003.

14. T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC.Fast Software Encryption(FSE
2003), Lecture Notes in Computer Science, vol. 2887, Springer-Verlag, pp. 129–153, 2003.

15. T. Iwata and K. Kurosawa. Personal communications, January 2002.
16. J. Jonsson. On the security of CTR + CBC-MAC.Proceedings of Selected Areas of Cryp-

tography (SAC), 2002.
17. C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology

– EUROCRYPT ’01, Lecture Notes in Computer Science, vol. 2045 , B. Pfitzmann ed.,
Springer-Verlag, 2001.

18. J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation.
Fast Software Encryption ’00, Lecture Notes in Computer Science, vol. 1978, B. Schneier
ed., Springer-Verlag, 2000.

19. T. Kohno, J. Viega, and D. Whiting. A high-performance conventional authenticated en-
cryption mode. These proceedings.

20. H. Krawczyk. The order of encryption and authenticationfor protecting communications
(or: how Secure is SSL?).Advances in Cryptology – CRYPTO ’01, Lecture Notes in
Computer Science, vol. 2139, J. Kilian ed., Springer-Verlag, 2001.

21. M. Liskov, R. Rivest, and D. Wagner.Advances in Cryptology – CRYPTO ’02, Lecture
Notes in Computer Science, vol. 2442, pp. 31–46, Springer-Verlag, 2002.

22. D. McGrew and J. Viega. Flexible and efficient message authentication in hardware and
software. Manuscript, 2003. Available from http://www.zork.org/

23. E. Petrank and C. Rackoff. CBC MAC for real-time data sources.Journal of Cryptology,
vol. 13, no. 3 pp. 315–338, 2000.

24. P. Rogaway. Authenticated-encryption with associated-data.Proceedings of the 9th An-
nual Conference on Computer and Communications Security(CCS-9), pp. 98–107, ACM,
2002.

25. P. Rogaway, M. Bellare, and J. Black. OCB: A block-ciphermode of operation for ef-
ficient authenticated encryption.ACM Transactions on Information and System Security
(TISSEC), vol. 6, no. 3, pp. 365–403, Aug. 2003.

26. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002.
Available at http://csrc.nist.gov/encryption/modes/proposedmodes/

A Definition of CCM

Since CCM [26] was a major motivation for our work, we recall its definition, writ-
ing it in a new form. First some notation. Write string constants in hexadecimal, as in
0xFFFE. WhenX 2 f0; 1g` is a nonempty string andi 2 N is a number we letX + i
be thè -bit string that results from regardingX as a nonnegative numberx (binary no-
tation, msb first), addingx to i, taking the result modulo2n, and converting this number
back into aǹ -bit string. Now CCM depends on three parameters:� E — theblock cipher— whereE : Key� f0; 1g128 ! f0; 1g128� � — thetag length— where� 2 f4; 6; 8; 10; 12; 14; 16g� � — the length-of-the-message-length-field— where� 2 f2; 3; 4; 5; 6; 7; 8g
Once parameters(E; � ; �) have been fixed, whereE : Key � f0; 1g128 ! f0; 1g128
is a block cipher, CCM is the AE scheme specified in Figure 6. The nonce space isNon
e = BYTE15�� and the header space isHeader = BYTE<264 and the message
space isPlaintext = BYTE<28� . There is a tradeoff between the length of nonces,� = jN j = 15� � bytes, and the longest permitted message,256� � 1 bytes.

Algorithm CCM:EncryptN HK (M)
100 B 0 k if H = " then 0 else1 endif k [�=2� 1℄3 k [�� 1℄3 k
101 N k [kMkn℄8� k
102 if H = " then " elseifkHkn < 62580 then [kHkn℄16 elseifkHkn < 232
103 then 0xFFFE k [kHkn℄32 else0xFFFF k [kHkn℄64 endif k
104 H k
105 if H = " then " elseifkHkn < 62580 then [0℄n(14�kHkn) mod 16
106 elseifkHkn < 232 then [0℄n(10�kHkn) mod 16 else[0℄n(6�kHkn) mod 16 endif
107 k M k
108 [0℄n(�kMkn) mod 16
109 U CBCK(B)
110 A0 [�� 1℄8 k N k [0℄n15��
111 V k C CTRA0K (U kM) wherejV j = 128
112 T V [first � bytes℄
113 return CT C k T
Algorithm CCM:DecryptN HK (CT)
200 if kCTkn < � then return INVALID

201 PartitionCT intoC k T wherekTkn = �
202 if kCkn > 2� � 1 then return INVALID

210 A0 [�� 1℄8 k N k [0℄n15��
211 M CTRA0+1K (C)
220 B 0 k if H = " then 0 else1 endif k [�=2� 1℄3 k [�� 1℄3 k
221 N k [kMkn℄8� k
222 if H = " then " elseifkHkn < 62580 then [kHkn℄16 elseifkHkn < 232
223 then 0xFFFE k [kHkn℄32 else0xFFFF k [kHkn℄64 endif
224 k H k
225 if H = " then " elseifkHkn < 62580 then [0℄n(14�kHkn) mod 16
226 elseifkHkn < 232 then [0℄n(10�kHkn) mod 16 else[0℄n(6�kHkn) mod 16 endif
227 k M k
228 [0℄n(�kMkn) mod 16
230 U CBCK(B)
231 V EK(A0)�U
232 T 0 V [first � bytes℄
233 if T 6= T 0 then return INVALID

234 return M
Fig. 6. Encryption and decryption under CCM[E; � ; �℄.

