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Abstract. In order to protect a cryptographic algorithm against Power
Analysis attacks, a well-known method consists in hiding all the internal
data with randomly chosen masks.
Following this idea, an AES implementation can be protected against Dif-
ferential Power Analysis (DPA) by the “Transformed Masking Method”,
proposed by Akkar and Giraud at CHES’2001, requiring two distinct
masks. At CHES’2002, Trichina, De Seta and Germani suggested the
use of a single mask to improve the performances of the protected imple-
mentation. We show here that their countermeasure can still be defeated
by usual first-order DPA techniques.
In another direction, Akkar and Goubin introduced at FSE’2003 a new
countermeasure for protecting secret-key cryptographic algorithms against
high-order differential power analysis (HO-DPA). As particular case, the
“Unique Masking Method” is particularly well suited to the protection of
DES implementations. However, we prove in this paper that this method
is not sufficient, by exhibiting a (first-order) enhanced differential power
analysis attack. We also show how to avoid this new attack.

Keywords: Tamper-resistant devices, Side-Channel attacks, Power Anal-
ysis, DPA, Transformed Masking Method, Unique Masking Method, DES,
AES.

1 Introduction

The framework of Differential Power Analysis (also known as DPA) was
introduced by P. Kocher, J. Jaffe and B. Jun in 1998 ([13]) and subse-
quently published in 1999 ([14]). The initial focus was on symmetrical
cryptosystems such as DES (see [13, 16, 2]) and the AES candidates (see



[4, 5, 8]), but public key cryptosystems have since also been shown to be
vulnerable to the DPA attacks (see [17, 7, 11, 12, 19]).

In software two main families of countermeasures against DPA are known:

– In [11, 12], L. Goubin and J. Patarin described a generic countermea-
sure consisting in splitting all the intermediate variables, using the
secret sharing principle. This duplication method was also proposed
shortly after by S. Chari et al. in [5] and [6].

– In [3], M.-L. Akkar and C. Giraud introduced the transformed mask-
ing method (TMM), an alternative countermeasure to the DPA. The
basic idea is to perform all the computation such that all the data
are XORed with a random mask. Moreover, the tables (e.g. the DES
S-Boxes) are modified such that the output of a round is masked by
the same mask as the input.

Both these methods have been proven secure against the initial DPA at-
tacks, and are now widely used in real life implementations of many algo-
rithms.

The TMM method can be used to protect AES implementations against
DPA. Two masking values are then required to cope with the (non-linear)
ByteSub operation. In a recent paper E. Trichina, D. De Seta, L. Germani
[20] proposed the “Simplified Adaptive Multiplicative Masking” (SAMM),
a variation of TMM with a single masking value, thus providing simpler
and faster implementations for AES. Unfortunately, we will show in this
paper that this method can be broken by usual DPA attacks.

Also suggested by P. Kocher, J. Jaffe and B. Jun [13, 14], and formalized
by T. Messerges [15], Higher-Order Differential Power Analysis (HO-DPA)
consists in studying correlations between the secret data and several points
of the electric consumption curves (instead of single points for the basic
DPA attack). To protect secret-key algorithms against this new class of
attacks, M.-L. Akkar and L. Goubin recently proposed [1] a new counter-
measure: the so-called “Unique Masking Method” (UMM).

In this paper, we describe an unexpected power-analysis attack, which can
be applied to implementations of secret-key algorithms using the UMM
method. More precisely, in the chosen-plaintext model, the attacker can
recover the secret key by successively applying two classical DPA attacks
on the second round.

The paper is organized as follows:



– In section 2, we recall basic notions about Differential Power Analy-
sis (DPA), the Transformed Masking Method (TMM) and about the
Simplified Adaptive Multiplicative Masking (SAMM).

– In section 3, we analyze the mathematical hypotheses on which the
security of SAMM relies and point out a flaw in the design of the
countermeasure.

– In section 4, we show how this flaw can be exploited by studying the
power consumption of a real component.

– In section 5, we recall basic notions about Higher-Order Differential
Power Analysis (HO-DPA) and about the Unique Masking Method
(UMM).

– In section 6, we theoretically study the security of the UMM applied
to DES and show how it could be cryptanalysed.

– In section 7, we give our perspectives and conclusions about the attacks
presented in this paper.

2 Background

2.1 Differential Power Analysis

Differential Power Analysis (DPA) was introduced by Kocher, Jaffe and
Jun in 1998 [13] and published in 1999 [14]. The basic idea is to make use
of potential correlations between the data handled by the micro-controller
and the electric consumption measured values. Since these correlations are
often very low, statistical methods must be applied to deduce sufficient
information from them.
The principle of DPA attacks consists in comparing consumption values
measured on the real physical device (for instance a GSM chip or a smart
card) with values computed in an hypothetical model of this device (the
hypotheses being made among others on the nature of the implementation,
and chiefly on a part of the secret key). By comparing these two sets of
values, the attacker tries to recover all or part of the secret key.
The initial target of DPA attacks was limited to symmetric algorithms.
Vulnerability of DES – first shown by Kocher, Jaffe and Jun [13, 14] –
was further studied by Goubin and Patarin [11, 12], Messerges, Dabbish,
Sloan [16] and Akkar, Bévan, Dischamp, Moyart [2]. Applications of these
attacks were also largely taken into account during the AES selection
process, notably by Biham, Shamir [4], Chari, Jutla, Rao, Rohatgi [5] and
Daemen, Rijmen [8].
However public-key algorithms were also shown to be threatened: Goubin,
Patarin [11, 12] and Messerges, Dabbish, Sloan [17] showed how to apply



DPA against RSA, and the case of elliptic curve cryptosystems was ana-
lyzed by Coron [7], Okeya, Sakurai [19] and many others (see for instance
[10] for a detailed bibliography).
In the basic DPA attack (see [13, 14] or [9]), also known as first-order DPA
(or just DPA), the attacker records the power consumption signals and
computes statistical properties of the signal for each individual moment
in time of the computation. This attack does not require any knowledge
about the individual electric consumption of each instruction, nor about
the position in time of each of these instructions. It only relies on the
following fundamental hypothesis (quoted from [12]):

Fundamental hypothesis (order 1): There exists an intermediate vari-
able, that appears during the computation of the algorithm, such that
knowing a few key bits (in practice less than 32 bits) allows us to decide
whether two inputs (respectively two outputs) give or not the same value
for this variable.

2.2 The Transformed Masking Method for AES

More details about this technique can be found in [3].
The idea is to mask the message at the beginning of the AES algorithm,
and to recover the same mask at the end of each round. An important step
for the AES is to securely perform the inversion step. For this, one need
to compute A−1

i,j ⊕Xi,j from Ai,j ⊕Xi,j where Ai,j is the block (i, j) in an
AES computation and Xi,j the corresponding masking value. To perform
this securely, Akkar and Giraud proposed to use the following operations
(see Fig. 1):

1. Multiply the masked value A by a non zero random value Y to get
AY ⊕XY

2. XOR with XY to get AY
3. Perform the inversion to get A−1Y −1

4. XOR with XY −1 to get A−1Y −1 ⊕XY −1

5. Multiply by Y to get A−1 ⊕X

2.3 The Simplified Adaptive Multiplicative Masking for AES

More details about this technique can be found in [20].
The general idea is not to use a different Y masking value to switch from
an additive mask to a multiplicative one, but to use the same masking
value X instead. The algorithm is the following.



Fig. 1. Modified inversion in GF(28) with masking countermeasure.

1. Multiply the masked value A by X to get AX ⊕X2

2. XOR with X2 to get AX

3. Perform the inversion to get A−1X−1

4. XOR with 1 to get A−1X−1 ⊕ 1
5. Multiply by X to get A−1 ⊕X

One can notice that the particular value AX ⊕ X2 appears during the
computation. The authors of [20] suggest that even if AX ⊕ X2 is not
fully random, it is sufficiently random to serve the purpose. In the next
section, we will precisely study the function AX ⊕ X2 and show that it
introduces a weakness in the method.

3 Theoretical Analysis of the SAMM

3.1 Study of the repartition of AX + X2

In the following part we will denote:

K = IF2 and K8 = IF28

We will also define:



fA: K8 −→ K8

X −→ AX + X2

and

F : K8 −→ P(K8)
A −→ {fA(X), X ∈ K8}

where P(K8) represents the power set of K8.

Remark: In what follows, we will denote by #(A) the cardinality of A.

With these definitions we have the following result:

Theorem 1. If A ∈ K8 then we have:

#F (A) = 128 if A 6= 0
= 256 if A = 0

Proof.
- Case A = 0: f0(X) = X2 and is bijective on K8. Therefore we obviously
have #F (0) = 256.
- Case A 6= 0: fA6=0(X) = AX + X2, if given a Y , we want to solve the
equation fA(X) = Y , by defining Z = X/A (because A 6= 0), we obtain
the following equation to solve:

Z2 + Z = Y/A2

and it is well known that this equation has no solution if Trace(Y/A2) = 1
and two solutions (if one gets one solution W the other is W + 1) if
Trace(Y/A2) = 0. Therefore it is easy to see that #F (A) = 128.
This theorem shows that the simplified mask covers only one half of the
256 possible values on K8. This was already noticed in the article [20].
However, let us now study the distribution of F (A1) and F (A2), for two
distinct values A1 and A2. The following proposition gives us a more
precise result:

Theorem 2. If (A1, A2) ∈ (K8 \ {0})2 and A1 6= A2 then:

#(F (A1) ∩ F (A2)) = 64



Proof.
Let A1 and A2 be two elements of K8 \ {0}. We are looking for the values
Y such as the two equations

{
Y = A1X + X2

Y = A2X
′ + X ′2

are simultaneously solvable or unsolvable. This is equivalent to:

Trace(Y/A1) = Trace(Y/A2)

By linearity of the trace operator we obtain:

Trace(Y/A1 − Y/A2) = 0

Let now consider Z ∈ K8. To Z corresponds a unique value Y such as
Y/A1 − Y/A2 = Z, which is Y = Z/(1/A1 − 1/A2). Since there exist 128
elements Z of trace 0, there exist 128 elements Y such that the previous
system is simultaneously solvable or unsolvable.
Let us now consider:





n1 = {Y ∈ K8 such that Trace(Y/A1) = 0 and Trace(Y/A2) = 1}
n2 = {Y ∈ K8 such that Trace(Y/A2) = 0 and Trace(Y/A1) = 1}
n3 = {Y ∈ K8 such that Trace(Y/A1) = 0 and Trace(Y/A2) = 0}
n4 = {Y ∈ K8 such that Trace(Y/A2) = 1 and Trace(Y/A1) = 1}

The last result gives us the following equation: n3 + n4 = 128
This equation, together with obvious trace considerations, gives the fol-
lowing system: 




n3 + n4 = 128
n1 + n3 = 128
n2 + n3 = 128
n2 + n4 = 128

Solving this system, we obtain: n1 = n2 = n3 = n4 = 64, thus achieving
the proof of Theorem 2.

3.2 Consequences

Theorem 2 is really important because it proves that two distinct values
(during the computation) are “projected” onto two sets of 128 values when
the SAMM is implemented and that these two sets have 64 common values
and 64 different ones. Therefore when an attacker performs a DPA on
an implementation including the SAMM he will on average record the



consumption of F (A) instead of A but for two distinct values A and B,
F (A) and F (B) are also distinct, allowing the attacker to distinguish
the two cases. This give strong evidence that the attack is very likely to
work. Moreover even if the attacker does not know the fact that SAMM
is implemented, he will be able to recover the key because the attack is
exactly the same.

4 Semi-Real and Real Analysis of the SAMM

We have seen in the previous section that there is a theoretical flaw in
the SAMM method. To go further, we have to check which results are ob-
tained when using different models of power consumption. We also have to
experiment on a real embedded device. More work about the consumption
model of embedded device can be found in many papers: see for example
[6, 2, 16].

4.1 Linear Model

The “linear model” considers that the power consumption of the card is
proportional to the value of each bit of the manipulated value. For example
the consumption of an 8-bit value

X = b0b1b2b3b4b5b6b7

will be equal to

c0 ∗ b0 + c1 ∗ b1 + c2 ∗ b2 + c3 ∗ b3 + c4 ∗ b4 + c5 ∗ b5 + c6 ∗ b6 + c7 ∗ b7

where {ci}i≤8 is the average consumption of bit i. For example the Ham-
ming weight (denoted by HW) model is a linear one with ci = cj for all
(i, j).
We have performed some experimentations in the following way. We have
computed for every A = 0..255 the whole subset F (A) and we have com-
puted the average weight of each bit of the values in F (A) to check if
there was any bias in the results. The results are as follows:

– For 8 values of A (0x03,0x15,0x87,0x8C,0xCE,0xEB,0xED and 0xF6),
one specific bit of the eight bits of fA(X) always vanishes, whatever
the value of X is!

– For the 248 other values A, the probability that “the i-th bit of fA(X)
is equal to zero” is equal to 1

2 . So an attacker is unable to predict one
bit in order to compute a classical DPA attack.



If we now analyze the repartition of the HW of the values F (A) we get
the nine following sets:

Subset # HW 0 HW 1 HW 2 HW 3 HW 4 HW 5 HW 6 HW 7 HW 8
1 1 1 8 28 56 70 56 28 8 1
2 28 2 12 32 52 60 52 32 12 2
3 56 2 10 26 50 70 62 30 6 0
4 8 2 14 42 70 70 42 14 2 0
5 70 2 8 24 56 76 56 24 8 2
6 28 2 4 32 60 60 60 32 4 2
7 8 2 2 42 42 70 70 14 14 0
8 56 2 6 26 62 70 50 30 10 0
9 1 2 0 56 0 140 0 56 0 2

For example, line 8 in the table means that there are 56 values of A such
as, there exists 2 values X for which HW (fA(X)) = 0, 6 values X for
which HW (fA(X)) = 1, ..., and no element X such as HW (fA(X)) = 8.
Moreover, one can notice that the average Hamming weight of all the
subsets is equal to 4 except for the subset 4 (which contains the 8 special
values detailed in the previous paragraph), whose mean is equal to 3.5.
The explicit values A of the nine subsets can be found in the appendix.
The conclusion is that even if only a small bias exists, if a component
respects a linear model of consumption (such as the HW model), the
masking method would probably be quite efficient in practice. However,
one has to check what happens with a real embedded device: some exper-
iments on an 8051-based 8-bit CPU are discussed in the following section.

4.2 Real Device Analysis of the SAMM

To obtain concrete results, we have made a comparison between the power
consumption of a card manipulating a value A and a card manipulating the
value AX⊕X2 with random X. For this we have recorded the consumption
of a load operation on an 8 bits CPU based on an 8051 core.
The following curves (see Fig. 2 and Fig. 3) have been obtained by using
the average consumption of 1024 power consumption traces. For the un-
masked value we have used the record of 512 times the same value A. For
the SAMM we have used the average of twice the 256 values AX ⊕ X2

with X ∈ [0, 255]. Then we have ordered the value per consumption to get
an idea of the variance of the value. As seen before there are eight special
values (the ones for which one bit is always 0) that we have excluded from



the curves, indeed the consumption of these values was really different
from the others1.

Fig. 2. Repartition of the consumption with unmasked values

As can be seen on these two curves, masked or unmasked, there is a quite
important difference between different consumption values. That proves
that, in a real embedded device, even if it gets somewhat slower (the vari-
ance in the SAMM curve is smaller), a successful DPA attack on a classical
AES implementation will also succeed on an AES implementation using
the SAMM method.

If the attacker knows that the SAMM method is used, he can use an
adapted DPA attack to retrieve the key with less measurements than
the usual first order DPA. For every hypothesis Kj on the key byte, one
computes the difference of the means of the following sets:

S0 = {measurements for the messages Mk|Mk ⊕Kj ∈ subset 4}
S1 = {measurements for the messages Mk|Mk ⊕Kj /∈ subset 4}

Then the correct hypothesis is the one with the highest difference of
means.
1 That shows that probably a SPA attack may be quite easy by focusing on these
particular values !



Fig. 3. Repartition of the consumption with SAMM values

Remark. Due to obvious confidentiality reasons, details about the chip
we used have to remain undisclosed.

5 The Unique Masking Method

5.1 High-Order Differential Power Analysis

As mentioned in section 2, Differential Power Analysis implies the use of
a hypothetical model of the physical device which performs the crypto-
graphic computations. If this model is able to predict a single value, for
instance the electric consumption of the device for a single instant t, the
differential power analysis is said to be of first order. If the model is able
to predict several such values, the differential power analysis is said to be
of higher order.
High-order differential power analysis (HO-DPA), suggested by Kocher,
Jaffe and Jun [13, 14] (see also [9]), was formalized by Messerges in [15].
In the spirit of [12], Akkar and Goubin (see [1]) gave a necessary and
sufficient condition for a DPA attack of order n to be applicable:
Fundamental hypothesis (order n): There exists a set of n intermedi-
ate variables, that appear during the computation of the algorithm, such
that knowing a few key bits (in practice less than 32 bits) allows to decide
whether two inputs (respectively two outputs) give or not the same value
for a known function of these n variables.



In [1], Akkar and Goubin studied the impacts of HO-DPA attacks on im-
plementations of cryptographic algorithms, and showed that usual coun-
termeasures against DPA are not sufficient to avoid this new class of at-
tacks. Moreover, they proposed a generic protection against higher-order
attacks, illustrated in details for the DES case.

5.2 A countermeasure against HO-DPA

The so-called “Unique Masking Method” (UMM) aims at providing a
generic protection against differential power analysis of order n, what-
ever the value n may be. The two principles of this method is first to
mask only the values that depend on less than 32 bits of the key in order
to prevent DPA and secondly intermediate independent variables depend-
ing on less than 32 bits of the key must not be masked by the same value
in order to thwart HO-DPA.
Let us describe the basic idea for the DES example. The unique mask is
a random 32-bit value α. From this value, two sets of 8 S-boxes, denoted
by S̃1 and S̃2, are defined by

{∀x ∈ (IF2)48, S̃1(x) = S(x⊕E(α))
∀x ∈ (IF2)48, S̃2(x) = S(x)⊕ P−1(α)

where S denotes the 8 usual DES S-boxes, E is the expansion function
and P is the classical DES permutation just after the S-boxes.

Let fKi (1 ≤ i ≤ 16) be the functions involved in the Feistel scheme of DES
(with the usual S-boxes), and f̃1,Ki (resp. f̃2,Ki) the analogous function
with the S̃1 (resp. S̃2) S-boxes. DES rounds can then be built from five
possible frames, given in Figure 4 (solid lines correspond to unmasked
data, dashed lines to masked data).

To be consistent with the DES computation, the sequence of rounds has
to follow some rules, which can be summarized by a finite automaton,
as shown in Figure 5. Initial states correspond to non-masked inputs (A
or B), final states correspond to non-masked outputs (A or E). As an
example, BCDCDCEBCDCDCDCE is a valid sequence.

To provide a protection against differential power analysis attacks, all
the values depending on less than 36 key bits are masked by α. This
gives further constraints on the sequence of rounds: the three first ones
have to be of the form BCD or BCE, and symmetrically the three last
ones must be of the form BCE or DCE. For instance, the sequence
BCDCDCEBCDCDCDCE fulfills these conditions.



Fig. 4. The five possibilities for DES rounds

Fig. 5. Valid sequences for the rounds



The unique masking method has several advantages: the structure of clas-
sical implementations can be kept unchanged, the only difference is the
generation of random tables (see [1] for several practical methods for
securely generating S-boxes from the mask α). Moreover performances
remain acceptable. For instance, [1] reports on a DES implementation,
including the unique masking method (together with SPA and DFA pro-
tections), which runs in 38 ms (at 10 MHz) on a ST19 chip.

6 Enhanced DPA of the Unique Masking Method

6.1 Basic idea

For all the proposed sequences of rounds, the second round is always a
“C”-type round. The output of the S-Boxes is unmasked and stay un-
masked after being XORed with the left part of the message. After this
XOR, the value goes through an “E”-type or “D”-type round for which
the computation of the beginning of the f function (expansion function)
is unmasked. For the second case (where the third round is of “D” type)
even the S-Boxes output and the P permutation are unmasked.
The fact that the output of second round S-Boxes is unmasked will be the
base of our attack.

6.2 Attacking the UMM

The attack is a chosen message attack. The main idea of the attack is
to retrieve two intermediate values which are not protected against DPA,
and then to get the key bits by solving an equation involving the two
intermediate values. Before describing the attack, let us introduce some
notations:

– IP denotes the initial permutation.
– E denotes the expansion function (from 32 to 48 bits).
– S denotes the S-Boxes.
– P denotes the P permutation after the S-Boxes
– ⊕ denotes the XOR operation
– Ki denotes the 48 bits subkey of round i.
– Finally, for a message M , Li and Ri will denote the left part and the

right part (32 bits each) of the output of the round i.

The attack can be described as follows:

– First Part:



• We perform a DES computation with some chosen messages Mi

for which R0,i (the right part of the message Mi after IP) will be
set to an arbitrary constant R0. The left part L0,i will be random.

• We then perform a first-order DPA attack on the input of each
S-Box of the second round. Because the output of the S-Boxes is
unmasked we will guess the value of the second round key XORed
with the – unknown but constant – output of the S-Boxes of the
first round. The found value will be:

δ = K2 ⊕ E(P (S(K1 ⊕ E(R0))))

– Second Part:
• We will perform a second first-order DPA with other messages with

a different known constant value R′
0, which will provide:

δ′ = K2 ⊕ E(P (S(K1 ⊕E(R′
0))))

– Final Part:
• By taking XOR of the two values found at last steps, we obtain

the value:

δ⊕δ′ = (K2⊕E(P (S(K1⊕E(R0)))))⊕(K2⊕E(P (S(K1⊕E(R′
0)))))

The value K2 vanishes and the linearity of functions E and P gives
us the equation:

S(K1 ⊕E(R0))⊕ S(K1 ⊕ E(R′
0)) = g(δ ⊕ δ′)

• Because we know R0 and R′
0, doing a exhaustive search on each

6-bits subkeys of K1, will give us all the possible values for the
subkey K1.

On average, the differential properties of S will give us about 4 possibilities
for each subkeys. Since there are 8 subkeys and we need to find the 8 bits
which are not in K1, this gives us 48×28 = 224 possibilities on the key. So
an exhaustive search with one known plaintext/ciphertext pair will take
a few seconds on a PC.
If one does not have access to such a pair, another attack with a R′′

0

constant value will decrease the possibilities for K1 (practically, K1 is
completely known if R′′

0 is not badly chosen). Then it is possible to perform
classical DPA against K2, once K1 is known, to get directly the 56 bits of
the DES key.
The reader has to notice that even if the attack exploits the correlation of
two results, the attack consists just in applying twice a really usual first-
order DPA attack. So the number of traces and the processing time is just
twice those needed for a classical DPA against an unprotected DES.



6.3 Attack Scenarios and Countermeasures

– Our attack is feasible only if the attacker is able to keep constant the
right part of the message after the initial permutation. If it is not
possible the attacker has to “wait” for messages having the same R0

part (1 message every 232 messages on average). So the attack becomes
quite long to perform.

– If we consider a scenario for which only the output is known, the
attack becomes as difficult as the one for which the message could not
be controlled. A chosen cipher text attack mainly applies against an
authentication scheme, in which the device has to cipher a challenge
from the outside.

– A solution consists in masking the output of the second round, which
seems to make this attack unfeasible. One can use a different mask
but the use of α1 is not forbidden since the bits of R1 and R2 that
are masked by the same value depends on 42 bits of the key. So we
need one more function f̃3,Ki with the modified S-Boxes S̃3(x) such
that ∀x ∈ (IF2)48, S̃3(x⊕ E(α)) = S(x)⊕ P−1(α).

7 Conclusion

In this paper we presented two new power analysis attacks.

The first one applies to the Simplified Adaptive Multiplicative Masking
(SAMM). Even if, in some models (HW Model or Linear Model), the
SAMM seems to be quite secure, the SAMM is (in practice) vulnerable
to usual (first-order) DPA attacks. Moreover we have seen that, from a
theoretical point of view, this countermeasure is not correct because of
the distribution of the values AX ⊕ X2, which is quite unbalanced. We
thus recommend, to obtain DPA-resistant implementations of AES, using
the original TMM method with two masks (correctly implemented due to
the zero problem as described in [20, 1]) or, to use a dynamic inversion of
the S-Box if the 256 bytes needed in RAM are available.

The second attack applies to the Unique Masking Method for DES, show-
ing that in the chosen-message scenario, an enhanced first-order DPA at-
tack is still possible. This is not due to the method itself but to a different
model of the attacker, allowing her to have full access to the inputs of the
algorithm. In the case of the DES, we have then shown that unique masks
have to be extended to at least two rounds to protect the implementation
against a chosen text attack. The drawbacks are an overhead on perfor-
mances and an increase of required memory by one third (corresponding
to the computation of one more modified S-box).
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Appendix. Explicit subsets of values A, depending of the repartition of
the Hamming weight of fA(X).

– Subset 1: 0x00
– Subset 2: 0x01, 0x06, 0x09, 0x22, 0x24, 0x2B, 0x46, 0x48, 0x56, 0x62, 0x65, 0x68,

0x75, 0x7B, 0x7C, 0x7D, 0x99, 0x9D, 0xA9, 0xB1, 0xC1, 0xCA, 0xCD, 0xEF,
0xF0, 0xF8, 0xFA, 0xFB

– Subset 3: 0x02, 0x04, 0x07, 0x0C, 0x0E, 0x12, 0x18, 0x19, 0x1C, 0x23, 0x29, 0x2A,
0x2D, 0x2E, 0x31, 0x37, 0x3E, 0x3F, 0x44, 0x49, 0x52, 0x54, 0x59, 0x5B, 0x5C,
0x5F, 0x60, 0x67, 0x6B, 0x78, 0x79, 0x81, 0x89, 0x8D, 0x8E, 0x8F, 0x90, 0x95,
0x96, 0x98, 0x9C, 0xA5, 0xB0, 0xB2, 0xB6, 0xB7, 0xB8, 0xBF, 0xC0, 0xC3, 0xD6,
0xD9, 0xE1, 0xE7, 0xEA, 0xF7

– Subset 4: 0x03, 0x15, 0x87, 0x8C, 0xCE, 0xEB, 0xED, 0xF6
– Subset 5: 0x05, 0x08, 0x0A, 0x0D, 0x11, 0x1A, 0x1D, 0x1E, 0x1F, 0x21, 0x27,

0x32, 0x34, 0x38, 0x3A, 0x3B, 0x3D, 0x43, 0x47, 0x4B, 0x4C, 0x4E, 0x4F, 0x51,
0x64, 0x69, 0x6D, 0x6E, 0x76, 0x77, 0x7E, 0x85, 0x88, 0x92, 0x97, 0x9B, 0x9E,
0xA0, 0xA1, 0xA2, 0xA4, 0xA8, 0xAA, 0xAC, 0xAE, 0xB3, 0xB9, 0xBB, 0xBE,
0xC4, 0xC5, 0xC7, 0xC8, 0xC9, 0xCF, 0xD0, 0xD1, 0xD2, 0xD5, 0xDC, 0xE5,
0xE8, 0xE9, 0xEC, 0xF3, 0xF4, 0xF5, 0xFD, 0xFE, 0xFF

– Subset 6: 0x0B, 0x0F, 0x10, 0x20, 0x26, 0x28, 0x36, 0x39, 0x40, 0x5E, 0x63, 0x6C,
0x6F, 0x83, 0x8A, 0x9F, 0xA7, 0xAD, 0xB5, 0xBC, 0xBD, 0xC2, 0xCC, 0xD8,
0xDB, 0xE4, 0xE6, 0xF9

– Subset 7: 0x13, 0x1B, 0x2C, 0x66, 0x72, 0x80, 0x84, 0xD3
– Subset 8: 0x14, 0x17, 0x25, 0x2F, 0x30, 0x33, 0x35, 0x3C, 0x41, 0x42, 0x45, 0x4A,

0x4D, 0x50, 0x53, 0x55, 0x57, 0x58, 0x5A, 0x5D, 0x61, 0x6A, 0x70, 0x71, 0x73,
0x74, 0x7A, 0x7F, 0x82, 0x86, 0x8B, 0x91, 0x93, 0x94, 0x9A, 0xA3, 0xA6, 0xAB,
0xAF, 0xB4, 0xBA, 0xC6, 0xCB, 0xD4, 0xD7, 0xDA, 0xDD, 0xDE, 0xDF, 0xE0,
0xE2, 0xE3, 0xEE, 0xF1, 0xF2, 0xFC

– Subset 9: 0x16


