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Abstract. We study the differential probability adp⊕ of exclusive-or
when differences are expressed using addition modulo 2N . This function
is important when analysing symmetric primitives that mix exclusive-or
and addition—especially when addition is used to add in the round keys.
(Such primitives include idea, Mars, rc6 and Twofish.) We show that
adp⊕ can be viewed as a formal rational series with a linear representa-
tion in base 8. This gives a linear-time algorithm for computing adp⊕,
and enables us to compute several interesting properties like the fraction
of impossible differentials, and the maximal differential probability for
any given output difference. Finally, we compare our results with the dual
results of Lipmaa and Moriai on the differential probability of addition
modulo 2N when differences are expressed using exclusive-or.

Keywords. Additive differential probability, differential cryptanalysis,
rational series.

1 Introduction

Symmetric cryptographic primitives like block ciphers are typically constructed
from a small set of simple building blocks like bitwise exclusive-or and addition
modulo 2N . Surprisingly little is known about how these two operations interact
with respect to different cryptanalytic attacks, and some of the fundamental re-
lations between them have been established only recently [LM01,Lip02,Wal03].
Our goal is to share light to this question by studying the interaction of these
two operations in one concrete application: differential cryptanalysis [BS91],
by studying the differential probability of exclusive-or when differences are ex-
pressed using addition modulo 2N . This problem is dual to the one explored
by Lipmaa and Moriai [LM01,Lip02]. We hope that our results will be helpful
in evaluating the precise security of ciphers that mix addition and exclusive-or
against differential cryptanalysis.
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Differential Cryptanalysis. Differential cryptanalysis studies the propagation of
differences in functions. Let G,H be Abelian groups and let f : G → H be a
function. The input difference x − x∗ ∈ G is said to propagate to the output
difference f(x) − f(x∗) ∈ H through f . A differential of f is a pair (α, β) ∈
G × H. This is usually denoted by α → β. If the difference between x, x∗ ∈ G
is x − x∗ = α, the differential α → β can be used to predict the corresponding
output difference f(x) − f(x∗). It is thus natural to measure the efficiency of a
differential by its differential probability

dpf (α → β) = Pr
x∈G

[f(x + α) − f(x) = β] .

When a cipher uses both bitwise exclusive-or and addition modulo 2N , both oper-
ators are natural choices for expressing differences (depending on how the round
keys are added). Depending on this choice, one must either study the differential
properties of addition when differences are expressed using exclusive-or, or the
dual differential probability of exclusive-or when differences are expressed using
addition modulo 2N . The differential probability of addition was studied in detail
by [LM01,Lip02]. However, the dual differential probability of exclusive-or has
remained open. This dual case is just as interesting in practise, since most of the
popular block ciphers that mix addition and exclusive-or use addition—and not
exclusive-or—for adding in the round keys. (Examples include idea [LMM91],
Mars [BCD+98], rc6 [RRSY98] and Twofish [SKW+99].)

We will exclusively deal with the set {0, 1, . . . , 2N − 1} equipped with two
group operations. On one hand, we use the usual addition modulo 2N , which
we denote by +. On the other hand, we identify {0, 1, . . . , 2N − 1} and the
set ZN

2 of N -tuples of bits using the natural correspondence that identifies
xN−12

N−1 + · · · + x12 + x0 ∈ Z2N with (xN−1, . . . , x1, x0) ∈ ZN
2 . In this way

the usual componentwise addition ⊕ in ZN
2 (or bitwise exclusive-or) carries over

to a group operation in {0, 1, . . . , 2N − 1}. We can thus especially view ⊕ as a
function ⊕ : Z2N ×Z2N → Z2N . We call the differential probability of the result-
ing mapping the additive differential probability of exclusive-or and denote it by
adp⊕ : Z3

2N → [0, 1],

adp⊕(α, β → γ) = Pr
x,y

[((x + α) ⊕ (y + β)) − (x ⊕ y) = γ] . (1)

The dual mapping, the exclusive-or differential probability of addition, denoted
xdp+ : Z3

2N → [0, 1], is given by

xdp+(α, β → γ) = Pr
x,y

[((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ] .

This dual mapping was studied in detail by Lipmaa and Moriai [LM01,Lip02],
who gave a closed formula for xdp+. Their formula in particular leads to an
Θ(log N)-time algorithm for computing xdp+ and the differential probability of
some related mappings like the pseudo-Hadamard transform [Lip02].
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Our contributions. In this paper, we present a detailed analysis of the map-
ping adp⊕ : Z3

2N → [0, 1]. This concrete problem has been addressed (and in a
rather ad hoc manner) in a few papers, including [Ber92], but it has never been
addressed completely—probably because of its “apparent complexity” [Ber92].
We show that adp⊕ can be expressed as a formal rational series in the sense of
formal language theory with a linear representation in base 8. That is, there are
eight square matrices Ai, a column vector C and a row vector L, such that if
we write the differential (α, β → γ) as an octal word w = wN−1 · · ·w1w0 in a
natural way,

adp⊕(α, β → γ) = adp⊕(w) = LAwN−1
· · ·Aw1

Aw0
C .

This representation immediately gives a linear-time algorithm for comput-
ing adp⊕. This should be be compared to the näıve Θ(22N )-time algorithm
which seems to be the only previously known algorithm for adp⊕. In addition,
we derive some other properties, like the fraction 3

7 + 4
7 · 1

8N of differentials
with nonzero probability, and determine the maximal differential probability
maxα,β adp⊕(α, β → γ) for any given output difference γ. Finally, we show how
our approach based on rational series easily can be adapted for studying the
dual mapping xdp+.

The paper is organised as follows. We first show that adp⊕ is a rational series
and derive a linear representation for it. This gives an efficient algorithm that
computes adp⊕(w) in time O(|w|). In Sect. 3, we discuss the distribution of adp⊕

and differentials with maximal probability. Sect. 4 describes how similar methods
can be used to analyse xdp+. The appendix contains some omitted proofs.

2 Rational Series adp⊕

Throughout this paper, we let N denote the default word length. We will consider
adp⊕ as a function of octal words by writing the differential (α, β → γ) as the
octal word w = wN−1 · · ·w0, where wi = αi4 + βi2 + γi. This defines adp⊕ as
a function from the octal words of length N to the interval [0, 1]. As N varies
in the set of nonnegative integers, we obtain a function from the set of all octal
words to [0, 1].

In the terminology of formal language theory, the additive differential proba-
bility adp⊕ is a formal series over the monoid of octal words with coefficients in
the field of real numbers. A remarkable subset of these series is the set of ratio-
nal series [BR88]. One possible characterisation of such a rational series S is the
following: there exists a square matrix Ak of size q× q for each letter k in the al-
phabet, a row matrix L of size 1×q and a column matrix C of size q×1 such that
for each word w = w1 · · ·wℓ, the value of the series is S(w) = LAw1

· · ·Awℓ
C.

The family L,(Ak)k, C is called a linear representation of dimension q of the
rational series. In our case, the alphabet is the octal alphabet {0, 1, . . . , 7}.

Theorem 1 (Linear representation of adp⊕). The formal series adp⊕ has
the 8-dimensional linear representation L, (Ak)k, C, where L =

(

1 1 1 1 1 1 1 1
)

,
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C =
(

1 0 0 0 0 0 0 0
)⊤

,

A0 =
1

4

























4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

























,

and Ak, k 6= 0, is obtained from A0 by permuting row i with row i ⊕ k and col-
umn j with column j⊕k: (Ak)ij = (A0)i⊕k,j⊕k. (For completeness, the matrices
A0, . . . , A7 are given in Table 1.) Thus, adp⊕ is a rational series.

Table 1. All eight matrices Ai

A0 = 1
4

0

B

B

B

B

B

B

B

B

B

@

4 0 0 1 0 1 1 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

A1 = 1
4

0

B

B

B

B

B

B

B

B

B

@

0 0 1 0 1 0 0 0

0 4 1 0 1 0 0 1

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

A

A2 = 1
4

0

B

B

B

B

B

B

B

B

B

@

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 1 4 0 1 0 0 1

0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

A

A3 = 1
4

0

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0

1 0 0 4 0 1 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

A

A4 = 1
4

0

B

B

B

B

B

B

B

B

B

@

0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 1 0 4 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

A

A5 = 1
4

0

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0

1 0 0 1 0 4 1 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0

1

C

C

C

C

C

C

C

C

C

A

A6 = 1
4

0

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1 0 0 1 0 1 4 0

0 0 0 1 0 1 0 0

1

C

C

C

C

C

C

C

C

C

A

A7 = 1
4

0

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0

0 1 1 0 1 0 0 4

1

C

C

C

C

C

C

C

C

C

A

For example, the differential (α, β → γ) = (00110, 10100 → 01110) cor-
responds to the octal word w = 21750 and adp⊕(α, β → γ) = adp⊕(w) =
LA2A1A7A5A0C = 5

32 . The linear representation immediately implies that

adp⊕(w) can be computed using O(|w|) arithmetic operations. Since the arith-
metic operations can be carried out using 2|w|-bit integer arithmetic, which can
be implemented in constant time on a |w|-bit ram model, we have

Corollary 1. The additive differential probability adp⊕(w) can be computed in
time O(|w|) on a standard unit cost |w|-bit ram model of computation.

This can be compared with the O(log|w|)-time algorithm for computing xdp+(w)
from [LM01].

As a side remark (we will not use this result later), note that the matrices
A0, . . . A7 in the linear representation for adp⊕ are substochastic. Thus, we could
view the linear representation as a inhomogeneous Markov chain by adding a
dummy state and dummy state transitions.

The rest of this section is devoted to the technical proof of Theorem 1.
To prove this result, we will first give a different formulation of adp⊕. For
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x, y ∈ {0, . . . , 2N −1}, let xy denote their componentwise product in ZN
2 (equiv-

alently, the bitwise and of two N -bit strings). Let borrow(x, y) = x⊕ y⊕ (x− y)
denote the borrows, as an N -tuple of bits, in the subtraction x − y. Alter-
natively, borrow(x, y) can be recursively defined by borrow(x, y)0 = 0 and
borrow(x, y)i+1 = 1 if and only if xi−borrow(x, y)i < yi as integers. This can be
used to define borrow(x, y)N = 1 if and only if xN−1 −borrow(x, y)N−1 < yN−1

as integers. The borrows can be used to give an alternative formulation of adp⊕.

Lemma 1. For all α, β, γ ∈ Z2N ,

adp⊕(w) = Pr
x,y

[a ⊕ b ⊕ c = α ⊕ β ⊕ γ] ,

where a = borrow(x, α), b = borrow(y, β) and c = borrow(x⊕y, (x−α)⊕(y−β)).

Proof. By replacing x and y with x− α and y − β in the definition (1) of adp⊕,
we see that adp⊕(α, β → γ) = Prx,y[(x ⊕ y) − ((x − α) ⊕ (y − β)) = γ]. Since
(x⊕y)− ((x−α)⊕ (y−β)) = γ if and only if γ = c⊕x⊕y⊕ (x−α)⊕ (y−β) =
a ⊕ b ⊕ c ⊕ α ⊕ β if and only if a ⊕ b ⊕ c = α ⊕ β ⊕ γ, the result follows. ⊓⊔

We furthermore need the following technical lemma.

Lemma 2. For all x, y, α, β, γ,

ai+1 = (aa′ ⊕ α ⊕ a′x)i ,

bi+1 = (bb′ ⊕ β ⊕ b′y)i and

ci+1 = [c ⊕ a′ ⊕ b′ ⊕ c(a′ ⊕ b′) ⊕ (a′ ⊕ b′)(x ⊕ y)]i ,

where a = borrow(x, α), b = borrow(y, β), c = borrow(x⊕ y, (x−α)⊕ (y − β)),
a′ = a ⊕ α and b′ = b ⊕ β.

Proof. By the recursive definition of borrow(x, y), borrow(x, y)i+1 = 1 if and
only if xi < yi + borrow(x, y)i as integers. The latter event occurs if and
only if either yi = borrow(x, y)i and at least two of xi, yi and borrow(x, y)i

are one, or yi 6= borrow(x, y)i and at least two of xi, yi and borrow(x, y)i

are zero. That is, borrow(x, y)i+1 = 1 if and only if yi ⊕ borrow(x, y)i ⊕
maj(xi, yi,borrow(x, y)i) = 1, where maj(u, v, w) denotes the majority of the
bits u, v, w. Since maj(u, v, w) = uv ⊕ uw ⊕ vw, we have borrow(x, y)i+1 =
[y ⊕ borrow(x, y) ⊕ xy ⊕ xborrow(x, y) ⊕ y borrow(x, y)]i.

For a, we thus have ai+1 = (α ⊕ a ⊕ xα ⊕ xa ⊕ αa)i = (a′ ⊕ aα ⊕ a′x)i =
[a′ ⊕ a(a′ ⊕ a) ⊕ a′x]i = (aa′ ⊕ α ⊕ a′x)i. The formula for bi+1 is completely
analogous. For c, we have ci+1 = [(x− α)⊕ (y − β)⊕ c⊕ (x⊕ y)((x− α)⊕ (y −
β))⊕ (x⊕ y)c⊕ ((x−α)⊕ (y−β))c]i = [x⊕ a′ ⊕ y⊕ b′ ⊕ c⊕ (x⊕ y)(x⊕ a′ ⊕ y⊕
b′)⊕ (x⊕y)c⊕ (x⊕a′⊕y⊕ b′)c]i = [c⊕a′⊕ b′⊕ c(a′⊕ b′)⊕ (a′⊕ b′)(x⊕y)]i. ⊓⊔

Proof (of Theorem 1). Let (α, β → γ) be the differential associated with the
word w. Denote N = |w| and let x, y be uniformly distributed random variables
in Z2N . Denote a = borrow(x, α), b = borrow(y, β) and c = borrow(x ⊕ y, (x −
α) ⊕ (y − β)). Let ξ be the octal word of borrow triples, ξi = ai4 + bi2 + ci.
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We define ξN in the natural way using borrow(u, v)N = 1 if and only if uN−1 −
borrow(u, v)N−1 < vN−1 as integers. For compactness, denote xor(w) = α⊕β⊕γ
and xor(ξ) = a ⊕ b ⊕ c. Let P (w, k) be the 8 × 1 substochastic matrix

Pj(w, k) = Pr
x,y

[xor(ξ) ≡ xor(w) (mod 2k), ξk = j]

for 0 ≤ k ≤ N . Let M(w, k) be the 8 × 8 substochastic transition matrix

Mij(w, k) = Pr
x,y

[xor(ξ)k = xor(w)k, ξk+1 = i |

xor(ξ) ≡ xor(w) (mod 2k), ξk = j]

for 0 ≤ k < N . Then Pi(w, k + 1) =
∑

j Mij(w, k)Pj(w, k) and thus P (w, k +
1) = M(w, k)P (w, k). Note furthermore that P (w, 0) = C, since a0 = b0 =
c0 = 0, and that LP (w,N) =

∑

j Prx,y[xor(ξ) ≡ xor(w) (mod 2N ), ξN = j] =

Prx,y[xor(ξ) ≡ xor(w) (mod 2N )] = adp⊕(w), where the last equality is due to
Lemma 1. We will show that M(w, k) = Awk

for all k. By induction, it follows
that adp⊕(w) = LP (w,N) = LM(w,N − 1) · · ·M(w, 0)C = LAwN−1

· · ·Aw0
C.

It remains to show that M(w, k) = Awk
for all k. Towards this end, let x, y

be such that xor(ξ) ≡ xor(w) (mod 2k) and ξk = j. We will count the number
of ways we can choose (xk, yk) such that xor(ξ)k = xor(w)k and ξk+1 = i.

Denote a′ = a ⊕ α, b′ = b ⊕ β and c′ = c ⊕ γ. Note that xor(ξ)k = xor(w)k

if and only if c′k = (a′ ⊕ b′)k. Under the assumption that xor(ξ)k = xor(w)k we
have (cc′ ⊕ γ)k = [c(a′ ⊕ b′) ⊕ c ⊕ a′ ⊕ b′]k. By Lemma 2, (xk, yk) must thus be

a solution to V
(

xk yk

)⊤
= U in Z2, where U and V are the matrices

U =





(aa′ ⊕ α)k ⊕ ak+1

(bb′ ⊕ β)k ⊕ bk+1

(cc′ ⊕ γ)k ⊕ ck+1



 and V =





a′
k 0
0 b′k

(a′ ⊕ b′)k (a′ ⊕ b′)k





over Z2. If this equation has a solution, it has exactly 22−rank(V ) solutions.
But rank(V ) = 0 if and only if a′

k = b′k = 0 (then there are 4 solutions) and
rank(V ) = 2 otherwise (then there is 1 solution).

The equation has a solution (xk, yk) exactly when rank(V ) = rank(V U).
From this and from the requirement that c′k = (a′ ⊕ b′)k, we see that there are
solutions exactly in the following cases.

– If a′
k = b′k = 0, then c′k = 0 and rank(V ) = 0. There are solutions (4

solutions) if and only if ak+1 = αk, bk+1 = βk and ck+1 = γk.

– If a′
k = 0 and b′k = 1 then c′k = 1 and rank(V ) = 2. There is a single solution

if and only if ak+1 = αk.

– If a′
k = 1 and b′k = 0, then c′k = 1 and rank(V ) = 2. There is a single solution

if and only if bk+1 = βk.

– If a′
k = 1 and b′k = 1 then c′k = 0 and rank(V ) = 2. There is a single solution

if and only if ck+1 = γk.
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Since j = ξk = ak4 + bk2 + ck and i = ξk+1 = ak+14 + bk+12 + ck+1, the
derivation so far can be summarised as

Mij(w, k) =































1 , j = (αk, βk, γk) , i = (αk, βk, γk) ,

1/4 , j = (αk, βk ⊕ 1, γk ⊕ 1) , i = (αk, ∗, ∗) ,

1/4 , j = (αk ⊕ 1, βk, γk ⊕ 1) , i = (∗, βk, ∗) ,

1/4 , j = (αk ⊕ 1, βk ⊕ 1, γk) , i = (∗, ∗, γk) ,

0 , otherwise ,

where we have identified the integer r24+r12+r0 with the binary tuple (r2, r1, r0)
and ∗ represents an arbitrary element of {0, 1}. It follows that M(w, k) = A0 if
wk = 0 and Mi,j(w, k) = Mi⊕wk,j⊕wk

(0, k). That is, M(w, k) = Awk
for all w, k.

This completes the proof. ⊓⊔

3 Distribution of adp⊕ and Maximal Differentials

3.1 Distribution

We will use notation from formal languages to describe octal words (and thus
differentials). In particular, we will use concatenation (xy), the corresponding
powers (x0 = λ is the empty word and xn+1 = xxn), union (x + y) and the
Kleene star (x∗ =

∑

n≥0 xn). Throughout this section, L, (Ak)k, C is the linear

representation of adp⊕.
We will first consider the effect of tailing and leading zeros.

Corollary 2. For all octal words w, adp⊕(w0∗) = adp⊕(w).

This trivial result follows from the observation that A0C = C.

Corollary 3. Let w be a word and let a =
(

a0 · · · a7

)⊤
= A|w|−1 · · ·Aw0

C. Let
α = a0 and β = a3 + a5 + a6. Let w′ be a word of the form w′ = 0∗w. Then
adp⊕(w′) = α + β

3 + 8
3 · β · 4−(|w′|−|w|).

Proof. Using a Jordan form J = P−1A0P of A0, it is easy to see that

Ak
0 = 4−k

























4k 0 0 4k−1
3 0 4k−1

3
4k−1

3 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

























.

If we let j = |w′| − |w|, we see that LAj
0a = a0 + 4j−1

3·4j (a3 + a5 + a6) + 3
4j (a3 +

a5 + a6) = α + β
3 + 8

3 · β · 4−(|w′|−|(|w)). ⊓⊔



8 Helger Lipmaa, Johan Wallén, and Philippe Dumas

This means that adp⊕(0nw) decreases with n and adp⊕(0nw) → α + β/3 as
n → ∞. This can be compared to [LM01], where it was shown that xdp+(00w) =
xdp+(0w) for all w.

Theorem 2. The additive differential probability adp⊕(w) is nonzero if and
only if w has the form w = 0∗ or w = w′(3 + 5 + 6)0∗ for any octal word w′.

Proof. Since A1C = A2C = A4C = A7C = 0, adp⊕(w′(1 + 2 + 4 + 7)0∗) = 0.
Conversely, let w be a word of the form w = w′(3+5+6)0∗. Let ei be the canonical
(column) basis vector with a 1 in the ith component and 0 in the others. By direct
computation, the kernels are kerA0 = ker A3 = ker A5 = kerA6 = 〈e1, e2, e4, e7〉
and kerA1 = kerA2 = kerA4 = ker A7 = 〈e0, e3, e5, e6〉. For all i and j 6= i,
ej 6∈ ker Ai, it can be seen that Aiei = ei and that Aiej has the form Aiej =
(ek + eℓ + em + en)/4, where k 6= ℓ, m 6= n, ek, eℓ ∈ ker A0 and em, en ∈ ker A1.
Since C = e0, we see by induction that Awi

· · ·Aw0
C 6∈ ker Awi+1

for all i. Thus,

adp⊕(w) 6= 0.
Since the matrices Ak are nonnegative, an alternative proof is the following.

Since

LAwN−1
· · ·Aw0

C =
∑

i0,...,iN

LiN
(AwN−1

)iN ,iN−1
· · · (Aw0

)i1,i0Ci0 ,

we see that adp⊕(w) is nonzero if and only if there are indexes i0, . . . , iN such
that LiN

(AwN−1
)iN ,iN−1

· · · (Aw0
)i1,i0Ci0 6= 0. We construct a nondeterministic

finite automaton with state set {0, . . . , 7, init} and input alphabet {0, . . . , 7} as
follows. There is an empty transition from the initial state init to state i if and
only if Li 6= 0. There is a transition labelled x from state i to state j if and
only if (Ax)i,j 6= 0. The state i is accepting if and only if Ci 6= 0. Clearly, the
automaton accepts the word w read from left to right if and only if adp⊕(w) 6= 0.
If we convert the automaton to a minimal deterministic automation, we obtain
the following automation.

init 1

0, 3, 5, 6

1, 2, 4, 7

3, 5, 6
0, 1, 2, 4

This automaton clearly accepts the language 0∗ +(0+1+ · · ·+7)∗(3+5+6)0∗.
⊓⊔

A complete determination of the distribution of adp⊕ falls out of the scope of
this paper and we will restrict ourselves to some of the most important results.
First, we turn to the fraction of possible differentials—that is, differentials with
adp⊕(w) 6= 0.



On the Additive Differential Probability of Exclusive-Or 9

Corollary 4. For all N ≥ 0, Pr|w|=N [adp⊕(w) 6= 0] = 3
7 + 4

7 · 1
8N .

Proof. According to Theorem 2, adp⊕(w) 6= 0 if and only if w is the zero word
or has form w = w′ξ0k, where w′ is an arbitrary word of length N − k − 1 and
ξ ∈ {3, 5, 6}. For a fixed value of k, we can choose w′ and ξ in 3 · 8N−k−1 ways.

Thus, there are 1 +
∑N−1

k=0 3 · 8N−k−1 = 4
7 + 3

7 · 8N words with adp⊕(w) 6= 0 in
total. ⊓⊔

This result can be compared with [LM01, Theorem 2], which states that the

corresponding probability for xdp+ is Pr|w|=N [xdp+(w) 6= 0] = 4
7 ·

(

7
8

)N
. This

means, in particular, that Pr|w|=N [adp⊕(w) 6= 0] → 3
7 while Pr|w|=N [xdp+(w) 6=

0] → 0 as N → ∞. Since the number of possible differentials is larger for adp⊕

than for xdp+, the average possible differential will obtain a smaller probability.
Next, if w = (0 + 3 + 5 + 6)0∗ then clearly adp⊕(w) = 1. On the other hand,

for any ξ ∈ {0, . . . , 7}, adp⊕(ξw) ≤ 1/2. It follows that Pr|w|=N [adp⊕(w) =

1] = 4 · 8−N , and Pr|w|=N [adp⊕(w) = k] = 0 if 1/2 < k < 1. One can further

establish easily that adp⊕(w) = 1/2 if and only if w = Σ(0 + 3 + 5 + 6)0∗,
where Σ = 0+1+ · · ·+7. The following straightforward lemma is useful in such
calculations.

Lemma 3. Let w be an octal word. Denote Σ0 = {0, 3, 5, 6}, Σ1 = {1, 2, 4, 7}
and Aw = Aw|w|−1

· · ·Aw0
. Then adp⊕(xw) = adp⊕(0w) for all x ∈ Σ0 and

adp⊕(yw) = adp⊕(1w) for all y ∈ Σ1. Thus, adp⊕(w) = adp⊕(xw) + adp⊕(yw)
and adp⊕(xzw) = adp⊕(yzw) + (AwC)z for all x, z ∈ Σb and y ∈ Σ1−b.

Proof. By direct calculation, we see that LA0 = LA3 = LA5 = LA6 =
(

1 0 0 1 0 1 1 0
)

and LA1 = LA2 = LA4 = LA7 =
(

0 1 1 0 1 0 0 1
)

. Since

adp⊕(vw) = LAvAwC, we have adp⊕(xw) = adp⊕(0w) and adp⊕(yw) =
adp⊕(1w) for all x ∈ Σ0 and y ∈ Σ1. Finally, if x, z ∈ Σb and y ∈ Σ1−b,
we have adp⊕(w) = LAwC = (LAx + LAy)AwC = adp⊕(xw) + adp⊕(yw) and
adp⊕(xzw) − adp⊕(yzw) = (L(Ax − Ay)Az)AwC = ezAwC = (AwC)z, where
ez is a row vector with a 1 in column z and 0 in the other columns. ⊓⊔

3.2 Maximal Differentials

Although many of the enumerative aspects of adp⊕ seem infeasible, some opti-
misation problems are surprisingly simple. For all output differences γ, denote

adp⊕
2max(γ) = max

α,β
adp⊕(α, β → γ) .

For all γ, there is a simple differential with adp⊕(α, β → γ) = adp⊕
2max(γ).

Theorem 3. For all output differences γ, adp⊕(0N , γ → γ) = adp⊕
2max(γ).

The proof is omitted from the conference version.
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4 Rational Series xdp+

Lipmaa and Moriai [LM01,Lip02] used completely different techniques to analyse
the exclusive-or differential probability xdp+ of addition. We will now demon-
strate the power of our approach by showing that it can easily adapt to analyse
xdp+ as well.

4.1 Linear Representation

As for adp⊕, we write the differential (α, β → γ) as the octal word w =
wN−1 . . . w0, where wi = αi4 + βi2 + γi. When N varies, we obtain a ratio-
nal series xdp+ with a linear representation of dimension 2.

Theorem 4 (Linear representation of xdp+). The formal series xdp+ has
the 2-dimensional linear representation L, (Xk)7k=0, C, where L =

(

1 1
)

, C =
(

1 0
)⊤

and Xk is given by

(Xk)ij =











1 − T (k2 + k1 + j) if i = 0 and k2 ⊕ k1 ⊕ k0 = j ,

T (k2 + k1 + j) if i = 1 and k2 ⊕ k1 ⊕ k0 = j ,

0 otherwise

for i, j ∈ {0, 1}, where k = k24+k12+k0 and T : {0, 1, 2, 3} → R is the mapping
T (0) = 0, T (1) = T (2) = 1

2 and T (3) = 1. (For completeness, all the matrices

Xk are given in Table 2.) Thus, xdp+ is a rational series.

For example, the differential (α, β → γ) = (11100, 00110 → 10110) corresponds
to the word w = 54730 and xdp+(α, β → γ) = xdp+(w) = LX5X4X7X3X0C =
1
4 . The proof of this result is given in the appendix.

Table 2. All the eight matrices Xk in Theorem 4

X0 = 1

2

„

2 0
0 0

«

X1 = 1

2

„

0 1
0 1

«

X2 = 1

2

„

0 1
0 1

«

X3 = 1

2

„

1 0
1 0

«

X4 = 1

2

„

0 1
0 1

«

X5 = 1

2

„

1 0
1 0

«

X6 = 1

2

„

1 0
1 0

«

X7 = 1

2

„

0 0
0 2

«

4.2 Words with a Given Probability

The simplicity of the linear representation of xdp+ allows us to derive an explicit
description of all words with a certain differential probability.
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Theorem 5. For all nonempty words w, xdp+(w) ∈ {0} ∪ {2−k | k ∈
{0, 1, . . . , |w|−1}}. The differential probability xdp+(w) = 0 if and only if w has
the form w = w′(1+2+4+7), w = w′(1+2+4+7)0w′′ or w = w′(0+3+5+6)7w′′

for arbitrary words w′, w′′, and xdp+(w) = 2−k if and only if xdp+(w) 6= 0 and
|{0 ≤ i < N − 1 | wi 6= 0, 7}| = k.

Proof. Let L, Xk and C be as in Theorem 4 and denote e0 =
(

1 0
)⊤

and e1 =
(

0 1
)⊤

. Then the kernels of Xi are ker X0 = ker X3 = ker X5 = ker X6 = 〈e1〉 and
ker X1 = kerX2 = ker X4 = ker X7 = 〈e0〉. By direct calculation, X0e0 = e0,
X3e0 = X5e0 = X6e0 = 1

2 (e0 + e1), X1e1 = X2e1 = X4e1 = 1
2 (e0 + e1) and

X7e1 = e1. Since C = e0, we thus have xdp+(w) = 0 if and only if w has the
form w = w′(1+2+4+7), w = w′(1+2+4+7)0w′′ or w = w′(0+3+5+6)7w′′

for arbitrary words w′, w′′. Similarly, when w is such that adp+(w) 6= 0, we

see that Xwn−1
· · ·Xw0

C has the form
(

2−ℓ 2−ℓ
)⊤

,
(

2−ℓ 0
)⊤

or
(

0 2−ℓ
)⊤

, where

ℓ = |{wi | wi 6∈ {0, 7}, 0 ≤ i < n}| for all n. Thus, xdp+(w) = 2−k, where k =
|{0 ≤ i < N − 1 | wi 6= 0, 7}|. ⊓⊔

For example, if w is the word w = 54730, we see that xdp+(w) 6= 0 and
|{0 ≤ i < 4} | wi 6= 0, 7}| = 2. Thus, xdp+(w) = 2−2. This result immediately
gives the closed formula from [LM01] and thus the O(log N)-time algorithm.

4.3 Distribution

Based on the explicit description of all words with a certain differential proba-
bility, it is easy to determine the distribution of xdp+. Let A(n, k), B(n, k) and
C(n, k) denote the languages that consist of the words of length n > 0 with
xdp+(w) = 2−k, and wn−1 = 0, wn−1 = 7 and wn−1 6= 0, 7, respectively. The
languages are clearly given recursively by

A(n, k) = 0A(n − 1, k) + 0C(n − 1, k − 1) ,

B(n, k) = 7B(n − 1, k) + 7C(n − 1, k − 1) ,

C(n, k) = Σ0A(n − 1, k) + Σ1B(n − 1, k) + (Σ0 + Σ1)C(n − 1, k − 1) ,

where Σ0 = 3 + 5 + 6 and Σ1 = 1 + 2 + 4. The base cases are A(1, 0) = 0,
B(1, 0) = ∅ and C(1, 0) = 3 + 5 + 6. Let A(z, u) =

∑

n,k|A(n, k)|ukzn,

B(z, u) =
∑

n,k|B(n, k)|ukzn and C(z, u) =
∑

n,k|C(n, k)|ukzn be the corre-
sponding ordinary generating functions. The recursive description of the lan-
guages immediately gives the the linear system











A(z, u) = zA(z, u) + uzC(z, u) + z ,

B(z, u) = zB(z, u) + uzC(z, u) ,

C(z, u) = 3zA(z, u) + 3zB(z, u) + 6uzC(z, u) + 3z .

Denote D(z, u) = A(z, u)+B(z, u)+C(z, u)+1. Then the coefficient of ukzn in
D(z, u), [ukzn]D(z, u), gives the number of words of length n with xdp+(w) =
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2−k (the extra 1 comes from the case n = 0). By solving the linear system, we
see that

D(z, u) = 1 +
4z

1 − (1 + 6u)z
.

Since the coefficient of zn in D(z, u) for n > 0 is

[zn]D(z, u) = 4[zn]z

∞
∑

m=0

(1 + 6u)mzm = 4(1 + 6u)n−1 ,

we see that

[ukzn]D(z, u) = 4 · 6k

(

n − 1

k

)

for all 0 ≤ k < n. The coefficient of zn in D(z, 1) for n > 0, [zn]D(z, 1) =
4[zn] z

1−7z
= 4 · 7n−1 gives the number of words of length n with xdp+(w) 6= 0.

Theorem 6 ([LM01, Theorem 2]). There are 4 · 7n−1 words of length n > 0
with xdp+(w) 6= 0. Of these, 4 · 6k

(

n−1
k

)

have probability 2−k for all 0 ≤ k < n.

5 Conclusions

We analysed the additive differential probability adp⊕ of exclusive-or. We expect
that our results combined with the work of Lipmaa and Moriai will facilitate
advanced differential cryptanalysis of ciphers that mix addition and exclusive-or
as well as the design of such ciphers. These results can also be used to guide the
choice between addition and exclusive-or as the key-mixing operation.

In general, adp⊕ is much more difficult to analyse than xdp+ (note especially
the straightforward analysis of xdp+ in Sect. 4). On the other hand, it is easier
to find the maximal differentials for adp⊕, although the maximal differentials for
xdp+ have higher probability: it can be seen that adp⊕

2max(γ) ≤ xdp+
2max(γ) =

maxα,β xdp+(α, β → γ) for all γ. (See Fig. 1.) A short comparison of some of
the properties of xdp+ and adp⊕ is given in Table 3.

Maybe the main contribution of this paper is the formal series approach. In
addition to the new results, we were able to give a simpler proof of the results
of Lipmaa and Moriai on xdp+. The results from [Wal03] can also be rephrased
using our approach. We expect that our approach of using formal series has also
other applications in cryptanalysis.
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Fig. 1. Top: tabulation of values log2 adp⊕

2max(γ), 0 ≤ γ ≤ 255, for N = 8. Bottom:
partial tabulation of values log2 adp⊕

2max(γ) (solid) and log2 xdp+

2max(γ) (dashed), 0 ≤
γ ≤ 95, for N = 8

Table 3. Short comparison of the functions xdp⊕ and adp⊕ and of their computational
complexity

xdp+ adp⊕

Possibility verification

Algorithm complexity Θ(1) Θ(log N)

Probability of possibility 1

2
·

`

7

8

´N−1 3

7
+ 4

7
· 8−N

Evaluation of a possible differential

Algorithm complexity Θ(log N) Θ(N)

Maximal differentials adp⊕

2max and xdp+

2max

Finding max. differential (α, β) Θ(log N) Θ(1)
Computing max. differential when (α, β) is known Θ(log N) Θ(N)
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A Proof of Theorem 4

In order to prove Theorem 4, we introduce the following notation. Define the
carry function carry : ZN

2 × ZN
2 → ZN

2 of addition modulo 2N by carry(x, y) =
(x + y) ⊕ x ⊕ y. It is easy to see that

xdp+(α, β → γ) = Pr
x,y

[carry(x, y) ⊕ carry(x ⊕ α, y ⊕ β) = α ⊕ β ⊕ γ] .
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Denote c = carry(x, y) and c∗ = carry(x ⊕ α, y ⊕ β), where x, y, α and β are
understood from context. Note that ci can be recursively defined as c0 = 0
and ci+1 = 1 if and only if at least two of xi, yi and ci are 1. To simplify
some of the formulae, denote xor(x, y, z) = x ⊕ y ⊕ z and ∆c = c ⊕ c∗. Then
xdp+(α, β → γ) = Prx,y[∆c = xor(α, β, γ)]. Let furthermore xy denote the
componentwise product of x and y, (xy)i = xiyi.

The linear representation of xdp+ follows easily from the following re-
sult [LM01, Lemma 2].

Lemma 4. Fix α, β ∈ Zn
2 and i ≥ 0. Then

Pr
x,y

[∆ci+1 = 1 | ∆ci = r] = T (αi + βi + r) ,

where T is as in Theorem 4.

This result follows easily from the recursive definition of the carry function and
a case-by-case analysis.

Proof (of Theorem 4). Let (α, β → γ) be the differential associated to the word

w. Let x, y be uniformly distributed independent random variables over Z
|w|
2 .

For compactness, we denote xor(w) = α ⊕ β ⊕ γ. Let P (w, k) be the 2 × 1
substochastic matrix given by

Pj(w, k) = Pr
x,y

[∆c ≡ xor(w) (mod 2k),∆ck = j]

for 0 ≤ k ≤ |w| and let M(w, k) be the 2 × 2 substochastic transition matrix

Mij(w, k) = Pr
x,y

[∆ck = xor(w)k,∆ck+1 = i | ∆c ≡ xor(w) (mod 2k),∆ck = j]

for 0 ≤ k < |w|. Since Pi(w, k + 1) =
∑

j Mij(w, k)Pj(w, k), P (w, k + 1) =

M(w, k)P (w, k). Note furthermore that P (w, 0) = C and that xdp+(w) =
∑

j Pj(w, |w|) = LP (w, |w|). By Lemma 4, it is clear that

Mij(w, k) =











1 − T (αk + βk + j) if i = 0 and xor(w)k = j ,

T (αk + βk + j) if i = 1 and xor(w)k = j and

0 otherwise .

That is, M(w, k) = Xwk
for all k. It follows by induction that xdp+(w) =

LXw|w|−1
· · ·Xw0

C. ⊓⊔


