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Abstract. In this paper, we present a related key truncated differential
attack on 27 rounds of XTEA which is the best known attack so far.
With an expected success rate of 96.9%, we can attack 27 rounds of
XTEA using 220.5 chosen plaintexts and with a complexity of 2115.15 27-
round XTEA encryptions. We also propose several attacks on GOST.
First, we present a distinguishing attack on full-round GOST, which can
distinguish it from a random permutation with probability 1−2−64 using
a related key differential characteristic. We also show that H. Seki et
al.’s idea combined with our related key differential characteristic can be
applied to attack 31 rounds of GOST . Lastly, we propose a related key
differential attack on full-round GOST. In this attack, we can recover
12 bits of the master key with 235 chosen plaintexts, 236 encryption
operations and an expected success rate of 91.7%.

Keywords : Related key differential attack, Distinguishing attack, XTEA, GOST,
Differential characteristic.

1 Introduction

XTEA [10] was proposed as a modified version of TEA [7] by R. Needham and
D. Wheeler in order to resist related key attacks [5]. XTEA is a very simple
block cipher using only exclusive-or operations, additions, and shifts. Until now,
the best known result on XTEA is a truncated differential attack on 23 rounds
of XTEA (8∼30 or 30∼52) proposed in [3]. In this paper, we present related key
truncated differential attacks on 25 (1∼25) and 27 (4∼30) rounds of XTEA.

GOST was proposed in the former Soviet Union [2]. It has a very simple round
function and key schedule. GOST uses key addition modulo 232 in each round
function. So, the probability of a differential characteristic depends not only on
the value of input-output differences but also on the value of the round key. In
order to reduce the effect of the round key addition, H. Seki et al. introduced
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a specific set of differential characteristics and proposed a differential attack on
13 rounds of GOST as well as a related key differential attack on 21 rounds of
GOST [8].

Here, we present several attacks on GOST. First, we introduce a distinguish-
ing attack on full-round GOST which can distinguish it from a random oracle
with probability 1− 2−64 using a related key differential characteristic. We also
present a related key differential attack on 31 rounds of GOST using our related
key differential characteristic combined with H. Seki et al.’s set of differential
characteristics. Finally, we describe a related key differential attack on full-round
GOST. In this attack, we can recover 12 bits of the master key with 235 chosen
plaintexts, 236 encryption operations and an expected success rate of 91.7%.

Table. 1 and 2 depict recent results on XTEA and GOST, respectively.

Table 1. Various attacks on reduced-round XTEA

Attack method paper Rounds # of Chosen Plaintexts Total Complexity

Impossible Diff. attack [6] 14 262.5 285

Diff. attack [3] 15 259 2120

Truncated Diff. attack [3] 23 220.55 2120.65

R·K Truncated Diff. this paper 27 220.5 2115.15

Table 2. Various attacks on GOST

Attack method paper Rounds # of C·P Total Complexity

R·K Diff. attack [4] 24 theoretical theoretical

A set of Diff. Char. [8] 13 251 Not mentioned.

R·K Diff. attack [8] 21 256 Not mentioned.

Distinguishing attack this paper full 2 2

R·K Diff. attack this paper 31 226 239

R·K Diff. attack this paper full 235 236

The following is the outline of this paper. In Section 2, we present the notations
used in this paper. In Section 3, we describe an 8-round related key truncated
differential characteristic of XTEA and propose related key truncated differential
attacks on 25 (1∼25) and 27 (4∼30) rounds of XTEA. In Section 4, we present a
distinguishing attack and a related key differential attack on 31 rounds of GOST
and full-round GOST. We conclude in Section 5.

2 Notations

Here, we describe several notations used in this paper. Let ⊞, ⊕, · , ≪ and ≫ be
addition modulo 232, exclusive-or, multiplication modulo 232 and left and right



3

shift operations, respectively. Let ≪ be left rotation and ‖ be concatenation of
two binary strings. Let ei be a 32-bit binary string in which the i-th bit is one
and the others are zero. Let A[i] be the i-th bit of a 32-bit block A. Let A[i ∼ j]
denote A[j] ‖ A[j − 1] ‖ · · · ‖ A[i].

3 Related Key Truncated Differential Attacks on XTEA

In this section, we first briefly describe the XTEA algorithm and introduce an 8-
round related key truncated differential characteristic of XTEA, which is similar
to that of [3] 1. Then, we show that related key differential cryptanalysis can
be applied to attack several reduced-round versions of XTEA using this 8-round
related key truncated differential characteristic.

3.1 Description of XTEA

XTEA is a 64-round Feistel block cipher with 64-bit block size and 128-bit key
size. Operations used in XTEA are just exclusive-or, additions and shifts. As
shown in Fig. 1, XTEA has a very simple round function. Let δ be the constant
value 9e3779b9x and P = (Ln, Rn) be the input to the n-th round, for 1≤n≤64.
Then the output of the n-th round is (Ln+1, Rn+1), where Ln+1 = Rn and Rn+1

is computed as follows :

For each i (1≤ i≤32), if n = 2i − 1

Rn+1 = Ln ⊞ (((Rn ≪ 4 ⊕ Rn ≫ 5) ⊞ Rn) ⊕ ((i − 1) · δ ⊞ K((i−1)·δ≫11)&3),

and if n = 2i,

Rn+1 = Ln ⊞ (((Rn ≪ 4 ⊕ Rn ≫ 5) ⊞ Rn) ⊕ (i · δ ⊞ K(i·δ≫11)&3).

XTEA has a very simple key schedule: the 128-bit master key K is split into
four 32-bit blocks K0, K1, K2, K3. Then, for r = 1, · · · , 64, the round keys Kr

are derived from the following equation :

Kr =

{

K( r−1

2
·δ≫11)&3 if r is odd

K( r
2
·δ≫11)&3 if r is even

Table. 3 depicts the entire key schedule.

1 There is an explicit separation between our truncated differential characteristic and
that of [3]. We use the internal difference caused by the specific related key and
plaintext pair, whereas S. Hong et al. [3] used the difference resulting from the
plaintext pair only. So, we call this characteristic related key truncated differential
characteristic in this paper.



4

Ln+1 Rn+1

F
Ln Rn

<<4

>>5

&

Fig. 1. 2i-th round of XTEA

Table 3. Key schedule of XTEA

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Key K0 K3 K1 K2 K2 K1 K3 K0 K0 K0 K1 K3 K2 K2 K3 K1

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Key K0 K0 K1 K0 K2 K3 K3 K2 K0 K1 K1 K1 K2 K0 K3 K3

Round 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Key K0 K2 K1 K1 K2 K1 K3 K0 K0 K3 K1 K2 K2 K1 K3 K1

Round 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Key K0 K0 K1 K3 K2 K2 K3 K2 K0 K1 K1 K0 K2 K3 K3 K2

3.2 8-Round Related Key Truncated Differential Characteristic

In [3], S. Hong et al. suggested an 8-round truncated differential characteristic
in order to attack 23 rounds of XTEA (8∼30 or 30∼52). Here, we construct a
similar 8-round related key truncated differential characteristic. See Fig. 2. Let
Ψ be our 8-round related key truncated differential characteristic described in
Fig. 2. Let γ be 032 or e30 and RKi be the round key of the i-th round. We
consider identical input values (zero difference) to the i-th round and a related
round key pair RKi and RK ′

i = RKi ⊕ e30. Then, the value of the 30-th bit of
the right output difference in the i-th round is always one, and the other bits are
all zero (except for the 31-st bit). Note that the 31-st bit is unknown. (However,
we do not need to consider this value). That is, the output difference of the i-th
round is (0, e30) or (0, e31 ⊕ e30) with probability 1. As shown in Fig. 2, there
are three possible colors for every bit: white, black, and gray. Every white bit
denotes a zero difference. The bit which we focus on is the black bit. Note that
the value of the black bit does not change throughout Ψ , while its position is
shifted up to 5 bits to the right per round. And the values of the gray bits are
irrelevant. That is, if for each j (i + 1≤j ≤i + 7) the relation between RKj and
RK ′

j is RK ′
j = RKj ⊕ γ (γ = 032 or e30), then by the property of the round

function F of XTEA, the black bit will be located at bit position 0 in the left
output difference with probability 1, after (i + 7) rounds.
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Fig. 2. 8-round related key truncated differential characteristic Ψ (γ = 032 or e30)

3.3 Related Key Truncated Differential Attacks on XTEA

Using the above 8-round related key truncated differential characteristic, we can
attack 25 (1∼25) and 27 (4∼30) rounds of XTEA. Here, we apply conventional
related key differential cryptanalysis as described in [4]. We exploit the property
that if there exists a related key pair (K, K ′) such that a non-zero input differ-
ence of two plaintexts can be changed into a zero output difference, then we can
bypass several rounds for free in our attack.

Attack on 25 (1∼25) rounds of XTEA We consider the related key pair K =
(K0,K1,K2,K3) and K ′=(K0⊕e30,K1,K2,K3) in order to attack 25 (1∼25)
rounds of XTEA. Then, according to the key schedule of XTEA, K0 and K0⊕e30

are used in the first round. Assume that there exist plaintext-ciphertext pairs,
(P,C) and (P ′, C ′) respectively encrypted under the master keys K and K ′,
such that the first round output value of the two plaintexts P and P ′ under the
round keys K0 and K0⊕e30 are the same, i.e. such that the output difference of
the first round is zero. (Here, we call the first 32-bit blocks of K and K ′, (K0

and K0⊕e30) ‘the related round key pair’). Then, due to the key schedule of
XTEA, we can bypass 6 rounds for free in our attack. This means that the input
difference to the 8-th round is zero. According to the key schedule of XTEA, the
related round key pair, K0 and K0⊕e30 is reused in the 8-th round. Now, we can
apply the 8-round related key truncated differential characteristic described in
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Fig. 2. As a result, bit position 0 of the left input difference to round 16, which
is colored in black in Fig. 3, is one with probability 1.

In order to obtain the above assumed plaintext pair P and P ′, which has the
same output value after the first round under the key K and K ′ respectively, we
consider the following 1-round structure of plaintexts S(P ).

S(P ) = {P, P ⊕ (e31, 0), P ⊕ (e30, 0), P ⊕ (e31 ⊕ e30, 0)}

We request the encryption of every plaintext in S(P ) under the related key pair
K = (K0,K1,K2,K3) and K ′=(K0⊕e30,K1,K2,K3) respectively. Let C(P ) be
the set of ciphertexts of the elements of S(P ) under the key K = (K0,K1,K2,K3),
i.e. C(P ) = {EK(P ), EK(P⊕(e31, 0)), EK(P⊕(e30, 0)), EK(P ⊕(e31⊕e30, 0)), }.
And let C ′(P ) be the set of ciphertexts of the elements of S(P ) under the key
K ′=(K0⊕e30,K1,K2,K3), i.e. C ′(P ) = {EK′(P ), EK′(P ⊕ (e31, 0)), EK′(P ⊕
(e30, 0)), EK′(P⊕(e31⊕e30, 0)), }. Then, it is easy to see that there are exactly
four plaintext pairs that have the same output value after the first round, i.e.
we can obtain the required zero output difference after the first round. We
denote these four plaintext pairs as (Pu, P ′

u) where 1≤u≤4. We also denote
(Cu = EK(Pu), C ′

u = EK′(P ′
u)) as the ciphertexts corresponding to plaintext

Pu under key K and plaintext P ′
u under key K ′, respectively.

Now we use the above property of the black bit located in bit position 0 of
the left input difference in round 16, in order to attack 25 (1∼25) rounds of
XTEA and recover 111 bits of the subkey derived from master key K.

Algorithm 1 describes how to recover 111 bits of subkey material from the
ciphertexts. We compute the difference of every dotted bit position and the
values of the bit pair of every gray bit position in order to get the black bit
of the left half of the input difference in round 16. (See Fig. 3). In detail, in
order to compute the black bit of the input difference of round 16, (L16[0]), we
need to know the differences of R17[0], L17[0], and L17[5], respectively. Also, in
order to know the differences of R17[0], L17[0], and L17[5] we need to know the
differences of L18[10] and R18[5]. (For the knowledge of these differences, we need
L18[0∼10], R18[0∼5], and K0[0∼4].). Due to the structure of the round function
of XTEA, the key and output bit positions related to the black bit increase by 5
bits per round. Consequently, if we guess all the bits of K0, K2, K3, and 15 bits
of K1, and we also get the output pair after the 25-th round, we can compute
the black bit of the input difference in round 16.

In Algorithm 1, σ denotes the function which outputs the one-bit difference
in L16[0] using a given ciphertext pair and the guessed key bits. Let K be the
concatenation of K1[0∼14], K2, and K3, i.e., K = K1[0∼14]||K2||K3. Note that
K is a 79-bit string. In Algorithm 1, we guess K0 and K. Using this algorithm,
we are able to find 111 bits of K = (K0,K1,K2,K3).
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Input : m structures : S(P 1), S(P 2), · · · , S(Pm),

corresponding m pairs of ciphertexts :

(C(P 1), C ′(P 1)), · · · , (C(Pm), C ′(Pm))

Output : 111-bit partial key value of K = (K0,K1,K2,K3)

1. For K0 = 0, 1, . . . , 232 − 1

1.1. For i = 1, . . . ,m

1.1.1 Find the four plaintext pairs (P i
u, P i

u

′
), 1 ≤ u ≤ 4, such that

for each u, the following two conditions hold:

(a)P i
u = (LP i ⊕ v)||RP i and P i

u

′
= (LP i ⊕ w)||RP i

for some v, w ∈ {0, e31, e30, (e31 ⊕ e30)}.

(b)[(LP i ⊕ v) ⊞ F (RP i,K0)] ⊕ [(LP i ⊕ w) ⊞ F (RP i,K0 ⊕ e30)] = 0

// Here, we use the notation LP i for the left half and RP i for the right

half of the plaintext P i.//

1.2. For K = 0, 1, . . . , 279 − 1

1.2.1. For i = 1, . . . ,m

1.2.1.1 For u = 1, . . . , 4

Compute σi
u = σ(Ci

u, Ci
u

′
,K0,K)

If i = m, u = 4, and σi
u = 1, then output K0, K and stop.

Else if σi
u = 0, goto 1.2.

Algorithm 1. Related key truncated differential attack on 25 rounds of XTEA

The output of the algorithm is the right value of some 111 bits of K =
(K0,K1,K2,K3) with high probability if m is sufficiently large. For each i
(0≤i≤2111−1), the probability that the attack algorithm outputs the i-th key-
candidate is (1−2−4m)i. So, the average success rate of this attack is

2−111
2111−1
∑

i=0

(1 − 2−4m)i = 24m−111(1 − (1 − 2−4m)2
111

)

≈ 24m−111(1 − e−2111−4m

).

Let k be a key candidate (0≤k≤2k−1). For m structures of plaintexts, the ex-
pected number of trials, required until each k is determined as a wrong value, is
1 + 2−1 + 2−2 + · · ·+ 2−4m+1 = 2− 2−4m+1. If a key k is right, then the number
of trials is exactly 4m. Thus, the average number of trials in the attack is

2−k

2k−1
∑

i=0

i · (2 − 2−4m+1) + 4m = 4m + (1 − 2−4m)(2k − 1).
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Fig. 3. Related key Truncated Differential Attack on 25 rounds of XTEA

So, if we get ≈ 29 plaintext structures, the attack on 25 rounds of XTEA will
succeed on average with probability 96.9%. This success rate implies that our
attack reduces almost all key spaces efficiently. It has a data complexity of 29·4 =
116 chosen-plaintexts and time complexity of (116+(1−2−116)(2111−1))· 6.5

25 ·2 ≈
2110.05 25-round XTEA encryptions.

Attack on 27 (4∼30) rounds of XTEA In the key schedule of XTEA,
K3 is not used from the 24-th round until the 30-th round. This means that
we may expand more rounds for free. Using this observation, we can attack
27 (4∼30) rounds of XTEA. This attack only differs from the attack on 25
(1∼25) rounds of XTEA in two aspects. One is the use of the related key pair
K = (K0,K1,K2,K3) and K ′ = (K0,K1⊕e30,K2,K3). The other is the use of
2-round plaintext structures, S′(P ).

First, we describe what we mean by a 2-round plaintext structure. Let P be
a plaintext and A be the set of all 32-bit values whose lower 22 bits are fixed to
10 · · · 0. We define the 2-round structure of plaintexts S′(P ) as follows :

S′(P ) = {P} ∪ {P ⊕ (w, v)|w ∈ A, v ∈ △X},
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where △X is the following set :

△X = {01000010 · · · 0, 01000110 · · · 0, 01001110 · · · 0,

01011110 · · · 0, 01111110 · · · 0, 00111110 · · · 0,

11000010 · · · 0, 11000110 · · · 0, 11001110 · · · 0,

11011110 · · · 0, 11111110 · · · 0, 10111110 · · · 0}

Note that S′(P ) contains 12, 289 chosen-plaintexts and there are 12, 288 plain-
text pairs of the form (P, P⊕(w, v)) where w∈A and v∈△X. We consider en-
cryptions of these plaintexts under the keys K = (K0,K1,K2,K3) and K ′ =
(K0,K1⊕e30,K2,K3), respectively. Then, for every subkey K2, there exist (w1,v1),
(w2, v2) and (w3, v3) such that the second round output differences of (P ,
P⊕(w1, v1)), (P, P⊕(w2, v2)), (P, P⊕(w3, v3)) are respectively (e30, 0), (e31, 0)
and (e30⊕e31, 0). Note that this attack is starting from the 4-th round. That
is, the 4-th and 5-th round correspond to the first and second round, respec-
tively. This means that there exist four plaintexts in S′(P ) which have the same
property as the elements of the 1-round structure S(P ) described in the attack
on 25 rounds of XTEA. Furthermore, in the key schedule, the related round
key pair K1 and K1⊕e30 is first used in the 6-th round and then again in the
11-th round. So we can again get the same output values after the third round
(6-th round) of encryption, i.e. the output difference after the third round is
zero. Thus, we can bypass 5 rounds for free. Then, Ψ is applied from the eighth
round (11-th round) through the fifteenth round (18-th round). Therefore, with
similar methods as for the attack on 25 (1∼25) rounds of XTEA, we can re-
cover 116 bits of the master key K (K0,K1,K2, and K3[0∼19]). Overall, we
use 121 structures to attack 27 (4∼30) rounds with an expected success rate
of 96.9%. This requires (121 ∗ 12289 = 1486949) ≈ 220.5 chosen-plaintexts and
(121 + (1 − 2−121)(2116 − 1) · 7.5

27 · 2 ≈ 2115.15 27-round XTEA encryptions.

In addition, with similar methods, various attacks on 27 rounds of XTEA
are possible. Table 4. depicts these attacks. ‘Key Bits’ denotes the total number
of bits in K0,K1,K2, and K3 recovered by the attack.

Table 4. Various attacks on 27 rounds of XTEA

variant rounds Key Bits relation of keys

13-th ∼ 39-th K1, K2, K3 : 32 bits, respectively, K0 : 15 bits K⊕K′=(0, 0, 0, e30)

17-th ∼ 43-rd K0, K1, K3 : 32 bits, respectively, K2 : 15 bits K⊕K′=(0, e30, 0, 0)

22-nd ∼ 48-th K1, K2, K3 : 32 bits, respectively, K0 : 20 bits K⊕K′=(0, 0, e30, 0)

31-st ∼ 57-th K0, K2, K3 : 32 bits, respectively, K1 : 15 bits K⊕K′=(e30, 0, 0, 0)

35-th ∼ 61-st K0, K1, K2 : 32 bits, respectively, K3 : 15 bits K⊕K′=(0, 0, e30, 0)
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4 Related Key Differential Attacks on GOST

In this section, we describe the specification of GOST and briefly introduce H.
Seki et al.’s differential cryptanalysis of a reduced-round version of it [8]. Next,
we show that we can distinguish full-round GOST from a random oracle with
probability 1−2−64 using a related key differential characteristic and also present
a related key differential attack on 31 rounds of GOST. Finally, we propose a
related key differential attack on full-round GOST.

4.1 Description of GOST and Previous work

GOST is a 32-round Feistel block cipher with 64-bit block size and 256-bit key
size. It iterates a simple round function F composed of key additions, eight
different 4 × 4 S-boxes Si (1≤i≤8) and cyclic rotations. See Fig. 4.

<<< 11

FLi Ri

Li+1 Ri+1

Ki
S8

S2

S1

Fig. 4. i-th round of GOST

The key schedule of GOST is very simple. The 256-bit master key K is split
into eight 32-bit blocks K1, · · · ,K8, i.e. K = (K1, · · · ,K8) and each round uses
one of them as shown in Table 5.

Table 5. Key schedule of GOST

Round 1 . . . 8 9 . . . 16 17 . . . 24 25 . . . 32

Key K1 . . . K8 K1 . . . K8 K1 . . . K8 K8 . . . K1

Due to the subkey addition operation in the round function, the differential
properties of GOST vary not only with the values of the input and output
differences, but also with the value of the subkey itself. In order to minimize the
dependence of the differential probability on the key, H. Seki et al. introduced
the idea of using a set of differential characteristics [8]. They use two differential
sets ∆ = {0abc} and ∇ = {abc0} where a, b, c ∈ {0, 1}, which respectively
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represent nonzero 4-bit input and output differences of an S-box. In addition,
they computed the following average probability of differentials for each S-box
represented by pSi

.

pSi
: Prob{∆

Si
−→ ∇}

The value of Prob{∆
Si
−→ ∇} varies from 0.30 to 0.75 depending both on the

S-box Si and on the key value. See Table. 6 (for more details, refer to [8]). Using
this set of characteristics, they attack 13 rounds of GOST and also present a
combined related key attack on 21 rounds of GOST.

4.2 Related Key Differential Attacks on GOST

Now we present several attacks on GOST.

Distinguishing Attack We can distinguish full-round GOST from a truly
random permutation with probability 1−2−64 using a related key differential
characteristic. Here, we consider an attacker that has two oracles O and O′.
O is the oracle which, given a plaintext P , outputs a ciphertext EK(P ) under
key K = (K1, · · · ,K8). O

′ is the oracle which, given a plaintext P ′, outputs a
ciphertext EK′(P ′) under key K ′ = (K1⊕e31,K2⊕e31, · · · ,K8⊕e31). Note that
the key K = (K1, · · · ,K8) is unknown to the attacker. However he knows the
relation K⊕K ′ = (e31, · · · , e31).

Let us first consider the function E as GOST. In this case, if we query O
for P = (PL, PR), and O′ for P ′ = (PL ⊕ e31, PR ⊕ e31) respectively, and obtain
the corresponding ciphertexts C and C ′, then the output difference C ⊕ C ′ of
full-round GOST is always (e31, e31). More specifically, it is easy to see that
for every round, the input difference of each S-box after key addition is zero

e31

e31

e31

e31

e31

e31 e31

e31

e31

F

F

e31

e31

e31

F

F

1-st round

2-nd round

31-st round

32-nd round

K1 , K1         e31

K2 , K2         e31

K2 , K2        e31

K1 , K1        e31

Fig. 5. 32-round related key differential characteristic of GOST.
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with probability 1. Therefore the difference between the plaintexts, (e31, e31) is
maintained after every round. In other words, this is a 32-round related key
differential characteristic with probability 1 (See Fig. 5).

If we consider the function E as a truly random permutation, then the output
pair of the truly random permutation is unpredictable so that we can’t obtain
any information from it. So we can successfully distinguish full-round GOST
from a truly random permutation with high probability, namely 1−2−64. Note
that this distinguishing attack is possible with only two chosen plaintexts under
the given key relation.

Related Key Differential Attack on 31 Rounds of GOST We use the
differential probability for each S-box presented in [8], as their differential char-
acteristic enables us to mount a related key differential attack on 31 rounds of
GOST. For this attack we consider the following two related keys K and K ′.

K = (K1,K2,K3,K4,K5,K6,K7,K8)

K ′ = (K1 ⊕ e31,K2,K3 ⊕ e31,K4,K5 ⊕ e31,K6,K7 ⊕ e31,K8)

We request the encryption of P = (PL, PR) under key K and of P ′ = (PL, PR⊕e31)
under key K ′. Then we obtain a 24-round related key differential characteristic
with probability 1. See Fig. 6. With this 24-round related key differential charac-
teristic, we can bypass 24 rounds for free in our attack. As shown in Fig. 6., the
output difference of the 24-th round is (0, e31), i.e. the input difference of the 25-
th round is (0, e31). We use the set of differential characteristics [8] mentioned in
Section 4.1 in order to construct another 6-round related key differential charac-

e31

e31

0x

0x

e310x

F

F

e31

e31

0x

0x

e310x

F

F

K1 , K1         e31

K2 , K2

K8 , K8

1-st round

2-nd round

23-rd round

24-th round

K7 , K7        e31

Fig. 6. 24-round related key differential characteristic (1∼24) with probability 1.
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teristic from the 25-th round through the 30-th round. See Fig. 7. In this figure,
# denotes an element of the differential set ∆ = {0abc}, where a, b, c ∈ {0, 1}. In
the 25-th round, the input difference of round function F , 80000000x becomes
00000#00x with probability 3

4 . 2 After the 25-th round, each average related key
differential probability is computed using Table. 6 [8]. Thus, combining these

Table 6. Average differential probability of each S-box

pS1
pS2

pS3
pS4

pS5
pS6

pS7
pS8

0.43 0.38 0.37 0.37 0.37 0.35 0.47 0.45

two related key differential characteristics, we construct a 30-round related key
differential characteristic from the 1-st round to the 30th-round of GOST with
probability about 2−23.33.

Now, we consider a 1R [1] related key differential attack on 31 rounds of
GOST using the above constructed 30-round related key differential character-
istic. Considering 226 chosen plaintext pairs, there remain about 212 ciphertext

p :

p :

p :

p :

p :

p :

0##0##0#x

80#00#00x

80#00#00x

00#00#0#x

00#00#0#x

80#0##0#x

80#0##0#x

0##0##0#x

0##0##0#x

8##0####x

8##0####x

00000#00x

00000#00x

80000000x
0x

K8 , K8

K7 , K7         e31

K6 , K6

K5 , K5        e31

K4 , K4

K3 , K3         e31

25-th round

26-th round

27-th round

28-th round

29-th round

30-th round

F

F

F

F

F

F

Fig. 7. 6-round related key differential characteristic (rounds 25∼30)

2 We only need to compute the probability Prob{1000
S8
−→ ∇ = {abc0}} because of the

structure of the round function F . This probability is easily checked by simulation
and also represented in [8].
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pairs after the filtering step. Among them, we expect that there exist at least 5
right pairs. A wrong key is counted with probability 2−17 by the above 30-round
related key differential characteristic. The signal-to-noise ratio SN [1] of this re-
lated key differential characteristic is about 222.67. Thus, according to [9], we can
recover the 32 bits of the 31-st round subkey with about 226 chosen plaintexts
and time complexity (232 ×226 ×2−14 × 1

31 ) ≈ 239 with an expected success rate
of 97.9%.

Full Rounds Attack on GOST In this section, we suggest an algorithm to
find 12 bits of K1 with high probability of success.

Consider P = (PL, PR) and P ′ = (PL ⊕ e30, PR ⊕ e30) encrypted under keys
K = (K1, · · · ,K8) and K ′ = (K1⊕e30,K2⊕e30, · · · ,K8⊕e30) respectively. Then,
after key addition, in each round the input difference becomes 0 with probability
2−1. Thus, we can construct a 30-round related key differential characteristic
with probability 2−30 as shown in Fig. 8. In this figure, white bits denote a zero
difference, black bits denote a nonzero difference and gray bits are unknown.

Let C = (CL, CR), C ′ = (C ′
L, C ′

R) be the ciphertexts of P and P ′ under
keys K and K ′, respectively and assume that (P, P ′) is a right pair for a re-
lated key differential characteristic such as described in Fig. 8. (i.e. the output
difference after round 30 is (e30, e30)). Then there are four types of differential
characteristics C1, C2, C3 and C4 as listed below.

C1. CR⊕C ′
R = e30 and CL⊕C ′

L = e30.
This case means that the input differences of the S-boxes in round 31 and
round 32 are 0, so we can recover K1[30] by checking CR[30] + K1[30] =
C ′

R[30] + (K1[30] ⊕ 1) where “+” means integer addition.
C2. CR⊕C ′

R = e30, (CL⊕C ′
L)[0 ∼ 6] = 0, (CL⊕C ′

L)[11 ∼ 29] = 0 and (CL⊕C ′
L)[31]

= 0. (Refer to Fig. 8a.)
This case means that the input difference of S8 in round 31 is zero, but
in round 32 it is nonzero, so we can recover K1[30] by checking CR[30] +
K1[30] 6= C ′

R[30]+(K1[30]⊕1). Also if such a pair is given, K1[28],K1[29],K1[31]
can be recovered by checking

S8(CR[28 ∼ 31] + K1[28 ∼ 31]) ⊕ CL[7 ∼ 10] = S8(C ′
R[28 ∼ 31] + K ′

1[28 ∼
31]) ⊕ C ′

L[7 ∼ 10] or

S8(CR[28 ∼ 31] + 1 + K1[28 ∼ 31]) ⊕ CL[7 ∼ 10] = S8(C ′
R[28 ∼ 31] + 1 +

K ′
1[28 ∼ 31]) ⊕ C ′

L[7 ∼ 10].

If we add CR[0 ∼ 27] to K1[0 ∼ 27], a carry may occur at the 27-th bit po-
sition, so we need to check the above two equations. We denote S8(CR[28 ∼
31] + K1[28 ∼ 31]) ⊕ CL[7 ∼ 10] by Fkj

(CR[28 ∼ 31]) ⊕ CL[7 ∼ 10] in
Algorithm 2.

C3. CR⊕C ′
R 6= e30, (CR⊕C ′

R)[7] = 0
This case means that the input difference of S8 in round 31 is nonzero and
(CR⊕C ′

R)[7] = 0. In this case, if we know K1[0 ∼ 11], we can compute the
exact value of (FK1

(CR))[11 ∼ 22] and (FK1
(C ′

R))[11 ∼ 22]. So K1[8 ∼ 11]
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can be recovered by checking

(FK1[0∼11](CR))[19 ∼ 22] ⊕ CL[19 ∼ 22] = (FK′

1
[0∼11](C

′
R))[19 ∼ 22] ⊕

C ′
L[19 ∼ 22].

Note that (FK1[0∼7](CR))[11 ∼ 18] ⊕ CL[11 ∼ 18] = (FK′

1
[0∼7](C

′
R))[11 ∼

18] ⊕ C ′
L[11 ∼ 18] for any arbitrary candidate key K1[0 ∼ 7], so we cannot

find the right value K1[0 ∼ 7] with high probability. That is the reason why
we only consider recovering K1[8 ∼ 11].

C4. CR⊕C ′
R 6= e30, (CR⊕C ′

R)[7] 6= 0. (Refer to Fig. 8b.)
This case means that the input difference of S8 in round 31 is nonzero and
(CR ⊕ C ′

R)[7] 6= 0. By similar arguments as for case C3 we can recover
K1[4 ∼ 11] by checking

(FK1[0∼11](CR))[15 ∼ 22] ⊕ CL[15 ∼ 22] = (FK′

1
[0∼11](C

′
R))[15 ∼ 22] ⊕

C ′
L[15 ∼ 22].

Note that the key bits found in case C1 and C3 can also be found in case C2

and C4, respectively. An attack algorithm is given in Appendix A.
Let us consider the success probability of Algorithm 2. If we choose 235 pairs,

there exist at least 4 pairs satisfying the conditions C2 and C4 respectively,
with probability about 0.96. Also there are at most 15 wrong pairs surviving the
filtering step with probability about 0.99. Since the probability that a wrong key
is counted at most 3 times in step 3 and step 4 is about 1, the success probability
of Algorithm 2 is about 0.917 using about 2 × 235 encryptions.

5 Conclusion

We presented related key differential attacks on XTEA and GOST. In the case
of XTEA, we use 121 structures to attack 27 rounds of XTEA with an expected
success rate of 96.9%; this attack requires about 220.5 chosen-plaintexts and
2115.15 27-round XTEA encryptions.

Furthermore, we can successfully distinguish the block cipher GOST from a
random permutation with probability 1−2−64 and attack full-round GOST. As
a result, we can recover 12 bits of the master key with an expected success rate
of 91.7% using 235 chosen plaintexts, in 236 encryption operations. Therefore,
we believe that our result is valuable to analyze the security of GOST.

Acknowledgements The authors are thankful to Deukjo Hong for discussing
XTEA and very much appreciate Helena Handschuh’s and the anonymous ref-
erees’ aid in improving the presentation of this work.
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Appendix A

Assumption : The attacker knows that K ⊕ K ′ is equal to (e30, e30, · · · , e30)

Input : (Pi, P
′
i ), (i = 1, · · · , 235) where Pi ⊕ P ′

i = (e30, e30) as in Fig. 8

Output: 12-bit partial key K1; K1[4 ∼ 11] and K1[28 ∼ 31]

// Setup stage //

· LetK = {k1, k2, · · · , k24} and K′ = {k′
1, k

′
2, · · · , k′

28} be the set of candidate keys for

K1[28 ∼ 31] and K1[4 ∼ 11], respectively

· D,D′ : empty set

· ctr1 = 0, · · · , ctr24 = 0, ctr′1 = 0, · · · , ctr′28 = 0

// Filtering step //

1. For i = 1, . . . , 235

1.1. Request the ciphertexts Ci = EK(Pi) and C ′
i = EK′(Pi)

If Ci ⊕ C ′
i satisfies condition C2, D = D ∪ {(Ci, C

′
i)}

If Ci ⊕ C ′
i satisfies condition C4, D′ = D′ ∪ {(Ci, C

′
i)}

// Finding key K1[28 ∼ 31] //

2. For each (Ci, C
′
i) ∈ D

/ ∗ For convenience let Ci = (CL, CR) and C ′
i = (C ′

L, C ′
R) ∗ /

2.1. For j = 1, . . . , 24

If Fkj
(CR[28 ∼ 31]) ⊕ CL[7 ∼ 10] = Fkj

(C ′
R[28 ∼ 31]) ⊕ C ′

L[7 ∼ 10],

ctrj+ = 1

If Fkj
(CR[28 ∼ 31] + 1) ⊕ CL[7 ∼ 10] = Fkj

(C ′
R[28 ∼ 31] + 1) ⊕ C ′

L[7 ∼ 10],

ctrj+ = 1

If ctrj ≥ 4, output kj as K1[28 ∼ 31] and goto 3

// Finding key K1[4 ∼ 11] //

3. For each (Cm, C ′
m) ∈ D′

/ ∗ For convenience let Ci = (CL, CR) and C ′
i = (C ′

L, C ′
R) ∗ /

3.1. For j = 1, . . . , 28

3.2. For i = 0, . . . , 24 − 1

If Fk′

j
||i(CR)[15 ∼ 22] ⊕ CL[15 ∼ 22] = Fk′

j
||i(C

′
R)[15 ∼ 22] ⊕ C ′

L[15 ∼ 22],

ctr′j+ = 1

/ ∗ Since k′
j denotes K1[4 ∼ 11] and i denotes K1[0 ∼ 3], k′

j ||i denotes

K1[0 ∼ 11] ∗ /

3.3. If ctr′j ≥ 4, output k′
j as K1[4 ∼ 11] and terminate this algorithm

Algorithm 2: 32-round related key differential attack on GOST.


