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Abstract. A practical measure to estimate the immunity of block ci-
phers against differential and linear attacks consists of finding the min-
imum number of active S-Boxes, or a lower bound for this minimum
number. The evaluation result of lower bounds of differentially active
S-boxes of AES, Camellia (without FL/FL™') and Feistel ciphers with
an MDS based matrix of branch number 9, showed that the percentage
of active S-boxes in Feistel ciphers is lower than in AES. The cause is a
difference cancellation property which can occur at the XOR operation
in the Feistel structure. In this paper we propose a new design strategy
to avoid such difference cancellation by employing multiple MDS based
matrices in the diffusion layer of the F-function. The effectiveness of the
proposed method is confirmed by an experimental result showing that
the percentage of active S-boxes of the newly designed Feistel cipher
becomes the same as for the AES.
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1 Introduction

Throughout recent cryptographic primitive selection projects, such as AES,
NESSIE and CRYPTREC projects, many types of symmetric key block ciphers
have been selected for widely practical uses [16-18]. A highly regarded design
strategy in a lot of well-known symmetric-key block ciphers consists in employ-
ing small non-linear functions (S-box), and designing a linear diffusion layer to
achieve a high value of the minimum number of active S-boxes [2,4,17,18].

If the diffusion layer guarantees a sufficient minimum number of differentially
active S-boxes, and the S-boxes have low maximum differential probability, the
resistance against differential attacks will be strong enough. Let a be the lower
bound on the minimum number of active S-boxes, and D P,,,, be the maximum
differential probability (MDP) of S-boxes. It is guaranteed that there is no dif-
ferential path whose differential characteristic probability (DCP) is higher than
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(DP,az)?. For instance, in the case of a 128-bit block cipher using 8-bit bijec-
tive S-boxes with DP,,,, = 278, the necessary condition to rule out any path
with DCP > 27128 is that a should be at least 22. In order to determine the
appropriate number of rounds of a fast and secure cipher, it is thus essential to
have an accurate estimation of the lower bound a [1,4]. Regarding this problem,
finding an optimal linear diffusion is one of the research topics included in the
future research agenda of cryptology proposed by STORK project in EU [19].

Comparing the minimum number of active S-boxes of two well-known ciphers,
AES and Camellia without FL/FL~! (denoted by Camellia*), it is shown that
the ratio of the minimum number of active S-boxes to the total number of S-boxes
for Camellia* is lower than for AES. Even if the diffusion matrix of Camellia*
is replaced by a 8 x 8 MDS based matrix with branch number 9 (which is called
a MDS-Feistel cipher), the ratio won’t increase significantly and there is an
apparent gap between these Feistel ciphers (Camellia* and MDS-Feistel) and a
SPN cipher AES.

We found that the low percentage of active S-boxes in a MDS-Feistel struc-
ture is due to a difference cancellation which always occurs in the differential
path that realizes the minimum number of active S-boxes. In such a case, the
output difference of the F-function in the i-th round will be canceled completely
by the output difference of ¢ + 2j-th round (5 > 0). It is obvious that one of the
conditions for difference cancellations is employing an unique diffusion matrix
for all F-functions.

In this work, we propose a new design strategy to avoid the difference can-
cellation in Feistel ciphers with SP-type F-function. We call this new strategy
multiple MDS Feistel structure design. The basic principle of this design is as
follows. Let 2r,m be the round number of the Feistel structure and the num-
ber of S-boxes in the F-function, respectively. We then employ ¢(< r) m x m
MDS matrices. Furthermore they are chosen that any m columns in these ¢
MDS matrices also satisfy the MDS property. Then, at first these MDS matri-
ces are allocated in the odd-round F-functions, then they are allocated in the
even-round F-functions again keeping the involution property. This construction
removes chances of difference cancellation within consecutive 2¢ + 1 rounds.

We will also show an evaluation result that confirms the effectiveness of the
new design, which shows that our new design strategy makes the Feistel cipher
achieve a high ratio for the minimum number of active S-boxes. The new design
has a ratio that is at the same level as AES.

Our results open a way to design faster Feistel ciphers keeping its advantage
that the same implementation can be used for encryption and decryption except
the order of subkeys.

This paper is organized as follows: In Sect. 2, we describe some definitions
used in this paper. In Sect. 3, we compare the minimum number of active S-boxes
of various ciphers. In Sect. 4, we explain how difference cancellation occurs. In
Sect. 5, we propose our new design strategy, multiple MDS Feistel structure
design. In Sect. 6, we investigate the effect of the multiple MDS Feistel structure
design. Finally in Sect. 7, we discuss the new design and future research.



2 Preliminaries

In this section, we state some definitions and notions that are used in the rest
of this paper.

Definition 1. active S-box
An S-box which has non-zero input difference is called active S-box.

Definition 2. x function
For any difference AX € GF(2™), a function x : GF(2™) — {0,1} is defined as
follows:
_J0if AX =0
X(AX)_{lif AX £0

For any differential vector AX = (AX[1], AX[2],...,AX[m]) € GF(2™)™, the
truncated difference X € {0,1}™ is defined as

6X = x(AX) = (x(AX[1]), x(AX[2]), ..., x(AX[m]))

Definition 3. (truncated) Hamming weight of vector in GF(2")™
Letv = (v1,v2,...,0,) € GF(2™)™. the Hamming weight of a vector v is defined
as follows:

wp(v) = H{vilvi 0,1 <i <m}.

Theorem 1. [7] A [k+m, k,d] linear code with generator matrix G = [Irxk Mrxm],
is MDS iff every square submatriz (formed from any i rows and any i columns,
for anyi=1,2,...,min{k,m}) of Mixm is nonsingular.

From the above theorem, we call a matrix M is a MDS matrix if every square
submatrix is nonsingular.

Definition 4. Branch Number
Let v = (v1,v2,...,Um) € GF(2™)™. The branch number B of a linear mapping
0:GF(2™)™ — GF(2™)™ is defined as:

B(6) = min{ws(v) +wa(0(v))}-

If M is a m x m MDS matriz and 6 : x — Mz, then B(6) =m + 1.

Definition 5. Feistel structure using SP-type F-function

A SP-type F-function is defined as the following: Let n be a bit width of bijective
S-boxes, and m be a number of S-boxes employed in a F-function. In the i-th
round F-function, (1) mn bit round key k; € GF(2")™ and data z; € GF(2™)™
are XORed: w; = ©; ® k;. (2)w; is split into m pieces of n-bit data, then each
n-bit data is input to a corresponding S-box. (8) The output values of S-boxes
regarded as z; € GF(2™)™ are transformed by an m xm matric M over GF(2™):
Y = MZi-

A Feistel structure using SP-type F-function is shown in Fig. 1.
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Fig. 1. The general model of a SP-type F-function

3 Comparison of the Minimum Number of Active
S-Boxes

At first in this paper, we compare the lower bound of the minimum number of
active S-boxes of 3 typical ciphers: AES, Camellia without FL/FL™1 (we call it
Camellia*) and a Feistel cipher using a 8 x 8 MDS matrix with branch number
9 (we call it MDS-Feistel cipher). Note that we assumed that the MDS-Feistel
uses eight 8-bit bijective S-boxes in the F-function like Camellia*, therefore the
block sizes of these block ciphers are all 128-bit.

The lower bound estimation for these ciphers have been obtained as follows.

— AES: The wide trail strategy guarantees B% = 25 active S-boxes in 4 consec-
utive rounds. The lower bound is obtained by using Matsui’s truncated path
search technique which is slightly modified to analyze AES [2,8,9,12]. Let
a(r) be the minimum number of active S-boxes for r rounds, then the con-
jectured a(r) from the estimation is a(0) = 0,a(1) = 1,a(2) = 5,a(3) =9,
and then a(r) = a(r —4) + 25 for (r > 4).

— Camellia*: The lower bound is obtained from Shirai et al.’s result. They
used an improved estimation method based on Matsui’s technique which was
also used by the designers’ evaluation of Camellia [2, 8,9, 14]. The improved
method discards algebraic contradiction in difference paths [12,13].

— MDS-Feistel: The lower bound is obtained by also using Matsui’s truncated
path search technique which is slightly modified to analyze the MDS-Feistel’s
round function [2,8,9,12]. Shimizu has also shown a similar but limited
result for the lower bound by using a method not based on Matsui’s approach,
and he has conjectured an equation a(r) = |r/4](B+1)+(r mod 4)—1[11].
We confirmed that our result matches the Shimizu’s conjectured equation.

Table 1 shows the lower bound on the number of active S-boxes for r-round
ciphers, and the ratio of active S-boxes to all S-boxes in the r-round cipher.
Fig. 2 shows a graph of the ratios of active S-boxes to all S-boxes.



Round|AES (ratio)|Camellia* (ratio)|MDS(B = 9) (ratio)
1 1 6.3% 0 0.0% 0 0.0%
2 5 15.6% 1 6.3% 1 6.3%
3 9 18.8% 2 8.3% 2 8.3%
4 25 39.1% 7 21.9% 9 28.1%
5 26 32.5% 9 22.5% 10 25.0%
6 30 31.3% 12 25.0% 11 22.9%
7 34 30.1% 14 25.0% 12 21.4%
8 50 39.1% 16 25.0% 19 29.7%
9 51 35.4% 20 27.8% 20 27.7%
10 55 34.4% 22 23.8% 21 26.3%
11 59 33.5% 24 27.5% 22 25.0%
12 75 39.1% - - 29 30.2%
13 76  36.5% - - 30 28.8%
14 80 36.5% - - 31 27.7%
15 84 35.0% - - 32 26.7%
16 [100 39.1% - - 39 30.5%
00 - 39.1% - - - 34.4%

Table 1. the lowerbound of the minimum number of active S-boxes
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Fig. 2. The percentage of active S-boxes for AES, Camellia* and MDS-Feistel



The fact that the minimum numbers of active S-boxes are smaller for Feistel
ciphers (Camellia* and MDS-Feistel) than for AES is not unexpected, because
there are only half as many S-boxes in each round (8 in Feistel ciphers, 16
in AES). However, Fig. 2 shows a non-trivial fact that also the percentage of
active S-boxes is lower in these Feistel ciphers than in AES. Also, we note that
even with a MDS matrix of branch number 9, which is the best possible branch
number for an 8 x 8 matrix, the construction doesn’t gain significantly compared
to Camellia*, which uses a non-MDS matrix of branch number 5 .

The percentage of active S-boxes indicates how many S-boxes are effectively
used in all existing S-boxes for the first consecutive rounds, and can be considered
as a reference of efficiency of the diffusion property for ciphers which have the
same block length and the same S-box bit length.

As described in [1], if we choose 8-bit S-boxes with maximum differential
probability (MDP) 276, 22 active S-boxes is a necessary condition to rule out
the existence of differential characteristics with a probability higher than 2-128,
In the case of AES, 22 active S-boxes are already achieved by only 4 rounds.
However, Feistel ciphers require more than 11 rounds to guarantee 22 active
S-boxes. Because the minimum number of active S-boxes is often taken into
consideration when determining the round number of a block cipher, if more
active S-boxes can be guaranteed in SP-type Feistel ciphers we may be able to
design fewer rounds (it means fast) ciphers.

In the following sections, we analyze a mechanism that explains why the
ratio for MDS-Feistel ciphers is low, and we propose a new design strategy that
achieves more active S-boxes and thus enables us to construct Feistel structures
with fewer rounds.

4 Difference Cancellation

By our analysis of the MDS-Feistel cipher, we found that every path which con-
tains the minimum number of active S-boxes includes a particular phenomenon
where differences generated at certain round are canceled after some rounds at
an XOR operation. We will call this phenomenon difference cancellation.

The left half of Fig. 3 shows an example of the 3-round difference cancellation.
Differences are represented in the truncated way in which 8-bit difference data is
represented as 0 or 1, depending on whether each difference is 0 or not [6]. The 3-
round difference cancellation starts from the difference dz; 1 = (00000000) ,and
ends with the difference dz;13 = (00000000) again. This means that a certain
difference is generated and then canceled between these two 0-differences. In
this case, the full hamming weight difference dy; = (11111111) is canceled by
0yi+2 = (11111111) at once. Consequently there’s no active S-boxes in 7 + 3-
round.

Similarly, 5-round difference cancellation, which is shown in the right half of
Fig. 3, have the form dx; = dz; 4 = (00000001), dz;12 = (00000000), and output
differences of both active S-boxes in the i-th and ¢ 4+ 4-th round are equal.



In both cases, a truncated difference (11111111) generated by one active S-
box is canceled by a truncated differences (11111111) which is also generated by
one active S-box. These difference cancellations are derived from 2 active S-boxes,
and we call this type of difference cancellation 2-derived difference cancellation.

An interesting fact is that at least one of these 3-round or 5-round 2-derived
difference cancellations can be found in every differential path of more than 6-
round that realizes the minimum number of active S-boxes in the MDS-Feistel
cipher. Details are shown in Appendix A.
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4.1 Observation on Difference Cancellation

Let X,V € {0,1}® and X M Y denotes that a truncated difference X can
produce a truncated difference Y by a matrix M. Let Myps be a 8 x 8 MDS
matrix, then the following property of the Mjy;ps contributes to occur the 2-
derived difference cancellation.

(00000001) M35 (11111111) and (11111111) 3% (00000001)

These transitions are appeared in the above 3-round and 5-round difference
cancellation several times.

More precisely, let Cpr(X,Y) = {0,1} be a function which shows the capa-
bility of connection between truncated difference X and Y defined as,

. M



We can observe that a 2-derived difference cancellation can occur if there exists
at least one set of truncated differences X,Y where wy(X) = 1 which satisfy

From MDS property, any m x m MDS matrix My;pg holds the condition
Crtups (X, Y) =1 for all wp(X) 4+ wp(Y) > m+1 and wip(X) = wp (V) = 0.
Otherwise Chry, 55 (X,Y) = 0. It is obvious that at least one set X,Y where
wr(X) = 1 satisfy Caryyps (X, Y) % Crryy s (Y, X) # 0, thus 2-derived difference
cancellation can occur in a MDS matrix construction.

This observation explains why Camellia*’s lower bounds are not too low even
though it employs a non-MDS matrix M¢, of branch number 5. For any choice
of X,Y where wp(X) =1, Cnm, (X,Y) - Crag, (Y, X) = 0 always. Thus Mc,
never produces the 2-derived difference cancellation, and it keeps a moderate
number of active S-boxes.

However, even though 2-derived difference cancellation is avoided by choosing
Camellia type matrix, if certain X,Y where wy(X) = 2 satisfying Cpr(X,Y) -
Cu (Y, X) # 0 exists, then a 4-derived difference cancellation would be a building
block for a small number of active S-boxes, and a significant gain of the number
of active S-boxes may not be expected.

In the next section another approach to avoid m-derived difference cancella-
tion will be introduced by using multiple MDS matrices in a Feistel structure.

5 Multiple MDS Feistel Structure Design

5.1 Basic Strategy

Suppose that some intermediate differential data Az; 1 = 0, and that the output
of F-function in every 2 rounds is added to the data, (ex. Ay;, Ay;yo,..Ayita;).
Consider a situation where the differential data Az; 12541 become 0 after XORing
the output of the F-function in the ¢ + 2j-th round, caused by a difference
cancellation as shown in Fig. 4.

In the difference cancellation, the following condition exists:

J
> Ayior =0. (1)
k=0
Therefore,
J
M Z Azi_l,_zk =0. (2)
k=0

When a nonsingular matrix M is employed, we obtain that

J
Z Azi+2k =0. (3)
k=0

The above equation shows that a difference cancellation occurs by only 2 active
S-boxes in Az;1ak, (0 < k < j) in the minimum case, which is exactly the case of
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2-derived difference cancellations shown in the previous section. Now we consider
a setting with multiple matrices in which a different matrix is used in each F-
function. Let M; be a diffusion matrix employed in the i-th round. Obviously, the
transformation from (1) to (2) is not correct when the matrices M; are different
from each other. In such setting, we can rewrite (1) as

MiAZi + Mi+2Az,-+2 +...+ Mi+2jAzi+2j =0. (4)

The above condition can be written as the product of a large m x m(j + 1)
matrix and a vector with m(j + 1) elements:

AZ,'

Azt
[MiMiyz--- Mipo5] | . =0. ()

Aziyoj

If these matrices are chosen to satisfy that there is no combination of [ column
vectors that are dependent of each other (2 <! < m) in the matrix, k-derived
difference cancellation (k <) would never happen in the consecutive 2j rounds.
From this observation, we introduce a strategy to choose matrices Mj, .., M; o
for which any choice of m column vectors are independent of each other in the
large matrix [M;, .., Miy2;].

5.2 Construction Steps

We propose a new design strategy that employs multiple MDS matrices in the
Feistel network, in order to avoid an occurrence of m-derived difference cancel-
lation in any consecutive 2q rounds where ¢ is the number of employed matrices.



The construction steps are as follows. Without loss of generality, we assume
the round number is 2r.

1. Choose ¢(< ) MDS matrices: Mo, M1,..., My_1.

2. Check that any m of ¢gm column vectors in all M; matrices hold the MDS
property.

3. Assign matrix M(; mod q) to the 2i 4 1-th round (0 <@ < ).

4. Assign matrix M(; mod q) to the 27 —2i-th round (0 < ¢ < r) (reverse order).

In this construction, since any m columns of the large matrix [M; M;yo - - - M;y94_2]
have been chosen to generate MDS which has m independent column vectors,
there is no chance to generate m-derived difference cancellation in any con-
secutive 2q — 1 rounds. Fig. 5 shows the construction of the example setting
r = 6,q = 3,6 respectively.
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Fig. 5. Examples of the New Design (r = 3,q = 3,6)

When m,n are small, we can randomly generate MDS matrices and check
MDS conditions of column vectors in Step 2. However, if m,n are large, it might
be difficult to search such a set of matrices. In such a case, we can use the
algorithm to generate Reed-Solomon code’s generation matrix. The algorithm
can generate a large MDS matrix immediately, because its complexity is O(IN?)
where N is the dimension of the matrix [7]. Once the ¢gm x gm MDS matrix
My, is made, any combination of m rows of M can be regarded as a matrix
[Mo, M, .., M4_1] with proposed additional MDS property from Theorem 1. We
can find a 128 x 128 MDS matrix on GF(28) from [256,128,129] extended RS
codes, thus 16 MDS matrices of dimension 8 satisfying the condition of Step 2.
can be found in it. We show an example of a set of such matrices in Appendix B.



6 Evaluation of the Proposed Construction

We estimated a lower bound for the number of active S-boxes of the new con-
struction with m = 8,r = 6 (12-round cipher) for the number of matrices
qg = 1..6. We adopted a weight based approach in the evaluation algorithm,
because the known truncated path approach which is employed in the other
cipher’s evaluation requires too huge memory space and time consumption.

6.1 Algorithm

The following algorithm outputs a lower bound for the number of active S-boxes
of our proposed construction based on the weight based approach . Let the round
number be R.

1. Set L = co.
2. For each possible combination of the weight 0,1,..,8 in dzg,dz1,..,0TR 1
(There are 9%+2 candidates):
(a) Fori=2to R+ 1 do the following,
i. For j =2to j <14, j + j+ 2 do the following,

A. Check whether the given weight combination of w (dz;_;), wa(dz;)
and the list of given weight of active S-boxes in the ws (dz;—;+1),
wh(02i—j+3),-, wn(0z;—1) are possible or not in the weight con-
text of the given MDS property.

B. If the check passed then continue the loop, else exit the loop.

(b) If all checks passed, count the total number of active S-boxes A in the
path. f A< L, set L = A.
3. Output L as the lower bound of the minimum number of active S-boxes for
the round R.

The description to check the possibility of a weight distribution in Step A is
described in Appendix C.

We note that this algorithm can be speeded up for R-round evaluation by
using the result of R — 1-round evaluation recursively. This technique can be
seen in Matsui’s path search method [8].

6.2 Result

Table 2 shows the result of the lower bound of the minimum number of active
S-boxes for four types of 12-round multiple-MDS Feistel ciphers, the cases of
m = 8 r = 6,q = 1,2,3,6. The graph of the ratio of active S-boxes to total
number of S-boxes is shown in Fig. 6. It can be confirmed that the result of the
case ¢ = 1 is the same as the result of the MDS-Feistel cipher shown in Table 1.
Moreover, the results shows that the lower bounds for the cases ¢ =3 and ¢ = 6
are always the same.

The numbers are significantly increased in the case of ¢ = 2 compared to the
case ¢ = 1. However there is no gain in 8 and 9 rounds. In the case of ¢ > 3,



Round |q =1 (rate)|q = 2 (rate)|q = 3 (rate)|q = 6 (rate)
1 0 00%| 0 00%| 0 0.0%| 0 0.0%

2 1 63%| 1 63%| 1 63%| 1 6.3%

3 2 83%| 2 83%| 2 83%| 2 83%

4 9 281%| 9 28.1%| 9 281%| 9 28.1%

5 10 25.0%| 10 25.0%| 10 25.0%| 10 25.0%

6 11 22.9%| 18 37.5%| 18 37.5%| 18 37.5%

7 12 21.4%| 18 32.1%| 18 32.1%| 18 32.1%

8 19 29.7%| 19 29.7%| 20 31.3%| 20 31.3%

9 20 27.7%| 20 27.8%| 27 37.5%| 27 37.5%
10 21 26.3%| 27 33.8%| 28 35.0%| 28 35.0%
11 22 25.0%| 28 31.8%| 32 36.4%| 32 36.4%
12 29 30.2%| 36 37.5%| 36 37.5%| 36 37.5%
avrg.(4-12) 26.3% 31.5% 33.4% 33.4%

Table 2. Result of Evaluation
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the lower bound is even higher than for the case ¢ = 2 when we have more
than 8 rounds, and more than 22 active S-boxes are guaranteed in 9 rounds.
The ratio of the new design successfully came to the level of AES after more
than 6 rounds. These results show that the design with triple MDS matrices
has enough advantages over single MDS matrix design. Also, our experiment
indicates that not so many MDS matrices seem to be required to get a benefit
from the proposed design.

7 Discussion

7.1 Implementation Aspects

This new construction requires an additional implementation cost because it em-
ploys multiple matrices. Multiple diffusion matrices require additional gate size
in hardware and lookup tables in memory in software implementation. How-
ever the speed impact in hardware is expected to be negligible because only
switching circuits for matrices will be added. Detailed observations on hardware
implementation of many types of SP-type Feistel networks can be found in [15].

If all lookup tables can be stored in the fastest cache memory, not much time
cost would be expected. If b matrices of dimension 8 on GF(2®) are employed in
the 128-bit block setting, the cipher requires 160 KB lookup tables at maximum
in which the size of each entry is 64-bit. Since some recent 64-bit CPUs have
64KB first cache memory for data, 48 KB lookup table required by 3 matrices
would be acceptable. In such a setting, it is estimated that only 8 R table lookups
and 9R XOR operations are required to finish R round calculation without a
key scheduling procedure.

7.2 Future Research

Though we only discussed the immunity against differential attacks throughout
this paper, we can directly extend the result to the linear attack if we construct
a PS-type F-function whose order of S-box and diffusion layer is exchanged from
SP-type F-function[5]. This is due to the dual property of differential and linear
masks [5, 10]. However, it is not clear so far that the immunity has been gained for
the linear attack if a cipher is designed to have immunity against the differential
attack based on our strategy. This theoretical explanation should be included in
the topic of future research.

Our evaluation method adopted a simple weight based approach to estimate
lower bounds of the proposed designs. Since the approach achieved an algorithm
with feasible time and memory space at the expense of information of truncated
differential form, a more detailed algorithm may produce tighter lower bounds.
It is considered an important research topic to develop a new algorithm that
counts lower bounds of the minimum number of active S-boxes more strictly for
the new design.
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Appendix A

All the minimum differentially active S-boxes paths for more than 5 rounds of
MDS-Feistel cipher using an 8 x 8 MDS matrix can be represented by only the
following eight types of differential paths as building blocks in Fig. 7.

(A) Ir, active=0 (P) 4r, active= 10 (X) Or, active=0
00000000 00000001 00000001 00000000 00000001 00000000
i
00000000 00000001
00000001 00000000
(B) 2r, active=1 (Y) Ir, active=1
00000001 11111111 00000001 00000000
00000001 00000000
00000001 11111111
(Q) 6r, active=18
00000001 00000000
(2) 3r, active=9
00000001 00000000

(C) 4r, active=9
00000000 11111111

HA 11111111
=

00000000 11111111

Prefix Patterns (A)-(C) Middle Iteration Patterns (P),(Q) Suffix Patterns (X)-(Z)

Fig. 7. Building Blocks based on § A = (00000001)

Pattern (A),(B) and (C) are prefix patterns which appear only at the be-
ginning of differential paths, and pattern (X), (Y) and (Z) are suffix patterns
which appear only at the end of differential paths. Pattern (P) and (Q) are mid-
dle iteration patterns which appear at the middle of differential paths and are
sometimes iterated more than once depending on the total number of rounds. (P)
and (Q) are respectively shown as 3-round and 5-round differential cancellations
in Sect. 4.

Each pattern in Fig. 7 shows a representative path using truncated difference
(00000001), and each pattern also contains 7 other different paths by replacing
(00000001) with one of (00000010), (00000100), .., (10000000).

Table 3 shows the search results for 5-round to 20-round differential paths
of MDS-Feistel. The Patterns field shows the path patterns expressed by their
building blocks. It means that any resulting path can be expressed by one of
the path patterns in the corresponding field. We can see that there is a 4-round
regularity. The last three rows shows the regularity in a generalized form. From
this experimental result, any differential path with a minimum number of active



S-boxes for more than 6-rounds contains at least one (P) or (Q). This is the
reason why difference cancellation should be avoided in order to gain more active
S-boxes, as described in Sect. 4.

R. ] 1 2 3 4
[ MA ] 0 1 2 9
R 5 6 7 8
M.A. 10 11 12 19
Pat. APX APY BPY APZ
BZ BPX AQY
(0)'s BQX
CPX
R. 9 10 11 12
M.A. 20 21 22 29
Pat. APPX APPY | BPPY APPZ
BPZ BPPX APQY, AQPY
BQY BPQX, BQPX
CPY CPPX
R. 13 14 15 16
M.A. 30 31 32 39
Pat. APPPX APPPY | BPPPY APPPZ
BPPZ BPPPX APPQY, APQPY, AQPPY
BPQY, BQPY BPPQX, BPQPX, BQPPY
CPPY CPPPX
R. 17 13 19 20
M.A. 40 31 32 39
Pat. APPPPX APPPPY|BPPPPY APPPPZ
BPPPZ BPPPPX APPPQY, APPQPY, APQPPY, AQPPPY
BPPQY, BPQPY, BQPPY BPPPQX, BPPQPX, BPQPPX, BQPPPX
CPPPY CPPPPX
R. 4n+1 4n—+2 4n + 3 4n + 4
M.A. 10n 10n+1 | 10n+2 0n + 9
Pat. AP™X AP"Y | BP"Y AP™Z
BP""lz BP"X AP"1Q)Y
(R->5)| B(P"2Q)Y(n >1) B(P"T1Q)X
cpP~ly CP"X

Pk

R. : Round Number
M.A. : the minimum numbers of active S-boxes
Pat. : path expressions constructed from basic patterns.

: iteration of pattern P for k times

(PkQ): all possible patterns generated from pattern P for k times and Q for once

Table 3. All path patterns of the minimum number of active S-boxes for each round




Appendix B

In this appendix, we show a set of example 8 x 8 MDS matrices in which any
combination of any 8 columns form a MDS matrix, which was obtained from the
right part of a [256, 128, 129] Reed-Solomon code’s generation matrix in standard
form [7].

In the following example we employed a primitive polynomial p(z) = z® +
z* + 2% + 22 + 1. Let a be a root of p(x), we set a parity check matrix H as:

1

(1254

(a

25:1)126 (

[0

1

(1253

251‘3)126

(a254)127 (253)127 . ..

1 11

a 10

o126 10
a127 10

Then we calculated a generation matrix G = [I128x128 M128x128] The following
16 matrices are obtained from the first 8 rows of Mjsgx128 simply by splitting
every 8 columns as [MoM;...M5]. Each element is expressed in a hexadecimal
value corresponding to a binary representation of elements in GF(2%).

Mgz =

Mg =

Mig =

9d b4 d3 5d 84
20 34 39 60 5c
6a d2 e3 4b
8e d7 e6 1b 8b
d9 e5 4d dd c6
2a f7 67 72 b1
42 6 a0 4 f1
55 63 fa 51 c

67

ce a2 8 3d c2
9a el 65 f6 5f
6 6f bb
d7 53 23 62 21
eb fa 91 69 3e
62 b4 eb5 2a b2
d3 18 db
7f b8 Tb 70 2f

b0 7

dd d

86

b6 aa

63
b

2f 5c
4f ca

19
d2

33
56
38

b8
64

9¢c ae
59 99
be de
26 6b
97 a8
97 56
4 22
25 2¢

9d
60
81
ac
92
74
7d
e3

16
1b
be
d2
ea
e3
a7
39

2e b3 64
da ee 13
fb ec c3
f9 da 53

a 12 ca

70 ¢
4f b9
a3 1

3e 9e
d4 93
1b 3b
39 16
c0 1
ba 43
13 40
d5 12

17
2f
do

58 ca
be fd
cc 16
6a a6
13 f4
dg8 d7
f5 4e
4d b4

ae
81
db
e
5
7
4
d9

c4
b5
1f
ee
a2
aa
2e
44

cl
82
dé
e
ee
b8
be
4c

3a 75 a0 f2
81 75 a2 6a
64 7 18 87
4b 19 ed 8e
18 9d 8a T

79 44

c

13

1b fec fb b2
1b 59 a €5

ec b9
25 13
9d 4
3a 91
f0 ad
f2 27
7d 8c
28 d6

c0 a6
5e 2
8 3e
58 f9
c 14
b7 d2
8b 65
8a d5

36 8a
Tc e
e7 bd
15 b0
67 d5
e3 5b
9a 6a
df 4c

c8 77
97 7f
a7 el
75 d3
86 1d
fe 14
91 ab
9c 40

4a c2
bb 28
16 f6
97 58
ac cb
2e 77
bb df
c0 8¢

My

My =

My =

M3 =

b8
3a
4a
82
59
1d
31
e0

lc
1f
cb
40
c3
b4
c6
c4

f
fa
74
ed
la
58
69
cd

f1
76
97
5f
89
69
1b
7b

42
92
84
if
a0
f5
7b
c2

da7
1f
el
ea
16
19
b2
de

f4
8e
c6
32
2b
9d
6f
1b

c8
9
90
e
bl
fa
ca
c9

7f
39
85
62
67
41
58
a6

65
2d
a3
a2
10
eb
22
b5

16
c4
4c
a7
b9
d1
56
3f

37
16
2
a8
de
Tc
53
fa

a9
98
Tc
82
3c
c2
2d
28

7d
40
68
c9
la
f2
16
fe

18
2b

e9
39
46
e8
c2

ef
6a
b9
cl
2d
4e
29
5a

4d
36
cd
cd
75
b8
Tc
4b

4a
Te
6a
12
8a
f5
d4
21

82
bd
be

80
1f
2c
8d

23
c2
73
7b

cf
cb
87

34
5d

e7
3e
fa
b4
fa

d2
1le
Iz
bf
4
c8
71
2

fa
92
le
40
f8
a3
6b
ca

8b
e5
c7
b7
8d
d1
14
cb

c8
af
e7
dd
2f
8a
59
fe

25
89
fe
7b
6a
9d
9b
f2

55
40
60
53
3e
1e
fe
33

c3
ce
2b
30
be
b8
51
81

b5
21
a9
24
T4
b1
7
8d

ca
2e
4f
ad
29
49
47
55

f7
93
f
e9
9
50
el
bb

3f
23
73
91
8f
if
b0
ab

8c
93
8c
2¢
4c
ad
fa
80

75
5e
a0
69
fb
b0
37
ed

2
f
4
3f
ce
ed

7
19

f
64
be
fa
ef
le
2b
5e

d9
45
62
de
f
5a
b0
18

a9
53
d1
37
9f
66
af
7

Te
78
8a
5f
67
68
e7
9

f4
a4
76
2d
5e
2d
63
81

71
50
4
6b
88
13
ds
76

e9
15
fd
cb
aa
fe
b1
fb

f6
fe
9d
e6
55
17
59
95

99
6d
c9
4d
8f
34
99
cl

4c
10
61
6a
97
f1
34

ee

d0 46
fd b3

a6 a7 el b7 16 d2
84 18 7a cc 31 e7

ca 9b d3 9c 66 bl 12 af

79 ec 6a a8 cl 55 e2 14
56 f8 a0 79 3a 4b 13 27

77 el 26 19 77 bd 3a f6
c2 5 33 9¢dl 3 1le 5
2b fd 5b aa 3a a4 47 c5

24 75 60 ec cf de 60 4f

16 21
Mg =

50 cd

88 56
2 96

2f ff

a7 6b 38 eb d8 14 93 b8

bb 24 c4 5c c4 6a

86 6b 8c ba d6 f4 f1 4c
25 50 la e2 fa b0 85 ed
75 79 d4 ed c0 81 34 4a
2f fO e7 ae ae 25 1f 49
2b 6d a2 cb 13 38 77 91

21 ff 88 97 8b ¢

c 9c 8a bd d4 9e 38 al
ad d3 5f cd 8c ad 27 22

c9 75 93 2f 79 11
26 df b 36 b0 da

6c ee 8d 46 2d fO 6d 2e

7 81 1f d8 11 b7

ca 1 fd 93 c4 af c9 bc

d7 bf

96 3d

eb5 ba

_| 3 r2

Mi1 = | 14 ab
56 85

fd 45

7e fe

al 6d
32 ba
78 80
a9 69
81 24
79 fc
e3 55
a8 3b

Miyyg4 =

93 96 9 ae 2b 49
44 f9 2d c¢ d6 e6
b0 4c 66 aa d8 22
b 99 e2 b3 9d 4b
36 f1 4 6¢c bf 5e
31 aa 89 c5 a6 3f
cd ac ab 3c 9b b6
ce ba 1d 8d db bd

5 75 5 9c 74 d9
fc 4a e4 50 af c6
3f Ta cf fb ae 5e
18 42 e2 cb ¢ f
57 ce Tc 64 42 ea
c2 b 28 31 5f 11
29 47 de 2 dc bf
a9 6b bb 4c 87 25




Appendix C

In our evaluation algorithm, a check procedure to judge whether a given weight
distribution is possible or not was employed.

Let M; (1 < i < 2r) be the i-th round diffusion matrix, and let N; (1 < j < q)
be ¢ matrices designed by our proposed design strategy. In any combination of
Az; and Aziyo; € GF(2™)™, there is the following relation,

J
Ax; + Aziqoj = Z Mitor—1A%i2k-1 (6)
k=1

In the case of ¢ = r, all My in the above equation are guaranteed to be
different because they are chosen from N; without overlap.

Then we consider weight conditions on both sides of (6). Let Wy be wy (Ax; +
Azii9;). We obtain the following inequality.

|wh (Az;) — wh (Aig2;)] < Wi < min(m, wn(Az;) + wa(Azita;))  (7)

On the other hand, let W5 be wh(zizl Miyor—1A%iy2rp—1). If there is at least
one nonzero hamming weight in wp(Az;),

J
mazx(m + 1 — ZUJh(AziJ,_Qk_l),O) <Wy<m (8)
k=1

If all hamming weight of wy(Az;) are 0, obviously Wa = 0.

In the evaluation algorithm, we compare the above weight conditions W;
and W> implied by a given weight distribution. In the checking procedure, it
is judged false if these two weight range conditions have no overlap, because it
means there is no path with such a weight distribution.

In ¢ < r and j > g settings, some of the matrices N; appear more than once
in equation (6). In that case, we can rewrite (6) in partially bundle form,

q
Axz; + A.’L’,’+2j = Z N]cAZ;C s (9)
k=1
where
Agy= > Az (10)
{l|Nx=M}

In this case, we also have to consider the weight condition for XOR of multiple
element to treat Azj = 3"y, _ar,y Az Let j > 1, W3 be wa(307_; Aai), and
let Wmaz be maz(wh(Aar), wn(Aaz), .., wn(Aa;)), we obtain the range of Ws as,

J J
maz (0, 2Wmae — th(Aa,-)) <W; < min(m,th(Aai)) (11)
1=1 =1

Then this weight condition W3 can be used to determine the weight condition
of W5 for the equation (9).



