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Abstract. The linearly updated component of the stream cipher MUGI,
called the buffer, is analyzed theoretically by using the generating func-
tion method. In particular, it is proven that the intrinsic response of the
buffer, without the feedback from the nonlinearly updated component,
consists of binary linear recurring sequences with small linear complex-
ity 32 and with extremely small period 48. It is then shown how this
weakness can in principle be used to facilitate the linear cryptanalysis
of MUGI with two main objectives: to reconstruct the secret key and to
find linear statistical distinguishers.
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1 Introduction

MUGI is a specific keystream generator for stream cipher applications proposed
in [8]. Due to its design rationale, it is suitable for software implementations.
Efficient hardware implementations in terms of speed are also possible, but are
more complex with respect to the gate count than the usual designs based on
linear feedback shift registers (LFSRs), nonlinear combining functions, and irreg-
ular clocking. MUGI has been evaluated within the CRYPTREC project of the
Information-technology Promotion Agency for possible electronic government
applications in Japan.

It is interesting to note that in mathematical terms, the structure of MUGI
as well as of PANAMA, which is a stream cipher of a similar type previously
proposed in [1], is essentially one of a combiner with memory, which is a well-
known type of keystream generators (see [5]). Specific features are the following:

– the nonlinear combining function has a large internal memory size and is
based on a round function of the block cipher AES [2]

– the driving linear finite-state machine (LFSM) providing input to the com-
bining function is not an LFSR with a primitive connection polynomial

– the LFSM receives feedback from a part of the internal memory of the com-
bining function



– the output at a given time is a binary word taken from the internal memory
of the combining function and then bitwise added to the plaintext word to
produce the ciphertext word.

A security analysis of MUGI is presented in [9] and [10]. The main claims are
essentially that MUGI is not vulnerable to common attacks on block ciphers and
also to some attacks on stream ciphers. In particular, the linear cryptanalysis
method for block ciphers [7] is adapted to deal with MUGI and to show that
particular linear approximations cannot be effective for MUGI. However, some
general methods for analyzing stream ciphers based on combiners with memory,
most notably the so-called linear cryptanalysis of stream ciphers [3], [4], [5], and
[6], are not addressed. Since MUGI can essentially be regarded as a combiner
with memory, such methods are in principle also applicable to MUGI. Also, the
underlying LFSM of MUGI, the so-called buffer, is not analyzed in [9] and [10].

Recall that linear cryptanalysis of product block ciphers composed of an iter-
ated round function is based on the fact that the input and output to the block
cipher are known, in the known plaintext scenario, and that all the intermediate
outputs are unknown. Linear cryptanalysis of stream ciphers is essentially dif-
ferent from the linear cryptanalysis of block ciphers because of the underlying
iterative structure in which the initial state is unknown and the output sequence
produced from a sequence of internal states is known, in the known plaintext
scenario. It essentially consists in finding linear relations among the unknown
internal variables, possibly conditioned on the known output sequence, that hold
with probabilities different from one half. It has two main objectives:

– to reconstruct the initial state of the keystream generator as well as the
secret key

– to derive a linear statistical distinguisher which can distinguish the output
sequence from a purely random sequence, defined as a sequence of mutually
independent uniformly distributed random variables.

The main objective of this paper is to show that the linear part of MUGI, that
is, the buffer is analyzable and that it is surprisingly weak. The second objective
is to investigate how this weakness can in principle be used to facilitate the
cryptanalysis of MUGI, especially the linear cryptanalysis.

The paper is organized as follows. Section 2 contains a brief description of
MUGI. Analysis of the LFSM of MUGI is presented in Section 3, with some
elements shown in the Appendix, a related transformation that eliminates the
LFSM from the underlying system of nonlinear recurrences is given in Section
4, and the framework for the linear cryptanalysis of MUGI is outlined in Section
5. Section 6 contains a summary of the established weaknesses of MUGI and
problems for future investigation.

2 Description of MUGI

A concise description of MUGI is specified here in as much detail as needed for
the analysis. More details can be found in [8].



The keystream generator is essentially a combiner with memory, with spe-
cific properties described in Section 1. It is a finite-state machine (FSM) whose
internal state has two components:

– a linearly updated component, called buffer, b = b0b1 · · · b15 , where each bi

is a 64-bit word; the size of this component is 1024 bits

– a nonlinearly updated component, called state, a = a0a1a2 , where each ai

is a 64-bit word; the size of this component is 192 bits.

The next-state or update function is invertible and has two components, φ =
(ρ, λ) , where ρ updates a and λ updates b, that is, (a(t+1), b(t+1)) = (ρ(a(t), b(t)),
λ(a(t), b(t))).

The ρ component is a nonlinear function defined in terms of an invertible
(64 × 64)−bit function F by a kind of Feistel structure. More precisely:
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word x, <ix and >ix denote the rotations of x by i bits to the left and right,
respectively. The function F is derived from the round function of AES and is
a composition of (G,G) and a permutation of 8 bytes, where a (32 × 32)−bit
function G is a composition of a parallel combination of 4 (8 × 8)−bit S-boxes
and a linear (32 × 32)−bit function, MixColumn, of AES (see [2]). The byte-
permutation is (4,5,2,3,0,1,6,7) and C1 and C2 are 64-bit constants.

The λ component is a linear function defined by the following equations:
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The λ function is invertible for any given a
(t)
0 .

The 64-bit output of the keystream generator at time t is defined as a
(t)
2 .

The initial internal state of the keystream generator is produced from a 128-
bit secret key K and a 128-bit initialization vector IV in three stages, by using
the keystream generator itself. In the first two stages only ρ is used and in the
third stage both ρ and λ are used. At the beginning of the third stage, the initial
value of a, a(0), depends on both K and IV , but the initial value of the buffer
b, b(0), depends on K only. The third stage consists of iterating φ (i.e., both

ρ and λ) 15 times, without producing the output (a
(t)
2 )15t=0, and the keystream

generation starts from the 16-th iteration on.



3 Analysis of Buffer

In this section, the buffer is analyzed as a non-autonomous LFSM with one

input sequence, namely, a0 = (a
(t)
0 )∞t=0. The input sequence and all the internal

sequences in the buffer are 64-bit sequences. Our objective is to derive expressions
for the internal sequences in the buffer in terms of the input sequence a0 and

the initial state of the buffer, b(0) = b
(0)
0 b

(0)
1 · · · b

(0)
15 .

In view of the λ update function, the 16 internal sequences in the buffer can
be divided in three groups, in each group the sequences being phase shifts of
each other (see Fig. 1, where Rj denotes the rotation by j bits to the left, which
is a linear transformation of a 64-bit word).

Fig. 1. The buffer as LFSM.

3.1 Linear Recurrences

¿From the λ update function, we directly obtain the following linear recurrences,
all holding for t ≥ 1:
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In vectorial notation where vectors are represented as one-column matrices, R32

is represented as a matrix. The initial state of the buffer can now be represented

as (b
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This is a system of two 64-bit linear recurrences (that is, 128 binary linear
recurrences) in terms of 64-bit sequences b4 and b10, where a0 is regarded as a
given 64-bit sequence.



3.2 Generating Functions

The system can be solved by using the generating function technique dealing with
the z-transforms of 64-bit sequences. In vectorial notation, the z-transforms or
generating functions of b4, b10, and a0 are defined as formal power series
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respectively. It is shown in the Appendix how to convert the system (4) of linear
recurrences from the time domain into the generating function domain. Namely,
letting I denote the 64 × 64 identity matrix, we thus obtain the representation

(1 ⊕ z4)B4 ⊕ z10B10 = z5A0 ⊕ ∆1 (6)

z6B4 ⊕ (I ⊕ z4R32)B10 = ∆2 (7)
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are 64-dimensional vectors (64 × 1 matrices) whose elements are polynomials
in z defined by the initial state of the buffer and whose degrees are at most 9
and 5, respectively. Essentially, we obtain a system of 128 linear equations with
coefficients being polynomials in z and with unknowns being 128 generating
functions of 64 binary sequences in b4 and 64 binary sequences in b10.

3.3 Solution

The system has a unique solution which can be found in the following way. First,
by elimination we obtain

F (z)B4 = z5(I ⊕ z4R32)A0 ⊕ (I ⊕ z4R32)∆1 ⊕ z10∆2 (10)

F (z)B10 = z11A0 ⊕ z6∆1 ⊕ (1 ⊕ z4)∆2 (11)

where

F (z) = I ⊕ z4(I ⊕ R32) ⊕ z8R32 ⊕ z16I (12)

denotes a 64 × 64 matrix whose coefficients are polynomials in z of degree at
most 16.



When regarded over a field of rational functions in z, F (z) is invertible as is
seen from the following equation:

F (z)F (z) = (I ⊕ z4(I ⊕ R32) ⊕ z8R32 ⊕ z16I)2

= I ⊕ z8(I ⊕ R2
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because of R2
32 = I. Thus we get that F (z)/f(z) is the inverse of F (z), where
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Accordingly, we obtain the solution for the generating functions B4 and B10

in the form of

B4 =
1

f(z)
z5G(z)A0 ⊕

1

f(z)
∆′

1

=
1

1 ⊕ z48
z5(1 ⊕ z16)G(z)A0 ⊕

1

1 ⊕ z48
(1 ⊕ z16)∆′

1 (15)

B10 =
1

f(z)
z11F (z)A0 ⊕

1

f(z)
∆′

2

=
1

1 ⊕ z48
z11(1 ⊕ z16)F (z)A0 ⊕

1

1 ⊕ z48
(1 ⊕ z16)∆′

2 (16)

where

G(z) = F (z)(I ⊕ z4R32) = (1 ⊕ z ⊕ z2 ⊕ z3 ⊕ z4)4I ⊕ z20R32 (17)

denotes a 64 × 64 matrix whose coefficients are polynomials in z of degree at
most 20, and
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are 64-dimensional vectors (64× 1 matrices) whose elements are polynomials in
z defined by the initial state of the buffer and whose degrees are at most 31.

3.4 Discussion

Both b4 and b10 have two components, one being a linear transform of the input
sequence a0 to the buffer and the other being a linear transform of the initial
conditions contained in ∆1 and ∆2. For both b4 and b10, the other, intrinsic
component consists of 64 binary linear recurring subsequences each produced by
an LFSR with the feedback polynomial f(z), or alternatively, by a cycling LFSR
with the feedback polynomial 1 ⊕ z48. The following properties should then be
considered as serious weaknesses of the buffer design.



– The exponent (period) of f(z) is only 48; the period of each of the intrinsic
binary subsequences is thus equal to 48 or divides 48.

– The degree of f(z) is only 32, and with an appropriate design it could have
been as large as 1024, which is the bit-size of the internal state of the buffer.

– Due to their extremely small period, the statistical properties of the intrinsic
binary subsequences are very bad.

– In common designs of keystream generators, the linear component, with the
feedback from the nonlinear component disconnected, ensures a large period
of the corresponding internal state sequence which itself very likely provides
a lower bound on the period of the keystream sequence as well as good
statistical properties. Consequently, the design of MUGI does not satisfy
this criterion.

– The polynomial f(z) defines a linear sequential transform of any buffer se-
quence, in particular b4 or b10, that is equal to a linear sequential transform
of the input sequence, which is produced by the nonlinear component. Its
low degree, 32, small number of nonzero coefficients, 3, and small period, 48,
facilitate the initial state reconstruction and finding statistical distinguishers
for the keystream sequence (see Sections 4 and 5).

– The intrinsic binary subsequences do not depend on the initialization vector,
but only on the secret key. Namely, for each 1 ≤ j ≤ 64, the j-th binary

subsequence of both b4 and b10 solely depends on (b
(0)
i,j )15i=0(b

(0)
i,(j+32)mod 64

)15i=0,

that is, on the j-th and the (j + 32)mod 64-th binary subsequences of b(0),
which are defined by 32 secret key bits only. This is because the mixing
between different binary subsequences in the buffer, provided by the linear
transform R32, is not good. Divide-and-conquer secret key reconstruction
attacks may be facilitated by this property.

4 Elimination of Buffer

The obtained expressions (15) and (16) for the generating functions of the 64-
bit buffer sequences b4 and b10, respectively, can be transformed into the time
domain and then appropriately substituted in the recurrences (1) for the update
function ρ. In this way, we can derive the recurrences involving only the state
sequences a1 and a2, where the output sequence a2 is assumed to be known,

in the known plaintext scenario, except for the first 16 outputs (a
(t)
2 )15t=0, which

are discarded. Namely, from (1) we first eliminate a0 and use the fact that F is
invertible to get for t ≥ 0
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and (16) into the time domain we get the following linear recurrences holding



for t ≥ 48:
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Finally, by combining (20) with (22) and (21) with (23), we get the following
recurrences involving a1 and a2 only, which hold for t ≥ 48:
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The recurrences are nonlinear because of nonlinear F−1. As the first 16 outputs
are not known, it is interesting to consider (24) and (25) only for t ≥ 64.

One can also obtain different recurrences by using the polynomial f(z) of
degree 32 instead of the polynomial 1⊕ z48. They will hold for t ≥ 32, but each
will involve F−1 three times which makes them less useful. In principle, there
are at least two general ways of using the recurrences (24) and (25).

– One way is to try to eliminate a1, possibly with certain approximation prob-
abilities, thus yielding a recurrence in a2 holding with a certain probability
which will represent a statistical distinguisher between the keystream se-
quence and a purely random sequence (see Section 5).

– The other way is to assume that a2 is known, in the known plaintext scenario,
and try to solve the corresponding nonlinear equations for a1, possibly by
an algebraic approach or a probabilistic approach using approximations to
the nonlinear equations.



5 Linear Cryptanalysis of MUGI

A general way of conducting the linear cryptanalysis of stream ciphers is to lin-
earize the (vectorial) next-state function and the output function, with certain
approximation probabilities, and to analyze the LFSM resulting from these lin-
ear approximations (see [3], [4], [5], and [6]). In particular, this method is also
applicable if only one bit of the internal state is known at a time. This is es-
sentially different from the linear cryptanalysis of iterated block ciphers where
one concatenates mutually correlated linear functions of the input and output
to the round function. The obtained LFSM is in fact an LFSM approximation
to the keystream generator, which itself is a nonlinear autonomous FSM. Our
objective here is to present a framework for conducting the linear cryptanalysis
of MUGI by using the results from Sections 3 and 4.

Linearizing the next-state function of MUGI reduces to linearizing the non-
linear function F or its inverse F−1. More precisely, we linearize equations (20)
and (21), where, for convenience, t− 1 is substituted for t, and the sequences b4

and b10 are determined by (15) and (16), respectively. In turn, linearizing F−1

reduces to linearizing the S-boxes of AES. The effectiveness of the linear crypt-
analysis depends on the underlying linear approximations and the corresponding
approximation probabilities.

A linear approximation to an S-box is a pair of input, α, and output, β, linear
functions with a nonzero correlation coefficient c(α, β) = Pr(α = β)−Pr(α 6= β).
It is well known that the maximal correlation coefficient magnitude is 1/8. This
value is relatively small, but allows a lot of freedom when choosing the linear
approximations. In particular, for any given α, there are 5 values of β with
c(α, β) = 1/8, 16 values of β with c(α, β) = 7/64, and 36 values of β with
c(α, β) = 6/64.

A linear approximation to F−1 consists of linear approximations to the 64
component Boolean functions and each of the 64 correlation coefficients is deter-
mined by the corresponding active S-box. More generally, one can also consider
linear approximations to any 64 linearly independent linear combinations of the
64 component Boolean functions of F−1. In this case more than just one S-box
can be active for each linear combination considered, so that the resulting corre-
lation coefficient is the product of the involved correlation coefficients of active
S-boxes. In the more general scenario, let L2 define a set of 64 linear approxima-
tions to 64 linearly independent linear combinations of the component Boolean
functions of F−1 defined by L1F

−1. More precisely, an invertible matrix L1 is
first applied to both (20) and (21) and then a matrix L2 is substituted for L1F

−1

on the right-hand sides of the equations. We thus get
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where e1 and e2 are the 64-bit approximation-error sequences whose binary com-
ponent subsequences are expressed as nonbalanced Boolean functions of the cor-



responding inputs to F−1. The greater the imbalance, the better the underlying
linear approximations.

Equations (26) and (27) in fact define an LFSM with input sequences e1

and e2. The LFSM can be solved for a1 and a2 by using the generating function

method. Let A1, A2, E1, E2, and A0 = zA1⊕a
(0)
0 denote the generating functions

of a1, a2, e1, e2, and a0, respectively. Then after some algebraic manipulations,
by using the expressions (15) and (16) for B4 and B10, in terms of 1 ⊕ z48,
respectively, we get
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Note that ∆′′

1 and ∆′′

2 are 64-dimensional vectors whose elements are polynomials
in z defined by the initial state of the whole keystream generator (b(0) and

a
(0)
0 a

(0)
1 a

(0)
2 ) and whose degrees are at most 49. Here E1 and E2 are generating

functions of unknown, but nonbalanced sequences, so that (28) and (29) in fact
constitute a system of binary linear recurrences each holding with a probability
different from one half.

To eliminate the unknown A1 from the system, assume for simplicity that
F1(z) is invertible, where F1(z)−1 = F1(z)∗/det F1(z), F1(z)∗ being the adjunct
matrix of F1(z). (As L1 is invertible, it is likely that F1(z) or F2(z) are invertible.)
We then obtain a correlation equation

F2(z)F1(z)∗∆′′

1 ⊕ det F1(z)∆′′

2

1 ⊕ z48
= (F2(z)F1(z)∗E1 ⊕ det F1(z)E2)
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In the time domain, the left-hand side of (34) is a 64-bit sequence, x , in
the generating function domain denoted as X, which depends on the initial
conditions, and the last two terms on the right-hand side of (34) are linear se-
quential transforms of the (known) sequence a2 and of the constant sequences
corresponding to C1 and C2 , respectively. The first term on the right-hand side
of (34), E = F2(z)F1(z)∗E1 ⊕ det F1(z)E2, is the noise term depending on the
performed linear approximations. Consequently, (34) means that the linear recur-
ring sequence x depending on the initial conditions which is ultimately periodic
with period of only 48 (or smaller) is termwise correlated to a linear sequen-
tial transform of a2 and of the constant sequences corresponding to C1 and C2.
Equivalently, this is the case for each of the 64 constituent binary subsequences.

5.1 Initial State Reconstruction

If t = 0 is taken as the initial time, then the first 16 elements of the output

sequence, (a
(t)
2 )15t=0, are unknown, and the initial state of the buffer, b(0) , rep-

resented through ∆1 and ∆2, depends on the secret key only. Alternatively, if
t = 16 is taken as the initial time, then the output sequence is known, but the
initial state of the buffer, b(16), depends on the initialization vector as well. Note

that the initial state of MUGI, b(0) and a
(0)
0 a

(0)
1 a

(0)
2 , can be obtained from any

internal state of MUGI (e.g., b(16) and a
(16)
0 a

(16)
1 a

(16)
2 ) by reversing the next-state

function. Furthermore, the 128-bit secret key can be obtained from b
(0)
0 b

(0)
1 by

reversing the update function ρ.
The effectiveness of the correlation equation (34) is determined by how much

the probabilities for the 64 underlying binary noise subsequences of the resulting
noise sequence e deviate from one half. Let ci = 1 − 2pi denote the (positive
or negative) correlation coefficient of the i-th binary noise subsequence of e,
where pi is the probability that the noise bit is equal to 1. The correlation
coefficients of the involved approximation-error sequences e1 and e2 depend on
the linearization of S-boxes and their magnitudes are equal to 2−3 or are close
to this value if only one S-box is active per each linear approximation involved.
If we assume that these subsequences are mutually independent sequences of
mutually independent and identically distributed binary random variables, then
the correlation coefficient magnitude is given as |ci| = 2−3mi where mi is the
total number of binary terms from e1 and e2 present in this subsequence, that
is, the total number of nonzero binary coefficients of the polynomials in the i-th
row of F2(z)F1(z)∗ and in detF1(z). Here we used a well-known fact that the
correlation coefficient of a binary sum of mutually independent binary random
variables is equal to the product of their individual correlation coefficients (see
also the piling-up lemma from [7]).

Accordingly, the periodic part of the 64-bit linear recurring sequence x, that
is, any corresponding segment composed of 48 consecutive 64-bit words can in
principle be statistically reconstructed by a sort of repetition attack based on
the fact that any bit of the periodic part of x is repeated with period 48. If c
denotes the underlying correlation coefficient for a considered bit of x, then the



bit can be reconstructed by the mojority count from the given output segment
of length O(48c−2) with complexity O(c−2). It is easy to see that the periodic

part of x depends (linearly) only on b(0) and a
(0)
0 and not on a

(0)
1 . Namely, this

is due to

X =
(1 ⊕ z16)F2(z)F1(z)∗

(

zL1∆
′

1 ⊕ z6L1G(z)a
(0)
0

)

1 ⊕ z48

⊕
detF1(z)(1 ⊕ z16)

(

zL1R17∆
′

2 ⊕ z12L1R17F (z)a
(0)
0

)

1 ⊕ z48

⊕ F2(z)F1(z)∗L2a
(0)
1 ⊕ det F1(z)

(

zL2a
(0)
0 ⊕ L2a

(0)
2

)

(35)

where ∆′

1 and ∆′

2 depend only on b(0). Accordingly, the initial time of the 48-
word segment of x to be reconstructed should on one hand be sufficiently large

so as to render the terms depending on a
(0)
1 and a

(0)
2 in (35) vanish and, on the

other, should be at least 16 so that the involved terms of the output sequence
a2 in (34) are all known.

The recovered 48 64-bit words of the periodic part of x define a system of
48 · 64 binary linear equations in the unknown 17 · 64 initial state bits, b(0) and

a
(0)
0 , which can then be obtained by solving the system. The 128-bit secret key

can be obtained from b
(0)
0 b

(0)
1 by reversing the update function ρ.

Alternatively, if the objective is to recover the initial state of MUGI, regard-
less of the initialization algorithm and the secret key, but taking into account the

fact that the first 16 elements of the output sequence, (a
(t)
2 )15t=0, are unknown,

then t = 16 should be taken as the initial time, b(16) and a
(16)
0 should be recon-

structed by the repetition attack described above, and the 64 bits of a
(16)
1 can be

reconstructed by the exhaustive search in view of the fact that a
(16)
2 is known.

Finally, the initial state, b(0) and a
(0)
0 a

(0)
1 a

(0)
2 , is then obtained from the internal

state b(16) and a
(16)
0 a

(16)
1 a

(16)
2 by reversing the next-state function.

The feasibility of the attack can be estimated by computing the noise correla-
tion coefficients, as described above, for different vectorial linear transformations
L1 and L2. Assuming for simplicity that the underlying correlation coefficient
|c| = 2−3m is the same for all the bits of x to be reconstructed, the attack would
in theory be effective if it is faster than the exhaustive search over the initial
states. Note that the exhaustive search requires 18 64-bit output values to be pro-
duced for each guessed initial state or, more precisely, for each guessed internal
state at time t = 16. Roughly speaking, the attack is effective if 48 ·26m < 218·64,
that is, if m ≤ 191, where the underlying complexity units are assumed to be
the same. Of course, it has to be noted that the required output sequence length
would be of the same order of magnitude as the complexity.



5.2 Linear Statistical Weakness

The equation (34) can also be put into the form

L(z)A2 =
1 ⊕ z48

1 ⊕ z
(F2(z)F1(z)∗C1 ⊕ det F1(z)C2)

⊕ (F2(z)F1(z)∗∆′′

1 ⊕ det F1(z)∆′′

2) ⊕ (1 ⊕ z48)E (36)

where the matrix L(z) = (1 ⊕ z48)(zF2(z)F1(z)∗ ⊕ det F1(z)I) defines a linear
sequential transform of the output sequence a2. This equation specifies a lin-
ear statistical distinguisher between the output sequence and a purely random
sequence.

Namely, all the terms except the noise term on the right-hand side of (36) are
polynomials in z and as such vanish in the time domain after a sufficiently large
t depending on the degrees of the involved polynomials. So, (36) means that a
linear sequential transform of the output sequence is termwise correlated to the
all-zero 64-bit sequence where the approximation/correlation noise is defined by
(1 ⊕ z48)E. Equivalently, the 64 constituent binary subsequences, obtained as
linear sequential transforms of the output sequence, are bitwise correlated to the
all-zero binary sequence, where the corresponding correlation coefficients can
be approximated as squares of the correlation coefficients of the corresponding
binary noise subsequences of e. If c is such a correlation coefficient, then the
output sequence length required for detecting the weakness in the corresponding
binary subsequence is O(c−4). The output sequence length required to detect
the weakness by using all the 64 subsequences is then O(c−4/64).

The feasibility of the attack can be estimated by computing the noise cor-
relation coefficients for different vectorial linear transformations L1 and L2. As-
suming for simplicity that the underlying correlation coefficient |c| = 2−3m is
the same for all the bits of x to be reconstructed, the attack would in theory be
effective if the total required output sequence length, proportional to the com-
plexity, is smaller than the expected period for the size of the internal state, that
is, if 212m/64 < 218·64, that is, if m ≤ 96.

6 Conclusions

Our main finding is that the linearly updated component of MUGI, the so-
called buffer, is not designed properly. It is proven that if the feedback from the
nonlinearly updated component is disconnected, then the binary subsequences of
the buffer, comprising its intrinsic response, are linear recurring sequences with
the linear complexity of only 32 and with the period of only 48. Accordingly,
the buffer neither provides a large lower bound on the period nor ensures good
statistics of the output sequences of MUGI, unlike the usual designs of keystream
generators. Furthermore, as each such subsequence depends on only 32 bits of
the initial state of the buffer, the mixing between the 1024 bits of the initial state



of the buffer is not good. In addition, it is pointed out that the 128-bit secret
key can directly be recovered from the reconstructed internal state of MUGI at
any time, which is not desirable.

As a consequence of this small period, it is shown that the buffer sequence
can be eliminated from the update equations for the nonlinearly updated compo-
nent of MUGI, the so-called state, thus yielding nonlinear recurrences involving
only the output sequence and a part of the state sequence. It is then pointed out
how the weakness of the buffer can be used to facilitate the linear cryptanalysis
of MUGI. This is achieved by developing a framework for the linear cryptanal-
ysis with two main objectives: to reconstruct the initial state or the secret key
and to find linear statistical distinguishers for MUGI. This framework can be
used for future experiments to investigate if the proposed attacks are feasible.
More precisely, the feasibility depends on the magnitude of the corresponding
correlation coefficients which can be estimated by examining the corresponding
matrices with polynomial elements that result from the chosen linearizations of
the S-boxes.

Appendix: Generating Function Representation

Firstly, by virtue of (5), the system of linear recurrences (4) results in

∞
∑

t=0

b
(t)
4 zt = z4

∞
∑

t=5

b
(t−4)
4 zt−4 ⊕ z10

∞
∑

t=5

b
(t−10)
10 zt−10 ⊕ z5

∞
∑

t=5

a
(t−5)
0 zt−5 (37)

∞
∑

t=0

b
(t)
10 zt = z6

∞
∑

t=1

b
(t−6)
4 zt−6 ⊕ z4R32

∞
∑

t=1

b
(t−4)
10 zt−4. (38)

Then, we get

(1 ⊕ z4)B4 ⊕ z10B10 = z5A0 ⊕

4
∑

t=0

b
(t)
4 zt ⊕ z4b

(0)
4 ⊕

9
∑

t=5

b
(t−10)
10 zt

= z5A0 ⊕ (1 ⊕ z4)b
(0)
4 ⊕

4
∑

t=1

(b
(t−4)
4 ⊕ b

(t−4)
0 )zt ⊕

9
∑

t=5

b
(t−10)
10 zt

= z5A0 ⊕ b
(0)
4 ⊕ z4b

(0)
0 ⊕

3
∑

t=1

(b
(t−4)
4 ⊕ b

(t−4)
0 )zt ⊕

9
∑

t=5

b
(t−10)
10 zt (39)

(I ⊕ z4R32)B10 ⊕ z6B4 =

5
∑

t=1

b
(t−6)
4 zt ⊕ b

(0)
10 ⊕ R32

3
∑

t=1

b
(t−4)
10 zt. (40)

By using the simplified notation (8) and (9), we then directly obtain (6) and (7).
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3. J. Dj. Golić, “Correlation via linear sequential circuit approximation of combiners

with memory,” Advances in Cryptology - EUROCRYPT ’92, Lecture Notes in

Computer Science, vol. 658, pp. 124-137, 1993.
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