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Abstract. In this paper we study the minimum distance between the set
of bent functions and the set of 1-resilient Boolean functions and present
a lower bound on that. The bound is proved to be tight for functions up
to 10 input variables. As a consequence, we present a strategy to modify
the bent functions, by toggling some of its outputs, in getting a large
class of 1-resilient functions with very good nonlinearity and autocorre-
lation. In particular, the technique is applied upto 12-variable functions
and we show that the construction provides a large class of 1-resilient
functions reaching currently best known nonlinearity and achieving very
low autocorrelation values which were not known earlier. The technique
is sound enough to theoretically solve some of the mysteries of 8-variable,
1-resilient functions with maximum possible nonlinearity. However, the
situation becomes complicated from 10 variables and above, where we
need to go for complicated combinatorial analysis with trial and error
using computational facility.
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1 Introduction

Construction of resilient Boolean functions with very good parameters in terms
of nonlinearity, algebraic degree and other cryptographic parameters has re-
ceived lot of attention in literature [15, 16, 18, 19, 8, 21, 2, 3]. In [17, 7], it had
been shown how bent functions can be modified to construct highly nonlinear
balanced Boolean functions. A recent construction method [12] presents modi-
fication of some output points of a bent function to construct highly nonlinear
1-resilient function. A natural question that arises in this context is “at least
how many bits in the output of a bent function need to be changed to construct
an 1-resilient Boolean function”. The answer of this question gives the minimum
distance between the set of bent functions and the set of 1-resilient functions.



We here try to answer this question and show that the minimum distance for
n-variable functions is
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fied. We also show that this result is tight for n ≤ 10. The immediate corol-
lary is the construction of 1-resilient Boolean functions with nonlinearity ≥
2n−1−2

n
2−1−dBRn(1) and maximum absolute value of autocorrelation spectra

≤ 4 dBRn(1). Interestingly, it is possible to get 1-resilient functions with better
nonlinearity and autocorrelation than these bounds. In particular, we concen-
trate on construction of 1-resilient Boolean functions up to 12-variables with
best known nonlinearity and autocorrelation. Throughout the paper we consider
the number of input variables (n) is even.

The bent functions chosen in [12, Section 3] use the concept of perfect non-
linear functions and one example function each for 8, 10 and 12 variables were
presented. However, it is not clear how a generalized construction of such bent
functions can be achieved in that manner. We here identify a large subclass of
Maiorana-McFarland type bent functions which can be modified to get 1-resilient
functions with currently best known parameters. Further our construction is su-
perior to [12] in terms of number of points that need to be toggled (we need less
in case of 10, 12 variables), the nonlinearity (we get better nonlinearity for 12
variables) and autocorrelation (we get 1-resilient functions with autocorrelation
values that were not known earlier for 10, 12 variables).

1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1}n
into {0, 1}. A Boolean function f(x1, . . . , xn) is also interpreted as the output
column of its truth table f , i.e., a binary string of length 2n,
f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].

The Hamming distance between two binary strings S1, S2 is denoted by
d(S1, S2), i.e., d(S1, S2) = #(S1 6= S2). Also the Hamming weight or simply
the weight of a binary string S is the number of ones in S. This is denoted by
wt(S). An n-variable function f is said to be balanced if its output column in
the truth table contains equal number of 0’s and 1’s (i.e., wt(f) = 2n−1).

Denote addition operator over GF (2) by ⊕. An n-variable Boolean function
f(x1, . . . , xn) can be considered to be a multivariate polynomial overGF (2). This
polynomial can be expressed as a sum of products representation of all distinct
k-th order products (0 ≤ k ≤ n) of the variables. More precisely, f(x1, . . . , xn)
can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representation of f is
called the algebraic normal form (ANF) of f . The number of variables in the



highest order product term with nonzero coefficient is called the algebraic degree,
or simply the degree of f and denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. The set of all n-
variable affine (respectively linear) functions is denoted by A(n) (respectively
L(n)). The nonlinearity of an n-variable function f is

nl(f) = min
g∈A(n)

d(f, g),

i.e., the distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to {0, 1}n and

x · ω = x1ω1 ⊕ . . .⊕ xnωn.

Let f(x) be a Boolean function on n variables. Then the Walsh transform of
f(x) is a real valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n
(−1)f(x)⊕x·ω.

In terms of Walsh spectra, the nonlinearity of f is given by

nl(f) = 2n−1 − 1
2

max
ω∈{0,1}n

|Wf (ω)|.

For n-even, the maximum nonlinearity of a Boolean function can be 2n−1−2
n
2−1

and the functions possessing this nonlinearity are called bent functions [14].
Further, for a bent function f on n variables, Wf (ω) = ±2

n
2 for all ω.

In [9], an important characterization of correlation immune and resilient
functions has been presented, which we use as the definition here. A function
f(x1, . . . , xn) is m-resilient (respectively m-th order correlation immune) iff its
Walsh transform satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m (respectively Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m).

As the notation used in [15, 16], by an (n,m, d, σ) function we denote an
n-variable, m-resilient function with degree d and nonlinearity σ.

We will now define restricted Walsh transform which will be frequently used
in this text. The restricted Walsh transform of f(x) on a subset S of {0, 1}n is
a real valued function over {0, 1}n which is defined as

Wf (ω)|S =
∑
x∈S

(−1)f(x)⊕x·ω.

Now we present the following technical result.

Proposition 1. Let S ⊂ {0, 1}n and b(x), f(x) be two n-variable Boolean func-
tions such that f(x) = 1 ⊕ b(x) when x ∈ S and f(x) = b(x) otherwise. Then
Wf (ω) = Wb(ω)− 2Wb(ω)|S.



Proof. Take ω ∈ {0, 1}n. Now

Wf (ω) =
∑
x∈{0,1}n(−1)f(x)⊕ω·x

=
∑
x∈{0,1}n−S(−1)f(x)⊕ω·x +

∑
x∈S(−1)f(x)⊕ω·x

=
∑
x∈{0,1}n−S(−1)b(x)⊕ω·x −

∑
x∈S(−1)b(x)⊕ω·x

(since f, b are same for the inputs /∈ S
and complement when the inputs ∈ S)

=
∑
x∈{0,1}n−S(−1)b(x)⊕ω·x +

∑
x∈S(−1)b(x)⊕ω·x − 2

∑
x∈S(−1)b(x)⊕ω·x

=
∑
x∈{0,1}n(−1)b(x)⊕ω·x − 2

∑
x∈S(−1)b(x)⊕ω·x

= Wb(ω)− 2Wb(ω)|S . ut

Propagation Characteristics (PC) and Strict Avalanche Criteria (SAC) [13]
are important properties of Boolean functions to be used in S-boxes. Further,
Zhang and Zheng [22] identified related cryptographic measures called Global
Avalanche Characteristics (GAC).

Let α ∈ {0, 1}n and f be an n-variable Boolean function. Define the auto-
correlation value of f with respect to the vector α as

∆f (α) =
∑

x∈{0,1}n
(−1)f(x)⊕f(x⊕α),

and the absolute indicator

∆f = max
α∈{0,1}n,α6=0

|∆f (α)|.

A function is said to satisfy PC(k), if ∆f (α) = 0 for 1 ≤ wt(α) ≤ k. Note that,
for a bent function f on n variables, ∆f (α) = 0 for all nonzero α, i.e., ∆f = 0.

Analysis of autocorrelation properties of correlation immune and resilient
Boolean functions has gained substantial interest recently as evident from [20,
23, 11, 4]. In [11, 4], it has been identified that some well known construction of
resilient Boolean functions are not good in terms of autocorrelation properties.
Since the present construction is modification of bent functions which possess
the best possible autocorrelation properties, we get very good autocorrelation
properties of the 1-resilient functions. We present a bound on the ∆f value of
the 1-resilient functions and further achieve best known autocorrelation values
for the cases n = 8, 10, 12.

2 The Distance

Initially we start with a simple technical result.

Proposition 2. dBRn(1) ≥ 2
n
2−1.

Proof. For a bent function b on n variables, Wb(ω) = ±2
n
2 . Hence the minimum

distance from a bent function to balanced functions equals 2
n
2−1. The 1-resilient

functions are balanced by definition and hence the result. ut



Now we present a restricted result. Let b(x) be an n-variable bent function
with Wb(ω) = +2

n
2 for wt(ω) ≤ 1. We denote by Mb(n, 1) the minimum number

of bits to be modified in the output column of b(x) to construct an n variable
1-resilient function from b(x).

Theorem 1. Let b(x) be an n-variable bent function with Wb(ω) = 2
n
2 for 0 ≤

wt(ω) ≤ 1. Then

Mb(n, 1) ≥ 2
n
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Proof. Let S ⊂ {0, 1}n and f(x) be an n-variable Boolean function obtained by
modifying the b(x) values for x ∈ S and keeping the other bits unchanged. Then
from Proposition 1, Wf (ω) = Wb(ω)−2Wb(ω)|S ∀ω, and in particular, Wf (ω) =
2
n
2 − 2Wb(ω)|S for 0 ≤ wt(ω) ≤ 1.

It is known that, f is 1-resilient iff Wf (ω) = 0 for 0 ≤ wt(ω) ≤ 1, i.e., iff
Wb(ω)|S = 2

n
2−1 for 0 ≤ wt(ω) ≤ 1. Thus, our problem is to find a lower bound

on |S| = k with the constraint Wb(ω)|S = 2
n
2−1 for 0 ≤ wt(ω) ≤ 1.

Given S = {xi1 , xi2 , . . . , xik} ⊂ {0, 1}n, consider the matrices

Sk×n = (xi1 , xi2 , . . . , xik)T , b(S)k×1 = (b(xi1), b(xi2), . . . , b(xik))T ,

and (S⊕ b(S))k×n = (xi1 ⊕ b(xi1), xi2 ⊕ b(xi2), . . . , xik ⊕ b(xik))T .

By AT we mean transpose of a matrix A. Also by abuse of notation, xij ⊕ b(xij )
means the GF(2) addition (XOR) of the bit b(xij ) with each of the bits of xij .

Now Wb(ω)|S = 2
n
2−1 for 0 ≤ wt(ω) ≤ 1 implies that there are exactly

k
2 − 2

n
2−2 many 1’s in b(S) and in each column of S ⊕ b(S). Since all the rows

of S are distinct and further b(S) contains k
2 + 2

n
2−2 many 0’s, S⊕ b(S) should

contain at least k
2 + 2

n
2−2 distinct rows.

Consider that one such matrix S ⊕ b(S) is formed. The number of 1’s in
the matrix is exactly n× (k2 − 2

n
2−2) as each column contains exactly k

2 − 2
n
2−2

many 1’s and there are n columns. We know that there must be at least k
2 +2

n
2−2

many distinct rows. Thus the total number of 1’s in these distinct rows must be
≤ n × (k2 − 2

n
2−2). Note that the minimum number of 1’s in k

2 + 2
n
2−2 many

distinct rows is at least
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(all the rows upto weight r and some of the rows with weight r + 1). Hence,
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This gives,
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Now we discuss how to choose this r. For this we need a easier lower bound
on k which does not depend on r itself.

From Proposition 2, k ≥ 2
n
2−1. We now show that k ≥ 2

n
2−1 + 2. This is

because, to construct an 1-resilient function form bent function, the number of
1’s in each column must be ≥ 1 (it cannot be 0 since then we will not be able
to get distinct rows). As number of 1’s in each column is k

2 − 2
n
2−2, we get

k
2 − 2

n
2−2 ≥ 1, and hence k ≥ 2

n
2−1 + 2.

Since, k2 + 2
n
2−2 number of distinct rows has to be filled, we need to find the
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As example, for n = 8, take r = 1 and 9 =
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n
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is satisfied. For n = 10, take r = 1 and
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Theorem 2. Let b(x) be any n-variable bent function. Then

dBRn(1) ≥ 2
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Proof. Without loss of generality, assume that Wb(ω) = +2
n
2 for wt(ω) = 0.

Let G1 = {ω|wt(ω) = 1,Wb(ω) = +2
n
2 } and G2 = {ω|wt(ω) = 1,Wb(ω) =

−2
n
2 }. Let S ⊂ {0, 1}n and f(x) be an n-variable Boolean function obtained by

modifying the b(x) values for x ∈ S and keeping the other bits unchanged. Then
from Proposition 1, Wf (ω) = Wb(ω)−2Wb(ω)|S ∀ω, and in particular, Wf (ω) =
2
n
2 −2Wb(ω)|S for wt(ω) = 0, ω ∈ G1 and Wf (ω) = −2

n
2 −2Wb(ω)|S for ω ∈ G2.

Given f is 1-resilient, we need to find a lower bound on |S| = k with the
constraints Wb(ω)|S = 2

n
2−1 for wt(ω) = 0 and ω ∈ G1 and Wb(ω)|S = −2

n
2−1

for ω ∈ G2.
Let |G1| = λ. Using the same argument as in the proof of Theorem 1, our

problem is to find a k×n binary matrix S⊕ b(S) with minimum number of rows
k such that there are λ columns with exactly k

2 −2
n
2−2 many 1’s in each column

and exactly k
2 +2

n
2−2 many 1’s in each of the remaining n−λ columns. Further,

there are at least k
2 + 2

n
2−2 distinct rows.

Let Mk×λ
1 (respectively Mk×(n−λ)

2 ) be a binary matrix with exactly k
2−2

n
2−2

(respectively k
2 +2

n
2−2) many 1’s in each column. Let J be the k×(n−λ) matrix

with all elements 1. Then the problem of “finding a binary matrix (M1 : M2)
with minimum number of rows k such that there are at least k

2 + 2
n
2−2 distinct



rows” is equivalent to “finding a binary matrix (M1 : J −M2) with minimum
number of rows k such that there are at least k

2 +2
n
2−2 distinct rows”. Note that

each column of (M1 : J −M2) contains exactly k
2 − 2

n
2−2 many 1’s. Thus, the

proof follows with the similar argument presented in Theorem 1. ut

For 8 ≤ n ≤ 16, it can be checked that
∑1
i=0

(
n
i

)
≤ 2

n
2−1 + 1 <

∑1+1
i=0

(
n
i

)
is

satisfied. In these cases, the lower bound on k is attained for r = 1 itself. Thus
we have the following result.

Corollary 1. For even n, 8 ≤ n ≤ 16, dBRn(1) ≥ 2
n
2−1 + 2

⌈
2
n
2 −n−2
n−2

⌉
.

Assume that one can construct a bent function b on n variables such that
dBRn(1) bits at the output column of b are changed to get an n-variable 1-
resilient function f . It is clear that toggling of a single bit can reduce the non-
linearity at most by 1 and increase the maximum absolute value of the autocor-
relation spectra (absolute indicator) by at most 4. Thus we have the following
result.

Theorem 3. nl(f) ≥ 2n−1 − 2
n
2−1 − dBRn(1) and ∆f ≤ 4 dBRn(1).

Proof. This follows from nl(f) ≥ nl(b) − dBRn(1) and ∆f ≤ ∆b + 4 dBRn(1),
where b is a bent function. ut

However, for the actual constructions of functions on 8, 10 and 12 variables,
we will show that we get better nonlinearity and autocorrelation values than
these bounds. For n = 4, 6, we refer the readers to Appendix A.

3 The 8-variable 1-resilient Functions

In the previous section we have presented a lower bound of the minimum distance
between the bent and 1-resilient functions. However, it has not been discussed
in Section 2 how exactly a construction is possible. Further to achieve the cur-
rently best known parameters (or even better than that, if possible) we may need
to consider some other issues. In this section we consider the construction of an
(8, 1, 6, 116) function. Construction of this function was an important open ques-
tion and the function has been first reported in [10] by interlinking combinatorial
technique and computer search. Later this function has also been found by meta
heuristic search (simulated annealing) in [5]. Further the function found in [5]
has ∆f = 24, which is currently the best known value. We here follow the similar
kind of technique used in [12]. In the course of discussion it will be clear that
how our technique is an improvement over [12]. We present a generalized con-
struction method of (8, 1, 6, 116) functions by modifying Maiorana-McFarland
type bent functions and in specific cases, these functions have the ∆f value as
low as 24, the best known one [5].

Construction 1 Take a bent function b(x) on 8 variables with the following
properties : (1) b(x) = 0 for wt(x) ≤ 1 and b(x) = 1 for wt(x) = 8, (2)
Wb(ω) = 16 for wt(ω) ≤ 1 and Wb(ω) = −16 for wt(ω) = 8. Define a set
S = {x ∈ {0, 1}8|wt(x) = 0, 1, 8}. Construct a function f(x) as :



f(x) = 1⊕ b(x), if x ∈ S
= b(x), otherwise.

From Corollary 1, we get that dBR8(1) ≥ 10 and we here choose exactly 10
positions and modify them. It is important to point out that we here start with
bent functions with some specific properties. The reason for choosing such bent
functions is to get an actual construction of 1-resilient function with very high
nonlinearity.

Before presenting the theorem regarding the properties of f , let us enumerate
the issues we improve here over the work presented in [12].

1. There is a gap in the proof of [12, Theorem 3]. Note the conditions imposed
on the bent function b above. In the statement of [12, Theorem 3], only the
conditions of item 1 has been considered and the conditions of the item 2
has not been considered as given in Construction 1. The conditions of item
2 has been implicitly assumed in the proof of [12, Theorem 3]. Fortunately,
the bent function considered in [12, Section 3] satisfies the conditions of item
2. However, it should be noted that there exist bent functions which satisfy
the conditions of item 1 and not all the conditions of item 2 and in that case
the proof of [12, Theorem 3] does not go through.

2. The bent function chosen in [12, Section 3] uses the concept of perfect non-
linear functions and they presented one example function which satisfies the
conditions of item 1 (and also conditions of item 2). However, it is not clear
how a generalized construction of such bent functions can be achieved in that
manner. It should also be noted that the example functions presented in [12]
are basically Maiorana-McFarland type, even though they are designed in a
different manner by using the concept of perfect nonlinear functions. We here
identify a subclass of Maiorana-McFarland type bent functions which satisfy
the conditions of both item 1 and 2. This gives a large class of (8, 1, 6, 116)
functions. In fact we show that there are more than 246.297 many distinct
(upto complementation) (8, 1, 6, 116) functions f with ∆f ≤ 40.

3. The proof of Theorem 4 below is much simpler than the proof of [12, Theorem
3] and it presents a clear picture of the Walsh spectra of the function f with
respect to the spectra of the function b.

Theorem 4. The function f(x) as described in Construction 1 is an
(8, 1, 6, 116) function.

Proof. Take ω ∈ {0, 1}8 with wt(ω) = i. Now

Wf (ω) =
∑
x∈{0,1}8(−1)b(x)⊕ω·x − 2

∑
x∈S(−1)b(x)⊕ω·x (from Proposition 1)

= Wb(ω)− 2 ( 8− 2wt(ω) + 2(wt(ω) mod 2) ).

Now we explain how the last step is deduced. Note that b(x) = 0 when wt(x) = 0
and b(x) = 1, when wt(x) = 8. Thus,∑

x∈{0,1}8|wt(x)=0,8(−1)b(x)⊕ω·x = 0, when wt(ω) is even,
= 2, when wt(ω) is odd.



Moreover,
∑
x∈{0,1}8|wt(x)=1(−1)b(x)⊕ω·x = 8− 2wt(ω), as

(i) b(x) = 0 when wt(x) = 1 and
(ii) ω · x = 1 at wt(w) input points when wt(x) = 1.

Since
∑
x∈S(−1)b(x)⊕ω·x =

∑
x∈{0,1}8|wt(x)=0,8(−1)b(x)⊕ω·x

+
∑
x∈{0,1}8|wt(x)=1(−1)b(x)⊕ω·x, we get,

Wf (ω) = Wb(ω)− 2 ( 8− 2wt(ω) + 2(wt(ω) mod 2) ).

When wt(ω) ≤ 1, Wf (ω) = Wb(ω) − 16 = 16 − 16 = 0. Thus the function is
1-resilient.

Further, if wt(ω) = 8, Wf (ω) = Wb(ω) + 16 = −16 + 16 = 0. For any other
choice, i.e., for 2 ≤ wt(ω) ≤ 7, we have |8 − 2wt(ω) + 2(wt(ω) mod 2)| ≤ 4 and
hence, |Wf (ω)| ≤ |Wb(ω)|+ 8 = 16 + 8 = 24. Hence, nl(f) = 28−1 − 24

2 = 116.
Since the function attains the maximum possible nonlinearity, the algebraic

degree [1, 3] of the function must be 8− 2 = 6. ut

wt(ω) 0 1 2 3 4 5 6 7 8

Wf (ω) = Wb(ω)+ -16 -16 -8 -8 0 0 8 8 16

Table 1. Relationship between Walsh spectra of f, g as described in Construction 1.

Based on Table 1 and the previous discussion, we get related results with
respect to (i) nonexistence of some 8-variable bent functions and (ii) some re-
lationship between 8-variable bent functions and balanced Boolean functions
with nonlinearity 118 (whose existence is not known till date). These results are
placed in Appendix B.

3.1 A Subclass of Maiorana-McFarland Bent Functions

The original Maiorana-McFarland class of bent function is as follows [6]. Con-
sider n-variable Boolean functions on (X,Y ), where X,Y ∈ {0, 1}n2 of the form
f(X,Y ) = X · π(Y ) + g(Y ) where π is a permutation on {0, 1}n2 and g is any
Boolean function on n

2 variables. The function f can be seen as concatenation
of 2

n
2 distinct (upto complementation) affine function on n

2 variables.
Once again we write what kind of bent function b(x) on 8 variables we require.

1. b(x) = 0 for wt(x) ≤ 1 and b(x) = 1 for wt(x) = 8,
2. Wb(ω) = 16 for wt(ω) ≤ 1 and Wb(ω) = −16 for wt(ω) = 8.

In this case, n = 8, i.e., n2 = 4. We have to decide what permutations π on {0, 1}4
and what kind of functions g on {0, 1}4 we can take such that the conditions on
b are satisfied. We present a set of conditions below, which taken all together,



provides sufficient condition for construction of such functions. Before going
into the conditions, let us fix the notation and ordering of input variables as x =
(x1, x2, x3, x4, x5, x6, x7, x8), X = (X1, X2, X3, X4), and Y = (Y1, Y2, Y3, Y4).
Further we identify X1 = x1, X2 = x2, X3 = x3, X4 = x4, Y1 = x5, Y2 = x6, Y3 =
x7, Y4 = x8.

1. First of all, the function b has the value 0 at the points (0, 0, 0, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0) and this condition is satisfied if we choose π(0, 0, 0, 0) =
(0, 0, 0, 0) and g(0, 0, 0, 0) = 0.

2. Next we need function b should have value 0 at points (0, 0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1), and this condition
is satisfied if we choose g(Y ) = 0 for wt(Y ) = 1.

3. We need b to be 1 when the input is (1, 1, 1, 1, 1, 1, 1, 1). Thus if π(1, 1, 1, 1) is
a vector of odd weight then g(1, 1, 1, 1) need to be 0. otherwise if π(1, 1, 1, 1)
is a vector of even weight then g(1, 1, 1, 1) has to be 1.

4. Since we have already decided that π(0, 0, 0, 0) = (0, 0, 0, 0) and g(0, 0, 0, 0) =
0, the Wf (ω) values for ω ∈ {(0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)} becomes +2

n
2 = 16.

5. Further if π(Y ) ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, then we take
g(Y ) = 0. This guarantees that Wf (ω) values for ω ∈ {(1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0)} becomes +2

n
2 =

16.
6. Lastly, if π(Y ) = (1, 1, 1, 1), we have to fix g(Y ) = (wt(Y ) + 1) mod 2. This

guarantees that Wf (1, 1, 1, 1, 1, 1, 1, 1) = −2
n
2 = −16.

Given a bent function from the Maiorana-McFarland class f(X,Y ) = X ·
π(Y ) + g(Y ), the dual of such function f is Y · π−1(X) + g(π−1(X)). It is
interesting to check whether the above points can be replaced by more precise
arguments using this idea.

Theorem 5. Let n = 8, x ∈ {0, 1}n and X,Y ∈ {0, 1}n2 . Let b(x) be a
Maiorana-McFarland type bent function b(x) = b(X,Y ) = X ·π(Y )+g(Y ) where
π is a permutation on {0, 1}n2 and g is a Boolean function on n

2 variables with
the following conditions.

(1) if Y = (0, 0, 0, 0), π(Y ) = Y ;
(2) if wt(π(Y )) ≤ 1, or wt(Y ) ≤ 1, then g(Y ) = 0;
(3) if Y = (1, 1, 1, 1), g(Y ) = (wt(π(Y )) + 1) mod 2;
(4) if wt(π(Y )) = 4, g(Y ) = (wt(Y ) + 1) mod 2.

Then (1) b(x) = 0 for wt(x) ≤ 1 and b(x) = 1 for wt(x) = 8, (2) Wb(ω) = 16
for wt(ω) ≤ 1 and Wb(ω) = −16 for wt(ω) = 8.

Further there are ≥ 246.297 many distinct b’s (upto complementation) sat-
isfying these conditions and in turn there are ≥ 246.297 many distinct (upto
complementation) (8, 1, 6, 116) functions.



Proof. The proof of the properties of b is discussed above in detail. The count of
such functions is arrived as follows. Note that there are 2

n
2 = 16 places for the

permutation π.
Let there are i many Y ’s, 0 ≤ i ≤ 4 such that wt(π(Y )) = 1 for wt(Y ) = 1.

There are 4 elements of weight 1 and 10 elements of weight 2 or 3. Thus the
π(Y )’s for wt(Y ) = 1 may be chosen in

(
4
i

)(
10

4−i

)
ways. Note that π(Y ) can not

be (1, 1, 1, 1) for wt(Y ) = 1. Now there are two cases.

1. Consider that π(1, 1, 1, 1) = (1, 1, 1, 1). Then the number of options is
(

4
i

)
·(

10
4−i

)
· 4! · 10! · 26+i. This is because the 4 elements where wt(Y ) = 1 can be

permuted in 4! ways. The 4 elements where wt(Y ) = 2, 3 can be permuted in
10! ways. The function g(Y ) is fixed when Y is (0, 0, 0, 0) (1 place, g(Y ) = 0)
or wt(Y ) = 1 (4 places, g(Y ) = 0) or wt(π(Y )) = 1 (4− i places, g(Y ) = 0)
or wt(Y ) = wt(π(Y )) = 4 (1 place, g(Y ) = 1). Thus g(Y ) is fixed in 10 − i
places and we can put any choice from {0, 1} for 16− (10− i) = 6 + i places.

2. Consider that π(1, 1, 1, 1) 6= (1, 1, 1, 1). Then the number of options is
(

4
i

)
·(

10
4−i

)
·10 ·4! ·10! ·25+i. Choose one element of wt(Y ) 6= 4 as π(1, 1, 1, 1). This

can be done in 10 ways. The 4 elements where wt(Y ) = 1 can be permuted in
4! ways. The 4 elements where wt(Y ) = 2, 3 can be permuted in 10! ways. The
function g(Y ) is fixed when Y is (0, 0, 0, 0) (1 place, g(Y ) = 0) or wt(Y ) = 1
(4 places, g(Y ) = 0) or wt(π(Y )) = 1 (4− i places, g(Y ) = 0) or wt(Y ) = 4
(1 place, g(Y ) = 1 if wt(π(Y )) = 0, else g(Y ) = 1) or wt(π(Y )) = 4 (1 place,
g(Y ) = (wt(Y ) + 1) mod 2). Thus g(Y ) is fixed in 11− i places and we can
put any choice from {0, 1} for 16− (11− i) = 5 + i places.

So the total number of options is 6
∑4
i=0

(
4
i

)
·
(

10
4−i

)
· 4! · 10! · 26+i = 6 · 4! · 10! ·

26
∑4
i=0

(
4
i

)
·
(

10
4−i

)
· 2i ≈ 246.297492. ut

Remark 1. Following Theorem 3, it is clear that for the function f as discussed
in Theorem 4, ∆f ≤ 40. Now we present the following specific case.

Consider π(Y ) = Y for all Y ∈ {0, 1}4, g(Y ) = 0 for all Y ∈ {0, 1}4 \
{(1, 1, 1, 1)} and g(Y ) = 1 for Y = (1, 1, 1, 1). Let b(x) = b(X,Y ) = X · π(Y ) +
g(Y ) and f(x) is as given in Construction 1. Then f is an (8, 1, 6, 116) function
with ∆f = 24.

Note that we get an (8, 1, 6, 116) function f with ∆f = 24 in this method
which has earlier been found by simulated annealing and linear transformation
in [5].

4 The 10-variable 1-resilient Functions

We here start with 10-variable bent functions. Theorem 1 and Theorem 2 do
not directly provide the idea how the exact construction of an 1-resilient func-
tion from a bent function is possible. Let us now describe a method where we



will be able to identify a subclass of 10-variable Maiorana-McFarland type bent
functions for this purpose.

As described in Section 2, we need to modify at least k = 22 points (see
Corollary 1). Now following Theorem 1 and Theorem 2, it is clear that we first
need to select k

2 + 2
n
2−2 = 19 distinct points. Note that we can have 1 point of

weight 0 and 10 points of weight 1. Thus we need to find out 8 more points from
weight 2. Once these 19 points are selected, further there are 3 more points to
be chosen.

S⊕ b(S) =



x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0


Now we refer to the S⊕ b(S) matrix given here. We present the first 19 points

and after the horizontal line we show the next 3 points. Note that the choice
of the all zero point and the points of weight 1 are clear from the discussion
in Theorem 1. However, it is still to be sorted out how exactly the 8 points of
weight 2 are chosen. We here do that by observation and choose the 8 points
of weight 2 out of total

(
10
2

)
= 45 weight 2 points. The rest 3 points (one of

weight 0 and other two of weight 2) are chosen properly to satisfy that weight
of each column should be k

2 − 2
n
2−2 = 3. Now we need a bent function b on 10

variables with the property that b(x) = 0 when x is any of the first 19 points
and b(x) = 1 when x is complement of any of the last 3 points. This means that
the last three rows need to be complemented when they will be considered as



input points in the function. Thus, we construct two sets S1, S2 as follows and
then denote S = S1 ∪ S2.
S1 = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
(0, 0, 0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1), (0, 0, 0, 1, 1, 0, 0, 0, 0, 0),
(0, 0, 1, 1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 1, 0, 0, 0, 0, 0)} and
S2 = {(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 1, 1)}.
Also consider
S′1 = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
(0, 0, 0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1)},
S3 = {(0, 0, 0, 0, 0, 0, 0, 1, 0, 1), (0, 0, 0, 0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 0, 0, 0, 1, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0, 1, 1),
(0, 0, 0, 0, 1, 1, 1, 0, 0, 1), (0, 0, 0, 0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)} and
S4 = {(0, 0, 1, 1, 1, 0, 0, 0, 0, 0), (0, 1, 1, 1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 1, 0, 0, 0), (1, 1, 0, 0, 1, 0, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0, 0, 0, 0, 0),
(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)}. We will talk about these sets S′1, S3 and S4 little later.

We now write the exact construction.

Construction 2 We need a 10-variable bent function b(x) with the following
properties:

1. b(x) = 0 when x ∈ S1 and b(x) = 1 when x ∈ S2,
2. Wb(ω) = +32 when ω ∈ S′1 ∪ S3 ∪ S4.

The function f(x) is as follows.

f(x) = 1⊕ b(x), if x ∈ S
= b(x), otherwise.

From Theorem 1, it is clear that the function f(x) is 1-resilient. Now we need
to calculate the nonlinearity of f . In fact, we will prove that nl(f) = 488, the
currently best known nonlinearity for 10-variable 1-resilient functions. By Propo-
sition 1, Wf (ω) = Wb(ω)−2Wb(ω)|S . Thus, it is important to analyse the values
of Wb(ω)|S for all ω ∈ {0, 1}10. However, this can not be done in a nice way as it
has been done in the 8-variable case in Theorem 4. So we use a computer program
to calculate Wb(ω)|S for all ω ∈ {0, 1}10. Note that when |Wb(ω)|S | ≤ 8, then at
those points |Wf (ω)| ≤ 48. Thus, we have no restriction on the Walsh spectra of
the bent function b at these points to get the nonlinearity 488 for f . However,
we need to concentrate on the cases when |Wb(ω)|S | ≥ 12. We have checked that
this happens when ω ∈ S′1 ∪ S3 ∪ S4 and all these values are either +12 or +16.
Thus as given in Construction 2, the Walsh spectra of the function b should
be +32 at these points. Hence Construction 2 provides 10-variable 1-resilient



functions having nonlinearity 488. Using similar technique as in Theorem 5, it
is possible to get the count of such functions.

Note that we have not yet discussed the algebraic degree and autocorrela-
tion properties of the functions. We now consider a specific case and check the
algebraic degree and autocorrelation property.

Take x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10), X = (X1, X2, X3, X4, X5),
and Y = (Y1, Y2, Y3, Y4, Y5). Further we identify X1 = x1, X2 = x2, X3 =
x3, X4 = x4, X5 = x5, Y1 = x6, Y2 = x7, Y3 = x8, Y4 = x9, Y5 = x10.

Consider a 10-variable Maiorana-McFarland type bent function

b(x) = b(X,Y ) = X · π(Y ) + g(Y ),

where π is a permutation on {0, 1}5 with π(Y ) = Y and g is a Boolean function
on 5 variables which is a constant 0 function. It can be checked that this bent
function satisfies the conditions required in Construction 2. Then we prepare f
as given in Construction 2. We checked that nonlinearity of f is 488, algebraic
degree is 8 and ∆f = 48. Now it is important to note the following two points.

1. The construction in [12, Theorem 4] required 26 points to be modified to
get 1-resilient function from a bent function. We here need only 22 points
to modify. Further, we have checked that the ∆f value of the function con-
structed in [12] is 64. The function we construct here has ∆f = 48 and this
is the best known value which is achieved for the first time here.

2. The (10, 1, 8, 488) function was first constructed in [10] and we have checked
that ∆f value is 320 for that function. Thus our construction provides better
parameter.

5 The 12-variable case

From Corollary 1, we find that dBR12(1) ≥ 42. However, it seems that it is
not possible to construct an 1-resilient function by toggling 42 bits of a bent
function. Instead we succeeded to construct a (12, 1, 10, 2000) function f , with
∆f = 120 by toggling 44 points of a bent function. Thus taking k = 44, we have
to first find k

2 + 2
n
2−2 = 38 distinct points. We select the all zero input point

and the twelve input points each of weight one. Now there are
(

12
2

)
= 66 input

points of weight two. Out of them we choose 38 − 13 = 25 points by trial and
error. These points are 2560, 2304, 2176, 2112, 1280, 1152, 1088, 640, 576, 320,
1536, 384, 40, 36, 34, 33, 20, 18, 17, 10, 9, 5, 24, 6, 2080 when written as decimal
integers corresponding to 12-bit binary numbers. We need a bent function such
that it will have output zero at these 38 input points. Next we take the six
input points 4095, 3055, 3575, 3835, 3965, 4030. We need a bent function which
provides output one at these six points. Now we present the bent function.

Take x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12),
X = (X1, X2, X3, X4, X5, X6), and Y = (Y1, Y2, Y3, Y4, Y5, Y6). Further we iden-
tify X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, X6 = x6, Y1 = x7, Y2 =



x8, Y3 = x9, Y4 = x10, Y5 = x11, Y6 = x12. Consider a 12-variable Maiorana-
McFarland type bent function b(x) = b(X,Y ) = X · π(Y ) + g(Y ) where π is
a permutation on {0, 1}6 with π(Y ) = Y , except the cases π(1, 1, 1, 1, 1, 0) =
(1, 1, 1, 1, 1, 1) and π(1, 1, 1, 1, 1, 1) = (1, 1, 1, 1, 1, 0). Here g is a Boolean func-
tion on 6 variables which is a constant 0 function.

The construction presented in [12] requires 54 points to be toggled and they
could achieve a nonlinearity 1996. Thus our construction is clearly better. Fur-
ther we get ∆f = 120 for the (12, 1, 10, 2000) function that we construct here.
This is the best known autocorrelation parameter which was not known earlier.

6 Conclusion

In this paper we present a lower bound on the minimum distance dBRn(1)
between bent and 1-resilient functions on n variables, where n is even. We have
also shown that it is possible to get 1-resilient functions by modifying exactly
dBRn(1) many bits for n = 4, 6, 8, 10 which shows that the minimum distance is
tight in these cases. For the case n = 12, we could not prove the bound is tight
as we need to toggle at least 44 points of a bent function to get an 1-resilient
function. The tightness of the bound for n ≥ 12 remains an open question and to
the best of our understanding, the bound is really not tight. The case for n = 8
could be nicely handled, but it starts to become complicated from n = 10 and
requires some computer simulation.

A lot of open questions are still to be solved. First of all, a relatively hard
question is to find out the minimum distance between bent and m-resilient func-
tions on n variables, which we may denote as dBRn(m). It seems natural that
dBRn(n − 2) > dBRn(n − 3) > . . . > dBRn(1), though it needs a proof. Note
that (n− 2)-resilient functions on n variables are basically the affine functions,
which are known to be at maximum distance from the bent function [14].

The functions we provide here possess currently best known parameters. The
upper bound on nonlinearity of 1-resilient functions is 2n−1 − 2

n
2−1 − 4 for n

even as described in [16]. The tightness of this bound [16] has been shown upto
n = 8. For n ≥ 10, there is no evidence of an 1-resilient function attaining that
bound [16]. Our construction modifies dBRn(1) > 2

n
2−1 many bits and it seems

unlikely that modifying these many bits will result in a fall of nonlinearity only
4 for n ≥ 10.
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Appendix A

We are not interested in the case n = 2, since there is no nonlinear 2-variable
1-resilient functions.

We now consider the cases for n = 4, 6. Note that r = 0 for these two cases
and then we arrive at dBR4(1) ≥ 4 and dBR6(1) ≥ 6. We have also checked that
this bound is tight since we can construct 4-variable (respectively 6-variable)
1-resilient function by changing 4 (respectively 6) output points of 4-variable
(respectively 6-variable) bent function.

For the 4-variable case, we have to take the rows of S⊕ b(S) as
{0001, 0010, 0100, 1000} due to the constraint that the number of 1’s in each
column has to be 1 and there are at least 3 distinct rows. Thus, take a bent
function with truth table 0000011001010011 and toggle the function at the inputs

{(0, 0, 0, 1), (0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1)}.

Then we get a (4, 1, 2, 4) function with the truth table 0110011011000011.
For the 6-variable case, take a bent function with truth table

0000000001011010001111000110011001101001001100110101010100001111 and
toggle the outputs at the input points {(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0),
(0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0), (1, 0, 1, 1, 1, 1)}.
Then we get a (6, 1, 4, 24) function with the truth table
0110100011011010001111000110011011101001001100100101010100001111.



Appendix B

Note that, in the Walsh spectra of a bent function on 8 variables, there are 120
values of +16 and 136 values of -16 or vice versa. It is known that even if that
condition is satisfied for some Walsh spectra, the inverse Walsh transform may
not produce a Boolean function. We here discuss that issue.

Lemma 1. Consider a function b(x) on 8 variables with the properties :

1. b(x) = 0 for wt(x) ≤ 1 and b(x) = 1 for wt(x) = 8,
2. Wb(ω) = 16 for wt(ω) ≤ 3 and Wb(ω) = −16 for wt(ω) ≥ 6.

This function can not be bent.

Proof. If such a function b is bent, then Table 1, we will get an 1-resilient function
with nonlinearity 120. This is a contradiction. ut

Corollary 2. Consider a function b(x) on 8 variables with the properties :

1. b(x) = 0 for wt(x) ≤ 3 and b(x) = 1 for wt(x) ≥ 6,
2. Wb(ω) = 16 for wt(ω) ≤ 1 and Wb(ω) = −16 for wt(ω) = 8.

Proof. The result follows from Lemma 1 and the duality property of bent func-
tions. ut

Next we present an important result related to the existence of balanced
8-variable function with nonlinearity 118.

Theorem 6. Take a bent function h(x) on 8 variables with the following prop-
erties :

1. h(x) = 0 for wt(x) ≤ 1 and h(x) = 1 for wt(x) = 8,
2. Wh(ω) = 16 for wt(ω) ≤ 2 and Wh(ω) = −16 for wt(ω) ≥ 6.

Define a set T = {x ∈ {0, 1}8|wt(x) = 1}. Construct a function g(x) as :

f(x) = 1⊕ h(x), if x ∈ T
= h(x), otherwise.

Then g is a balanced 8-variable function with nonlinearity 118.

Proof. The proof is similar to the proof of Theorem 4. ut

We have tried some heuristic search to find a bent function as mentioned in
Theorem 6, but could not get any. Getting such a bent function or proving its
nonexistence is an interesting open question.


