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Abstract. In 1985 Siegenthaler introduced the concept of correlation
attacks on LFSR based stream ciphers. A few years later Meier and
Staffelbach demonstrated a special technique, usually referred to as fast
correlation attacks, that is very effective if the feedback polynomial has a
special form, namely, if its weight is very low. Due to this seminal result,
it is a well known fact that one avoids low weight feedback polynomials
in the design of LFSR based stream ciphers.
This paper identifies a new class of such weak feedback polynomials,
polynomials of the form f(x) = g1(x) + g2(x)xM1 + . . . + gt(x)xMt−1 ,
where g1, g2, . . . , gt are all polynomials of low degree. For such feedback
polynomials, we identify an efficient correlation attack in the form of a
distinguishing attack.

1 Introduction

Stream cipher design and cryptanalysis are topics that have received lots of
attention recently, due to new interesting designs that are very fast in software,
see e.g. [3,8,10,13,20] and many others. One way to design a stream cipher is to
use a Linear Feedback Shift Register (LFSR) sequence as input to a nonlinear
function. The shift register is initialized using a short random string and the
output from the cipher is a much longer string that has many random like
properties. But the LFSR output is linear and in some way the linearity of the
sequence must be destroyed through some nonlinear process.

Different attacks can be used to attack the nonlinear part of a cipher. A pop-
ular topic lately has been algebraic attacks [5,6]. These attacks can be mounted
if the nonlinear function gives rise to a large system of equations containing
equations of low degree. A different attack is to use the correlation between the
input and the output of the nonlinear function.

In 1985 Siegenthaler introduced the concept of correlation attacks on LFSR
based stream ciphers. His basic idea was to perform a divide-and-conquer attack
by exploring the correlation between the output sequence of the generator and
the output sequence of one individual LFSR (assuming a nonlinear combination
generator).

A few years later Meier and Staffelbach demonstrated a special technique,
usually referred to as fast correlation attacks [17]. This attack is very effective
if the feedback polynomial has a special form, namely, if its weight is very low.



The ideas resemble a lot so-called iterative decoding of error correcting codes,
for example low density parity check codes. Since then, many ideas concerning
fast correlation attacks have been presented, see e.g. [1, 2, 11, 14, 15, 19]. Due to
this seminal result, it is a well known fact that one avoids low weight feedback
polynomials in the design of LFSR based stream ciphers.

This paper identifies a new class of such weak feedback polynomials, namely,
polynomials of the form

f(x) = g1(x) + g2(x)xM1 + . . . + gt(x)xMt−1 ,

where g1, g2, . . . , gl are all polynomials of low degree. For such feedback polyno-
mials, we identify an efficient correlation attack in the form of a distinguishing
attack.

In a distinguishing attack the key is not recovered, instead one tries to dis-
tinguish an observed keystream from a truly random stream. This attack is not
as powerful as the key recovery attack, in which one finds the key that cor-
responds to the plaintext and the ciphertext. Whereas most previous work on
correlation attacks have been focused on key recovery attacks, more recent work
in cryptanalysis of stream ciphers have, to a large extent, been concerned with
distinguishing attacks, see e.g. [4, 9].

It should also be noted that a distinguishing attack can sometimes be turned
into a key recovery attack, in a similar way as for block ciphers.

The results of the paper are as follows. For the new class of such weak feed-
back polynomials, given above, we present an algorithm for launching an efficient
fast correlation attack. The applicability of the algorithm is twofold.

Firstly, if the feedback polynomial is of the above form with a moderate
number of polynomials ,gi, the new algorithm will be much more powerful than
applying any previously known (like Meier-Staffelbach) algorithm. This could
be interpreted as feedback polynomials of the above kind should be avoided in
designing new LFSR based stream ciphers.

Secondly, for an arbitrary feedback polynomial, a standard approach is to
search for low weight multiples of the feedback polynomial and then to apply
the Meier-Staffelbach approach to fast correlation attacks using a low weight
multiple. We can do the same and search for multiples of the feedback polynomial
that have the above form. It turns out that this approach is in general less
efficient than searching for low weight polynomial, but we can always find specific
instances of feedback polynomials where we do get an improvement.

The remaining parts of the paper are presented as follows. In Section 2 we
give the basic preliminaries for the attack. In Section 3 we discuss how a basic
distinguishing attack is mounted and in Section 4 we expand this attack by
using vectors with noise variables. In Section 5 we give the consequences when
tweaking the different parameters of the attack. Section 6 discusses the problem
of finding a multiple of the characteristic polynomial. In Section 7 we compare
our attack to the basic attack and in Section 8 we give our conclusions.



2 Preliminaries

The model used for the attack is the standard model for a correlation attack,
illustrated in Figure 1. For a more detailed description of this model we refer to,
for example, [17]. The target stream cipher uses two different components, one
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Fig. 1. Model for a correlation attack.

linear and one nonlinear. The linear part is a LFSR and the nonlinear part can
be modeled as a black box. One often illustrates the correlation attack scenario
through the class of nonlinear combining generators, although it is applicable to
the more general case described above. See for example [18].

It is common to view the problem of cryptanalysis as a decoding problem. The
nonlinear function can then, through a linear approximation, be seen as a binary
symmetric channel (BSC) with crossover probability p (correlation probability
1 − p) with p 6= 0.5.

The output bits from the LFSR are denoted sn, n = 1, 2, . . ., and the
keystream bits are denoted zn, n = 1, 2, . . .. From the BSC it follows immediately
that P (sn = zn) = 1−p 6= 0.5. Assuming a known plaintext attack, the problem
of ours is the following. Given the observed keystream sequence z = z1, z2 . . . zn

we want to distinguish the keystream from a truly random process. If P0 is the
distribution induced by the cipher and P1 is the uniform distribution, we try to
determine if the underlying distribution D for the samples that we observe (zn,
n = 1, 2, . . .) is more likely to be P0 or P1.

Example: We will here give an example in which such distinguishing attacks
can be useful. Assume that the people in a small country are going to vote in a
referendum. Alice is going to send her vote as a ciphertext c = m + z, where m
is the vote and z is the keystream. Now assume that there are two possible ways
to vote, either m = m(1) or m = m(2), and that both of them include some
large amount of data (e.g they are both pictures).

The attacker Eve, who can listen to the channel, receives the ciphertext c.
He makes the guess that Alice voted m(1). Eve then adds m(1) to the received
ciphertext and depending on whether he made the right or wrong guess he gets

ẑ = c + m(1) =

{

z correct guess

m(1) + m(2) + z wrong guess
.



If the guess was incorrect the result is a random sequence, assuming that m(1) +
m(2) is random. Hence if we apply a distinguisher to the vector ẑ, Eve can
determine how Alice voted.

2.1 Hypothesis testing

In this section we give a brief introduction to binary hypothesis testing. The
task of a binary hypothesis test is to decide which of two hypotheses H0 or H1

is the explanation for an observed measurement. Statistics provides methods to
determine how many output symbols that are needed to make a correct decision
and also how to carry out the actual hypothesis test. These two parts will be
explained in the following.

Assume that we have a sequence of m independent and identically distributed
(i.i.d.) random variables X1, X2, . . . , Xm over an alphabet X . Its distribution is
denoted D(x) = Pr(Xi = x), 1 ≤ i ≤ m and the sample values obtained
in an experiment are denoted x = x1, x2, . . . , xm. We have the two hypotheses
H0 : D = P0 and H1 : D = P1, where P0 and P1 are two different distributions.
To distinguish between the two hypotheses, one defines a decision function, φ :
Xm → {0, 1}. φ(x) = 0 implies that H0 is accepted and φ(x) = 1 implies that
H1 is accepted.

Two probabilities of error are associated with the decision function,

α = P (φ(x) = 1|H0 is true)
β = P (φ(x) = 0|H1 is true).

(1)

Let H0 be the hypothesis that the distribution D is induced by the cipher and
let H1 be the hypothesis that D is uniform.

The overall probability of error, Pe, can be written as a weighted sum over
α and β, i.e., Pe = π0α + π1β, where π0 and π1 are the a priori probabilities of
the two hypotheses. An important asymptotic result is the following,

Pe ≈ 2−mC(P0,P1), (2)

when m is large. The variable C(P0, P1) is the Chernoff information between
distributions P0 and P1. The Chernoff information is obtained through

C(P0, P1) = − min
0≤λ≤1

log2

(

∑

x∈X

(P0(x))λ(P1(x))1−λ

)

. (3)

It can be difficult to determine the exact value of λ but by picking just any value,
e.g. λ = 0.5, it is possible to obtain a lower bound of the Chernoff information
and hence, an upper bound of Pe. By using (2), the number of samples needed
to distinguish P0 and P1 can be calculated for any error probability.

We also need to know how to perform the hypothesis test. The Neyman-
Pearson lemma tells us how to carry out the actual test when we have a sequence
of samples.



Lemma 1. (Neyman-Pearson lemma) Let X1, X2, . . . , Xm be drawn i.i.d. ac-
cording to mass function D. Consider the decision problem corresponding to the
hypotheses D = P0 vs. D = P1. For T ≥ 0 define a region

Am(T ) =

{

P0(x1, x2, . . . , xm)

P1(x1, x2, . . . , xm)
> T

}

.

Let αm = Pm
0 (Ac

m(T )) and βm = Pm
1 (Am(T )) be the error probabilities corre-

sponding to the decision region Am. Let Bm be any other decision region with
associated error probabilities α∗ and β∗. If α∗ ≤ α, then β∗ ≥ β.

This tells us that the region Am(T ) that is determined by P0(x)
P1(x) > T , is the one

that jointly minimizes α and β. In the hypothesis test we want α and β to be
equal and hence T = 1. With the assumption that all xn are independent we
can rewrite the Newman-Pearson test using 2-logarithms. This gives us the test

P0(x1, x2, . . . , xm)

P1(x1, x2, . . . , xm)
> 1 ⇒

m
∑

n=1

(

log2

P0(xn)

P1(xn)

)

> 0 . (4)

The ratio in (4) is called a log-likelihood ratio, and the test is thus called a
log-likelihood test.

This was a very brief overview of some tools that will be useful for us. For a
more thorough treatment of hypothesis testing, we refer to any textbook on the
subject, e.g. [7].

3 A basic distinguishing attack from a low weight

feedback polynomial

We start our investigation by simplifying the Meier-Staffelbach approach and
turn their original ideas into a distinguishing attack.

Referring to the assumed model (Figure 1), the observed keystream output
is considered as a noisy version of the sequence from the LFSR,

zn = sn + en, (5)

where en, n = 1, 2, . . ., are variables representing the noise introduced by the
approximation. The noise has a biased distribution

P (en = 0) = p = 1/2 + ε,

where ε is usually rather small. The recursive computation of sn is linear, and
for a LFSR the computation of sn will depend on the characteristic polynomial
of the LFSR. The recurrence can be written as sn =

∑L

j=1 cjsn−j where L is
the LFSR length and cj , j = 1, 2, . . ., are some known constants. By introducing
c0 = 1 the recurrence above can be put into the form

L
∑

j=0

cjsn−j = 0, n ≥ j.



By adding the corresponding positions in z we can get all sn canceling out.
What remains is just a sum of independent noise variables. In more detail, let
us introduce

xn =

L
∑

j=0

cjzn−j .

Then xn =
∑L

j=0 cjzn−j =
∑L

j=0 cjsn−j +
∑L

j=0 cjen−j =
∑L

j=0 cjen−j. Since
the distribution of en is nonuniform it is possible to distinguish the sample
sequence xn, n = 1, 2, . . ., from a truly random sequence. If we assume the
binary case (all variables are binary), the sum of the noise will have a bias which
according to the piling-up lemma [16] can be expressed as follows,

P (

L
∑

j=0

cjen−j = 0) = 1/2 + 2w−1εw, (6)

where w is the weight of (c0, c1, . . . , cL). We also know that the required number
of samples is in the order of 1/(2w−1εw)2.

In this paper we choose to use, however, the Chernoff information as a mea-
sure of the distance between two distributions, as described in Section 2.1. If we
consider the binary case above, the expression for the Chernoff information in
equation (3) becomes

C(P0, P1) ≥ − log2

(
√

(

1

2
+ 2w−1εw

)

1

2
+

√

(

1

2
− 2w−1εw

)

1

2

)

.

In Table 1 in appendix we give the number of samples needed for some different
w values. In the table we use ε = 0.1 and ε = 0.01.

Note that the ideas behind this simple attack has appeared in many attack
scenarios before, even if it might not have been described exactly in this con-
text before. We see that the weight of the characteristic polynomial is directly
connected to the success of the attack.

4 A more general distinguisher with correlated vectors

As we have seen in the previous section, low weight polynomials are easily at-
tacked, but when the weight grows so does the required length and complexity
(exponentially). At some point we argue that the attack is no longer realistic,
or it might require more than an exhaustive key search. In this section we now
describe a similar but more general approach that can be applied to another set
of characteristic polynomials.

Consider a length L LFSR with characteristic polynomial

f(x) = f0 + f1x + f2x
2 + f3x

3 + . . . fLxL,



where fi ∈ F2. We try to find a multiple, a(x), of the characteristic polynomial
so that this polynomial can be written as

a(x) = f(x)h(x) = g1(x) + xMg2(x), (7)

where g1(x) and g2(x) are polynomials of some small degree ≤ k. It is possible
that f(x) is already on the form (7), then h(x) = 1. In the sequel we assume
that such a polynomial a(x) of the above form is given.

This will correspond to a shift register for which the taps are concentrated
to two regions far away from each other. The linear recurrence relation can then
be written as the two sums

k
∑

i=0

sn+iai +
k
∑

i=0

sn+M+iaM+i = 0, (8)

where sn is the nth output bit from the LFSR and ai, i = 0, 1, . . ., are the
coefficients in the characteristic polynomial a(x). We now consider the standard
model for a correlation attack where the output of the cipher is considered as
a noisy version of the LFSR sequence zn = sn + en. The noise variables en is
introduced by the approximation of the nonlinear part of the cipher. Further-
more, the biased noise has distribution P (en = 0) = 1/2 + ε, and the variables
are pairwise independent, i.e., P (ei, ej) = P (ei)P (ej), ∀i 6= j.

Let us introduce the notation Qn to be the sum

Qn =

k
∑

i=0

zn+iai +

k
∑

i=0

zn+M+iaM+i =

k
∑

i=0

en+iai +

k
∑

i=0

en+M+iaM+i. (9)

This can also be written as

Q0 = e[0, k] · g1 + e[M, M + k] · g2,

Q1 = e[1, k + 1] · g1 + e[M + 1, M + k + 1] · g2,

...

QN−1 = e[N − 1, N + k − 1] · g1 + e[M + N − 1, M + N + k − 1] · g2,

if we introduce e[i, j] = (ei, . . . , ej) for i ≤ j and g1 = (g1,0, g1,1, . . . , g1,k)T where
g1,j, j = 0, 1, . . . , k are the coefficients of the g1(x) polynomial. A corresponding
notation is assumed for g2.

The noise variables (en, n = 1, 2, . . .) are independent but Qi values that are
close to each other will not be independent in general. This is because of the fact
that several Qi will contain common noise variables. We can take advantage of
this fact by moving to a vector representing the noise as follows.

Introduce the vectorial noise vector En of length N as

En = (QN ·n, . . . , QN(n+1)−1). (10)



Alternatively, En can be expressed as

En = (eN ·n, . . . , eN(n+1)+k−1) · G1 + (eN ·n+M , . . . , eN(n+1)+M+k−1) · G2, (11)

where G1 and G2 are the (N + k) × N matrices

G1 =





















g1,0

g1,1 g1,0

...
... g1,0

g1,k g1,k−1 . . . g1,1

g1,k

...
g1,k





















and G2 =





















g2,0

g2,1 g2,0

...
... g2,0

g2,k g2,k−1 . . . g2,1

g2,k

...
g2,k





















.

The remaining pieces to complete the distinguishing attack for the assumed
polynomial are obvious. To prepare the attack, we derive the distribution of
the En noise vector given in (11). This can be easily done for small polynomial
degrees, since we know the distribution of the noice. This calculation results in
a distribution which we denote by P0. Our aim is to distinguish this distribution
from the truly random case, so by P1 we denote the uniform distribution.

When performing the attack, we collect a sample sequence

Q0, Q1, Q2, . . . , QB

by Qn =
∑k

i=0 zn+iai +
∑k

i=0 zn+M+iaM+i. This sample sequence is then trans-
formed into a vectorial sample sequence E0, E1, . . . , EB′ by En = (QN ·n, . . . , QN(n+1)−1).

The final step is to use optimal (Neyman-Pearson) hypothesis testing to
decide whether E0, E1, . . . , EB′ is most likely to come from distribution P0 or
P1. This proposed algorithm is summarized in Figure 2.

1. Find multiple.
2. For t = 0 . . . B

Qt =
∑k

i=0 zt+iai +
∑k

i=0 zt+M+iaM+i

end for.
3. For n = 0 . . . B′

En = (QN·n, . . . , QN(n+1)−1)
end for.

4. Calculate I =
∑B′

n=0

(

log2
P0(En)
P1(En)

)

.

If I > 0 then output cipher, else output random.

Fig. 2. Summary of proposed algorithm.

The performance of the algorithm depends on the polynomials, gi, that are
used. Figure 4 shows an example of how the number of vectors required for a



successful attack depends on the vector length for a certain combination of two
polynomials. N = 1 corresponds to the basic approach and we see that increasing
the vector length will decrease the number of vectors needed. Note that g1(x)
and g2(x) are just two examples of what the polynomials might look like, they
do not represent a multiple of any specific primitive polynomial.
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Fig. 3. The number of vectors needed as a function of the vector length N . In this
example g1(x) = 1 + x + x5 + x6 and g2(x) = 1 + x + x7 + x8.

Finally, we note that we may generalize our reasoning with two groups to al-
low finding a multiple of arbitrarily many groups. Expression (7) for the multiple
then becomes

a(x) = h(x)f(x) = g1(x) + xM1g2(x) + . . . + xMt−1gt(x), (12)

where gi(x) is a polynomial of some small degree ≤ k, and M1 < M2 < . . . <
Mt−1. It is clear that when t grows it is easier to find multiples of the charac-
teristic polynomial with the desired properties. But it is also clear that when t
grows, the attack becomes weaker.

This distinguishing attack that we propose may be mounted on ciphers using
a shift register where “good” multiples easily can be found. Ciphers using a poly-
nomial where many taps are close together might be attacked directly without
finding any multiple. This attack may be viewed as a new design criteria, one
should avoid LFSRs where multiples of the form (7) are easily found.

5 Tweaking the parameters in the attack

We have described the new attack in the previous section. We now discuss how
various algorithmic parameters effect the results.

5.1 How gi(x) effects the results

Since the vectors En are correlated it is intuitive that the forms of gi(x) will
effect the strength of the attack. Some combinations of polynomials will turn
out to be much better than others.



We have tested a number of different polynomials gi(x) in order to find a set
of rules describing how the form of the polynomials effects the result. A definite
rule to decide which polynomials are best suited for the attack is hard to find.
Some basic properties that characterizes a good polynomial can be found. The
parameters that determine how a polynomial will effect the distribution of the
noise vectors are the following.

– The weight of the polynomial. A small weight means that the we have a small
number of noise variables and hence, a large bias. And a large weight means
many noise variables and therefore a more uniform noise distribution.

– Arrangement of the terms in a polynomial. This is the same as the arrange-
ment of the taps in the LFSR. If there are many taps close together, the
corresponding noise variables will occur more frequently in the noise vector.
This will significantly effect the distribution of the noise vectors.

Since Mi is typically large, all polynomials gi(x) can be considered indepen-
dent. Their properties will have the same influence on the total result. However,
the polynomials are combined to form the distribution. This combination is just
a variant of the piling-up lemma so it is obvious that the total distribution is
more uniform than the distribution of the individual polynomials. Depending on
the form of the individual polynomials, the resulting distribution becomes more
or less uniform. Some combinations are “better” than others. An example of this
can be found in Figure 4 in the appendix.

5.2 Vector length

The length of the vectors, denoted N impacts the effectiveness of the algorithm.
The idea of using N larger than one is that we can get correlation between
the vectors. Every time we increase N by 1 we will also increase the Chernoff
information. Recalling (2), we see that increasing the Chernoff information means
that we will decrease the number of vectors needed for our hypothesis test. The
Chernoff information is however not a linear function of N . Depending on the
form of the polynomials the increase can be much higher for some N than for
others. The computational complexity is also higher when N gets higher since
each vector have 2N different values. The downside is that the complexity of the
calculations increase with increasing N . So there is trade off between the number
of samples needed and the complexity of the calculations. The largest gain in
Chernoff information is usually achieved when going from N = i to N = i + 1
for small i. This phenomenon can be seen in Figure 5 in the appendix.

5.3 Increase the number of groups

As we will show in Section 6.2, it is much easier to find a multiple if we allow
the multiple to have more groups than just two. The drawback is that the dis-
tribution will become more uniform if more groups are used. This is similar to
the binary case in which more taps in the multiple will cause a less biased dis-
tribution. The difference is that there is no equivalence to equation (6) for how



much more uniform the distribution will be when having many groups, since this
depends a lot on the polynomials used.

6 Finding multiples of the characteristic polynomial of a

desired form

We have many times assumed that a multiple of the feedback polynomial has a
certain form. Here we briefly look at the problem of finding multiples of a certain
form.

6.1 Finding low weight multiples

According to the piling up lemma (6), the distribution becomes more uniform if
the polynomial is of a high weight. Therefore, the first step in a correlation attack
is to find a multiple that has a low weight. The multiple will produce the same
sequence so the linear relation that describes the multiple will also satisfy the
original LFSR sequence. There exist easy and efficient ways of finding a multiple
of a given weight. The number of bits needed to actually start the attack depends
on the degree of the multiple, which in turn depends the weight of the same. If
we want to find a multiple of weight w of a polynomial that has degree L it can
be shown [12] that the degree M of the multiple will be approximately:

M ≥ 2
L

w−1 . (13)

In Table 2 in the appendix the result of this equation is listed for a LFSR of
length 100 and a LFSR of length 1000.

6.2 Finding multiples with groups

Say that we want to find a multiple of the form

a(x) = h(x)f(x) = g1(x) + xMg2(x),

where f(x) is the characteristic polynomial of the cipher. The degree of f(x) is
L. This can be found by polynomial division. Assume that we have a g2(x) of
degree smaller than k. We then multiply this polynomial with xi. The result is
divided by the original LFSR-polynomial. This gives us a quotient q(x) and a
remainder r(x).

xig2(x) = f(x) · q(x) + r(x).

We have 2k different g2(x)-polynomials and i can be chosen in M different ways.
The remainder r(x) from the division is a polynomial with 0 ≤ deg(r(x)) < L.
If r(x) has degree ≤ k we have found an acceptable g1(x). The probability of
finding a polynomial of maximum degree k is P (deg(g2(x)) ≤ k) = 2k−L. If we
would like it to be probable that we find at least one such polynomial, we need

2k · M ·
2k

2L
≥ 1 ⇒ M ≥ 2L−2k. (14)



Examining the result in (14) we see that for modest values of k the length of the
multiple will become quite large. Therefore we extend our reasoning to the case
with arbitrarily many groups, then we have a multiple of the form

a(x) = h(x)f(x) = g1(x) + xM1g2(x) + . . . + xMt−1gt(x).

If we use the same reasoning as above we receive a new expression

2k · M1 · 2
k · M2 · . . . · 2

k · Mt−1 ·
2k

2L
≥ 1 ⇒ M ≥ 2

L−tk

t−1 , (15)

where it is assumed that M1, M2, . . . , Mt−1 ≤ M . This gives us an upper bound
on all Mi.

In (15) we see that by using larger values of t, i.e., more groups, we can lower
the length of the multiple. One has to bear in mind though that a larger t, as
stated in Section 5.3, will usually effect the Chernoff information in a negative
way (from a cryptanalyst point of view). In Table 3 in the appendix we list some
values on M needed to find a multiple, for some values of k and t.

7 Comparing the proposed attack with a basic

distinguishing attack

The applicability of our algorithm is twofold. Firstly, if the characteristic poly-
nomial is of the form f(x) = g1(x) + g2(x)xM1 + . . . + gt(x)xMt−1 . Applying the
basic algorithm to those LFSRs without finding any multiple first will be equiv-
alent to applying our algorithm with N = 1. Since our algorithm has the ability
to have vectors with noise variables (N > 1), it will be a significant improve-
ment over the basic algorithm. Using the basic algorithm without first finding a
multiple is naive, but if the length L of the LFSR is large the degree of the low
weight multiple will also be large, see (13). So if f(x) is of high degree then our
algorithm can be more effective.

Our algorithm can also be applied to arbitrary characteristic polynomials.
Then the approach is to first find a multiple of the polynomial that is of the
form f(x) = g1(x) + g2(x)xM1 + . . . + gt(x)xMt−1 and then apply the algorithm.
By comparing the two equations (13) and (15) we see that it is not much harder
to find a polynomial of some weight w than it is to find a polynomial with the
same number of groups. Tables showing the corresponding M can be found in
the appendix. Although our algorithm takes advantage of the fact that the taps
are close together, it is still not enough to compensate for the larger amount
of noise variables. In this case the proposed attack will give improvements only
for certain specific instances of characteristic polynomials, e.g., those having a
surprisingly weak multiple of the form f(x) = g1(x) + g2(x)xM1 but no low
weight multiples where the weight is surprisingly low.

8 Conclusion and future work

Through a new correlation attack, we have identified a new class of weak feedback
polynomials, namely, polynomials of the form f(x) = g1(x) + g2(x)xM1 + . . . +



gt(x)xMt−1 , where g1, g2, . . . , gt are all polynomials of low degree. The correlation
attack has been described in the form of a distinguishing attack. This was done
mainly for simplicity, since the theoretical performance is easily calculated and
we can compare with the basic attack based on low weight polynomials.

The next step in this direction would be to examine the possibility of turning
these ideas into a key recovery attack. This could be done in a similar manner
as the Meier Staffelbach approach. For example, we could try to derive many
different relations (multiples) and apply some iterative decoding approach in
vector form. The theoretical part of such an approach will probably be much
more complicated.

References

1. A. Canteaut, M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. Advances in Cryptology-Eurocrypt’2000, volume 1807
of Lecture Notes in Computer Science, pages 573-588. Springer-Verlag, 2000.

2. V. Chepyzhov, T. Johansson, B. Smeets. A simple algorithm for fast correlation at-
tacks on stream ciphers. Advances in Cryptology-FSE’2000, volume 1978 of Lecture

Notes in Computer Science, pages 181-195. Springer-Verlag, 2001.
3. D. Coppersmith, S. Halevi and C.S. Jutla. SCREAM: a software efficient stream

cipher. In J. Daemen and V. Rijmen, editors, Advances in Cryptology-FSE’2002,
volume 2365 of Lecture Notes in Computer Science, pages 195-210. Springer-Verlag,
2002.

4. D. Coppersmith, S. Halevi and C.S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Young, editor. Advances in Cryptology-Crypto’2002, volume
2442 of Lecture Notes in Computer Science, pages 515-532. Springer-Verlag, 2002.

5. N. Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. Advances in Cryptology-Asiacrypt’2002, volume 2501 of Lec-

ture Notes in Computer Science, pages 267-287. Springer-Verlag, 2002.
6. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-

back. Advances in Cryptology-Eurocrypt’2003, volume 2656 of Lecture Notes in

Computer Science, pages 345-359. Springer-Verlag, 2003.
7. T. Cover and J.A. Thomas. Elements of information theory. Wiley series in

telecommunication. Wiley, 1991.
8. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In K.

Nyberg and H. Heys, editors. Selected Areas in Cryptography-SAC 2002, volume
2595 of Lecture Notes in Computer Science, pages 47-61. Springer-Verlag, 2003.

9. P. Ekdahl and T. Johansson. Distinguishing attack on SOBER-t16 and SOBER-
t32. In J. Daemen and V. Rijmen, editors. Advances in Cryptology-FSE’2002, vol-
ume 2365 of Lecture Notes in Computer Science, pages 210-224. Springer-Verlag,
2002.

10. N. Ferguson, D. Whiting, B. Schneider, J. Kelsey, S. Lucks and T. Kohno. Helix:
Fast Encryption and Authentication in a Single Cryptographic Primitive. In T.
Johansson, editor, Advances in Cryptology-FSE’2003, volume 2887 of Lecture Notes

in Computer Science, pages 330-346. Springer-Verlag, 2003.
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A Tables and figures

The appendix contains some tables and figures that can be used to compare
some different parameters discussed in the paper. Table 1 shows the number of
samples needed to distinguish a sequence from random in the basic binary case.
The result is given for two different ε. Table 2 shows the expected degree of the
multiple of f(x) in the basic distinguishing attack, where w is the weight of the
polynomial to be found and L is the length of the LFSR. Table 3 shows the
corresponding values for our attack, where t denotes the number of groups and
k the maximum number of taps allowed in each polynomial. The degree of the
multiple is the same as the amount of plaintext needed before the actual attack
can start.



M w

3 4 5 6 7 8 9 10 11 12 13 14 15 16

ε = 0.1 216.4 221 225.7 230.3 235 239.6 244.3 248.9 253.6 258.2 262.8 267.5 272.1 276.8

ε = 0.01 236.3 247.6 258.9 270.2 281.5 292.8 2104 2115 2127 2138 2149 2160 2172 2183

Table 1. Number of samples needed for some different w in the binary case for ε = 0.1
and ε = 0.01. The number of vectors needed is calculated as 1

C(P0,P1)
.

M w

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L = 100 2100 250 233 225 220 217 214 2123 211 210 29 28 28 27 27

L = 1000 21000 2500 2333 2250 2200 2167 2143 2125 2111 2100 291 283 277 271 267

Table 2. The degree M of the multiple as a function of L and w.

M t

2 3 4 5 6

3 294 247 231 224 219

4 292 246 231 223 218

5 290 245 230 223 218

k 6 288 244 229 222 218

7 286 243 229 222 217

8 284 242 228 221 217

Table 3. The degree M of the multiple as a function of k and t for L = 100.
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Fig. 4. The sequence length needed as a function of the vector length N (logarithmic).
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