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Abstract. In this paper we propose a new attack on a general model
for irregular clocked keystream generators. The model consists of two
feedback shift registers of lengths l1 and l2, where the �rst shift register
produces a clock control sequence for the second. This model can be
used to describe among others the shrinking generator, the step-1/step-2
generator and the stop and go generator. We prove that the maximum
complexity for attacking such a model is only O(2l1).
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1 Introduction

The goal in stream ciphers is to expand a short key into a long keystream z
that is di�cult to distinguish from a truly random bit stream. It should not be
possible to reconstruct the short key from z. The message is then encrypted by
mod-2 additions with the keystream.

In this paper we analyze additive stream ciphers where the keystream is
produced by an irregular clocked linear feedback shift register (LFSR). This
model produces bit streams with high linear complexity, which is a important
criteria for pseudo random sequences.

The cipher model we attack is composed of two LFSRs, LFSRs of length ls
and LFSRu of length lu. LFSRs produces a bit stream s and LFSRu produces
a bit stream u. The bit stream s is sent through a function D(). Finally D()
outputs the clock control sequence of integers, c, which is used to clock LFSRu.
See Fig. ?? for an illustration, and Sec. ?? for a full description of the model.
The e�ect of the irregular clocking is that u is irregularly decimated. The result
from the decimation is the keystream z. Thus, the positions of the bits in the
original stream u are altered and the linearity of the stream are destroyed. This
gives the keystream z high linear complexity.

?? This work was supported by the Norwegian Research Council under Grant
146874/420.



Fig. 1. The general model for irregular clocked keystream generators

There have been several previous attacks on this scheme. One popular method
is to use the constrained Levenshtein distance (CLD) (also called edit distance),
which is the number of deletions, insertions, or substitutions required to trans-
form one sequence into another. In [?,?] they �nd the optimal edit distance and
present e�cient algorithms for its computation.

Another technique is to use the linear consistency test (LCT), see Handbook
of Cryptography (HAC) [?] and [?]. Here the ls clock control initialization bits
are guessed and used to restore the positions the keystream bits had in u. This
gives the guess u∗ = (.., ∗, zi, ..., zj , ...∗, ..., zk, ..., ∗, ...), where zi, zj , zk are some
keystream bits and the stars are the deleted bits. They now perform the LCT on
u∗, using the Gaussian algorithm on an equation set with lu unknowns derived
from LFSRu and u∗. If the equation set is consistent the guess is outputted as
the correct initialization bits for LFSRs. The Gaussian algorithm will use about
1
3 l3u calculations and the total complexity for the attack is O(2ls · l3u).

In [?,?] and the recent paper [?] they guess only a few of the clock control
bits before they reject/accept the guess, using the Gaussian algorithm. If the
guessed bits pass the test, they do a exhaustive search on the remaining key
space.

It is hard to estimate the running time for the attacks in [?,?,?,?]. The
attack in [?] is estimated to have a upper bound complexity O(L3 · 2Lλ), where
λ = log A/(1 + log A), L = l1 + l2 and A is the number of di�erent clocking
numbers from the D() function.

Most of the previous LCT attacks have in common that they try to �nd
the initialization bits for both LFSRs and LFSRu at once. We have a much
more simple and algorithmic approach to the problem. The resulting algorithm
is deterministic and has a lower and easily estimated running time which is
independent from the number of clock control behaviors A, and the length lu of
LFSRu. We will show that our attack has lower computational complexity than
the previous LCT attacks.

We also do a test similar to the LCT, but our test is much more e�cient since
we are not using the Gaussian algorithm to reject or accept the initialization bits
for LFSRs. Our rejection test has constant complexity O(K), where K is only
2 parity check operations in average. Thus, the total complexity for the attack
becomes O(2ls).

The basic idea for the test is simple. From the generator polynomial gu(x) for
LFSRu we derive a low weight cyclic equation that will hold for all bitstreams
generated by LFSRu. In Appendix ?? we describe a modi�ed version of Wagners
General birthday algorithm [?] that �nds the low weight cyclic equation. For each
guess of c we generate the guess u∗ for u. Then we try the cyclic equation at a
given number of entries in the u∗ stream. If the equation hold every time, we can
conclude that the bits are generated by LFSRu, and it is most likely that we



have the correct guess for c. If the guess is wrong we have to test the equation
at in average 2 entries before the guess is rejected. A naive implementation of
this algorithm will, as shown in Section ??, have complexity O(2ls ·N) where N
is the length of the guess u∗. The reason for this is that we have to calculate a
new u∗ for each guess for c.

The real advantage in this paper is the new algorithm we present in Section
??. The algorithm is iterative and except for the �rst iteration it calculates each
guess u∗ using just a few operations. The idea is to go through the guesses for
c cyclically. This way we can reuse most of u∗ from one guess to another. In
worst case our attack needs 2ls iterations to succeed, and we have the complexity
O(2ls). Thus, by using the cyclic properties of feedback shift registers, we have
got rid of the l3u factor they have in the LCT attacks in [?,?,?,?,?]. In Section
?? we present some simulations of the algorithm.

2 A General Model for Irregular Clocked Generators

2.1 Description

We will �rst give a general description of irregular clocked generators.
Let gu(x) be the feedback polynomial for the shift register LFSRu of length

lu, and let gs(x) be the feedback polynomial for a shift register LFSRs of length
ls. LFSRu is called the data generator, and LFSRs is called the clock control
generator.

>From gs(x) we can calculate a clock control sequence c in the following way.
Let ct = D(sv, sv+1, ..., sv+ls−1) ∈ {a1, a2, ..., aA} , aj ≥ 0 be a function where
the input (sv, sv+1, ..., sv+ls−1) is the inner state of LFSRs after v feedback shifts
and A is the number of values that ct can take. Let pj be the probability pj =
Prob(ct = aj). The way LFSRs is clocked is de�ned by the speci�c generator.
Often LFSRs and ct are synchronized, which means that v = t.

LFSRu produces the stream u = (u0, u1, ...) The clock ct decides how many
times LFSRu is clocked before the output bit from LFSRu is taken as keystream
bit zt. Thus the keystream zt is produced by zt = uk(t), where k(t) is the total
sum of the clock at time t, that is k(t)← k(t− 1) + ct.

Let u = (u0, u1, ..., uN−1) be the bit stream produced by the shift register
LFSRu. The resulting sequence will then be zt = uk(t), 1 < t < M . This gives
the following de�nition for the clocking of LFSRu.

De�nition 1. Given bit stream u and clock control sequence c, let z = Q(c,u)
be the function that generates z of length M by

Q(c,u) : zt ← uk(t), 0 ≤ t < M

where k(t) =
∑t

j=0 cj − S, S ∈ {0, 1}

The parameter S only is for synchronization, and most often S = 1. Finally we
let sI = (s0, s1, ..., sls−1) and uI = (u0, u1, ..., uls−1) be the initialization states



for LFSRs and LFSRu. Together, sI and uI de�nes the secret key for the given
cipher system.

If aj ≥ 1, 1 ≤ j ≤ A, the function Q(c,u) can be looked on as a deletion
channel with input u and output z. The deletion rate is

Pd = 1− 1∑A
j=1 pjaj

. (1)

Thus, given a stream z of length M , the expected length N of the stream u is

E(N) =
M

(1− Pd)
= M

A∑
j=1

pjaj . (2)

2.2 Some Examples for Clock Control Generators

The Step-1/Step-2 Generator. The clocking function is de�ned by Q(c,u) :
zt ← uk(t), 0 ≤ t < M, and D(st) = 1 + st. We see that the number of outputs
is A = 2, with probabilities pj = 1/2, 1 ≤ j ≤ 2. This gives Pd = 1− 1

1
2+2 1

2
= 1

3 ,

and E(N) = 3
2M . Since this generator is simple, we will use it in the examples

in this paper.

Example 1. Assume we have a irregular clock control stream cipher as de�ned
in Section ??, with gs(x) = x3 + x2 + 1. We let sI = (s0, s1, s2) = (1, 0, 1) and
we get c by ct = D(st):

c = (2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, ...).

Let gu(x) = x4 + x3 + 1 and LFSRu be initialized with uI = (1, 1, 0, 0). We get
the following bit stream

u = (1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1). (3)

Using c on u, the bits are discarded in this way,

u∗ = (∗, 1, 0, ∗, 1, 0, 0, ∗, 1, ∗, 1, ∗, 0, 1, ∗,
1, 1, 0, ∗, 1, ∗, 0, ∗, 1, 1, ∗, 1, 0, 1) (4)

Finally the output bit from the cipher will be

z = Q(c,u) = (1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1). (5)

The LILI-128 Clock Control Generator. The clock control generator which
is one of the building blocks in the LILI-128 cipher [?] is similar to the step-
1/step-2 generator but c has a larger range. The generator is de�ned by Q(c,u) :
zt ← uk(t), 0 ≤ t < M, and ct = D(st+i1 , st+i2) = 1 + st+i1 + 2st+i2 . This gives
A = 4, pj = 1

4 , 1 ≤ j ≤ 4, and Pd = 1 − 1∑4
j=1

1
4 j

= 3
5 , and the length of u is

expected to be N = 5
2M.



The Shrinking Generator. In the shrinking generator, the output bit uk

from LFSRu is outputted as keystream bit zt if the output sk from LFSRs

equals one. If sk = 0 then uk is discarded.
To be able to attack the generator with our algorithm we must have the

clock control sequence c. The clock control sequence for the shrinking generator
can be generated as follows. Let y − 1 be the number of consecutive zeros from
sv = 1, that is (sv, sv+1, ..., sv+ls−1) = (1, 0, ..., 0︸ ︷︷ ︸

y

, ∗, ..., ∗). Then the clocking

function is de�ned as D(sv, sv+1, ..., sv+ls−1) = y. It follows from the de�nition
of the shrinking generator that LFSRs and LFSRu are synchronized, so LFSRs

must be clocked ct times before the next bit is outputted. Thus the clock control
sequence is ct = D(sk(t), sk(t)+1, ..., sk(t)+ls−1),where k(t) ← k(t − 1) + ct for
each iteration. Q(c,u) is the same as for the generators above. If we analyze the
clock control sequence, ct ∈ {1, 2, ..., ..., ls − 1}, where pj = 1/2j , when ls is a
large number (ls > 10). This gives A = ls − 1, Pd = 1 − 1∑ls

j=1
1
2j j
≈ 0.5 and

E(N) = 2M , as intuitively expected.

3 A New Attack on Irregular Clocked Generators

The idea behind the attack is to guess the clock control sequence c, and recon-
struct the original positions the key stream bits in z had in u using the reversed
function Q∗(c, z) de�ned below. From this we get a sequence û looking similar to
(??). When this is done, we test if û is a sequence that could have be generated
by LFSRu using some linear equations we know hold over any sequences gen-
erated by LFSRu. If the test holds, we assume we have made the correct guess
for c. Knowing the correct c, we can use the Gaussian algorithm as described in
[?] to �nd the initialization bits for u.

3.1 The Basics

First we state a de�nition.

De�nition 2. Given the clock control sequence c and keystream z, let the func-
tion u∗ = Q∗(c, z) be the (not complete) reverse of Q, de�ned as

Q∗(c, z) : u∗k(t) ← zt, 0 ≤ t < M,

where k(t) =
∑t

j=0 cj −S, and u∗k=* for the entries k in u∗ where u∗k is deleted.
When this occurs we say that u∗k is not de�ned.

The length of u∗ will be N∗ =
∑M−1

j=0 cj . Note that the only di�erence between
this de�nition and De�nition ??, is that u and z have changed sides. Thus
Q∗(c, z) is a reverse of the Q(c,u). But since some bits are deleted, the reverse
is not complete and we get the stream u∗. As seen in Example ?? we can reverse
the keystream (??) back to (??) but not completely back to the original stream
(??), since the deleted bits are not known.



The probability for a bit u∗k being de�ned is Prob(u∗k) = 1−Pd. This happens
when k = k(t) holds for for some t, 0 ≤ t < M . It follows that the sum δ =
u∗k + u∗k+j1

+ ... + u∗k+jw−1
will be de�ned if and only if all of the bits in the sum

are de�ned. Thus the sum δ will be de�ned for given k in u∗ with probability

Pdef = Prob(u∗k, u∗k+j1 , ..., u
∗
k+jw−1

) = (1− Pd)w =

(
1∑A

j=1 pjaj

)w

. (6)

3.2 Naive Attack

Using de�nition ??, we �rst present a naive high complexity attack. In the next
section we present a more advanced and low complexity version of the attack.

Let sI be the initial state for LFSRs, and let Lv(sI) be the inner state after
v feedback shifts. Without loss of generality we assume S = 1 and that LFSRs

is clocked once for each output ct. Thus, v = t and ct = D(Lt(sI)) is the output
from the clock generator after t feedback shifts.

We are given a keystream z of length M which is generated with z = Q(c,u).
Assume we have found an equation uk +uk+j1 + ...+uk+jw−1 = 0 that holds over
u. First we guess the initial state LFSRs and generates the corresponding guess ĉ
for c using the D() function. Using de�nition ?? we can calculate u∗ = Q∗(ĉ, z).
Then we try to �nd m (typically m = ls +10, we add 10 to prevent false alarms)
entries in u∗ where the equation is de�ned. If the equation holds for every entry
it is de�ned, we assume we have found the correct guess for sI. If not, we make
a new guess and do the test again. The pseudo code for this algorithm is given
below.

Input The keystream z of length M

1. Preprocessing: Find an equation of low weight that holds over the stream u
of length N .

2. For all possible guesses ŝI do the following:
3. Generate the clock control sequence ĉ of length M by ct = D(Lt(ŝI)).
4. Generate û∗ of average length N = M

(1−Pd) using û∗ = Q∗(ĉ, z).
5. Find m entries (k1, k2, ..., km) in the stream û∗ where the equation is de�ned.
6. If the equation holds for all the m entries over û∗, then stop the search and

output the guess ŝI as the key for LFSRs.

The problem with this algorithm is that for each guess for ŝI, we have to generate
a new clock control stream of length M and generate û∗ = Q∗(ĉ, z) of length
N . In larger examples, N and M will be large numbers, say around 106. Since
the complexity is O(N · 2ls), the run time for this algorithm will in many cases
be worse than the algorithm in [?]. In the next session we present an idea that
�xes this problem.



3.3 Final Idea

The problem in the previous section was that we had to generate M bits of the
clock control stream for each guess for sI. This can be avoided if we go through
the guesses in a more natural way. We start by a initial guess ŝI = (0, 0, ..., 1),
and let the i'th guess be the internal state of the LFSRs after i feedback shifts.

Let ci = (ci
0, c

i
1, ..., c

i
M−1) be the i'th guess for the clock control sequence

de�ned by ci
t = D(Li+t(1, 0, ..., 0)), 0 ≤ t < M . Let ui = Q∗(ci, z) be the

corresponding guess for u∗ of length Ni = ∑M−1
t=0 ci

t. We can now give a iterative
method for generating ui+1 from ui.

Lemma 1. We can transform ui into ui+1 = Q∗(ci+1, z) using the following
method: Delete the �rst ci

0 entries (∗, ..., ∗, z0) in ui, append the ci+1
M−1 = ci

M

entries (∗, ..., ∗, zM ) at the end, and replace zt with zt−1 for 1 ≤ t ≤M .

Proof. See Appendix ??.

Lemma ?? gives us a fast method for generating all possible guesses for u given
a keystream z. See Table ?? for an intuitive example of how the lemma works.
Next we prove a theorem that allows us to reuse the equation set de�ned for ui.

Theorem 1. If the sum

βui,k = uk + uk+k1 + ... + uk+kw−1 = zt + zt+j1 + ... + zt+jw−1 = γz,t

is de�ned over ui, then the sum

βui+1,k−ci
0

= zt−1 + zt+j1−1 + ... + zt+jw−1−1 = γz,t−1

is de�ned over ui+1.

Proof. See Appendix ??.

The main result from this theorem is that the equation set that is de�ned over ui

will still be de�ned over ui+1 if we shift the equations ci
0 entries to the left over

ui+1. This means that we can just shift the equations 1 entry to the left over
z, and we will have an sum that is de�ned for the guess ŝI = D(Li+1(1, 0, ..., 0).
Thus, the theorem indicates that we can go around a lot of computations if we
let the i'th guess for the inner state of LFSRs be Li(1, 0, ..., 0).

3.4 The Complete Attack

We will now present a new algorithm that make use of the observations above.
We start by analyzing LFSRu (See Appendix ??) to �nd an equation λ

λ : uk + uk+j1 + ... + uk+jw−1 = 0

that holds over all u generated by LFSRu for any k ≥ 0. Let the �rst guess
for the initialization state for s be ŝI = (1, 0, 0, ..., 0), generate c0 by c0

t =



Guessed clock sequence ci Resulting 'known' bits of ui = Q∗(ci, z).

(2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2) (∗, z0, z1, z2, ∗, z3, ∗, z4, ∗, z5, z6, ∗, z7, z8, z9, ∗, z10)

(1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2) (z0, z1, ∗, z2, ∗, z3, ∗, z4, z5, ∗, z6, z7, z8, ∗, z9, ∗, z10)

(1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2) (z0, ∗, z1, ∗z2, ∗, z3, z4, ∗, z5, z6, z7, ∗, z8, ∗, z9, ∗, z10)

(2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1) (∗, z0, ∗, z1, ∗z2, z3, ∗, z4, z5, z6, ∗, z7, ∗, z8, ∗, z9, z10)

(2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2) (∗, z0, ∗z1, z2, ∗, z3, z4, z5, ∗, z6, ∗, z7, ∗, z8, z9, ∗, z10)

Table 1. Example of a walk through of the key. The bits in bold font show how the
pattern of de�ned bits in ui shifts to the left, while the actual key bits stay relatively
put. Also notice how the entries zi in the patterns are replaced with zi−1 after one
iteration. For example the sub stream z7, z8, z9, ∗, z10 → z6, z7, z8, ∗, z9. This means
that if the sum z7 + z8 + z9 + z10 is de�ned for ci, then z6 + z7 + z8 + z9 will be de�ned
for ci+1

D(Lt(1, 0, ...0)), t < M , and u0 = Q∗(c, z). Next we try to �nd m places
(k1, k2, ..., km) in u0 where the equation λ is de�ned. From this we get the equa-
tion set

u0
k1

+ u0
k1+j1

+ ... + u0
k1+jw−1

= 0
u0

k2
+ u0

k2+j1
+ ... + u0

k2+jw−1
= 0

...
...

u0
km

+ u0
km+j1

+ ... + u0
km+jw−1

= 0

.

Since every ukx+jy
in this equation set is de�ned in u0, we can replace ukx+jy

with the corresponding bit zt in the keystream z. Thus, u0 is a sequence of
pointers to z and we can write the equations over z as the equation set Ω :

zt1,1 + zt1,2 + ... + zt1,w = 0
zt2,1 + zt2,2 + ... + zt2,w = 0

...
...

ztm,1 + ztm,2 + ... + ztm,w = 0

. (7)

We are now �nished with the precomputation.
Next, we test the equation set to see if all the equations hold. If not, we

iterate using the algorithm below which outputs the correct sI. Knowing sI it is
easy to calculate uI = (u0, u1, ..., ulu−1) using the Gaussian algorithm once on
an equation set derived from sI and LFSRu.

Input The keystream z of length M , the equation λ, the equation set Ω, the
pointer sequence u0, the states L0(1, 0, ...0) and LM (1, 0..., 0), Set i← 0

1. Calculate ci
0 = D(Li(1, 0, ..., 0)), and ci+1

M−1 = ci
M = D(LM+i(1, 0, ..., 0)).

2. Use lemma ?? to generate ui+1 = Q∗(ci+1, z) and lower all indexes in the
equation set Ω by one. Theorem ?? guarantees that the equations are de�ned
over ui+1.



3. If the �rst equation in Ω gets a negative index, then remove the equation
from Ω. Find a new index at the end of ui+1 where λ is de�ned, and add
the new equation over z to Ω.

4. If the current equation set Ω holds, stop the algorithm and output sI =
Li+1(1, 0, ..., 0) as the initialization state for LFSRs.

5. If δ does not hold, we set i← i + 1 and go to step 1.

Note 1. To reach the desired complexity (2ls) a few details on the implementa-
tion of the algorithm are needed. These details are given in Appendix ??.

All changes during the iterations are done on ui and the equation set Ω. Thus,
each guess Li(1, 0, ..., 0) for sI result in an unique equation set Ω. The z stream
is never altered.

Example 2. We continue on the generator in Example ??. We have found the
equation uk + uk+6 + uk+8 = 0, which corresponds to the multiple h(x) =
1+x6 +x8. We have z of length 19, and want to �nd sI. The length of ui will be
N ≈ 3

219 = 28.5. We set the �rst guess to sI
0 = (1, 0, 0). From this we generate

the clock control sequence using the function c0
t = D(Lt(1, 0, 0)), 0 ≤ t ≤M−1,

and we get

c0 = (2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2).

Then we spread out the z stream corresponding to c, that is u0 = Q∗(c0, z).
From this we get the sequence

u0 = (∗, z0, z1, z2, ∗, z3, ∗, z4, ∗, z5, z6, ∗, z7, z8, z9, ∗, z10,

∗, z11, ∗, z12, z13, ∗, z14, z15, z16, ∗, z17, ∗, z18).

We search through u0 to �nd 4 entries where the equation uk +uk+6 +uk+8 = 0
is de�ned. Since all the de�ned entries in u0 points to bits in the z stream, we
get the following set of equations Ω over z:

z0 + z4 + z5 = 0
z6 + z10 + z11 = 0
z7 + z11 + z12 = 0

z13 + z17 + z18 = 0

We test the equations to see if all the equations hold. If the set does not hold, we
continue as follows. We shift the LFSRs once, and it will have sI

1 = L1(1, 0, 0) =
(0, 0, 1) as inner state. We calculate c1

M−1 = c0
M = D(LM (1, 0, 0)). Then we use

Lemma ?? to calculate u1 from u0. That is, we delete the c0
0 = 2 entries (∗, z0),

append the (c1
18 = 2) entries (∗, z19) at the end, and at last replace the pointer

zt with zt−1 for 1 ≤ t ≤M . We get this guess for u:



u1 = (z0, z1, ∗, z2, ∗, z3, ∗, z4, z5, ∗, z6, z7, z8, ∗, z9,

∗, z10, ∗, z11, z12, ∗, z13, z14, z15, ∗, z16, ∗, z17, ∗, z18).

If an equation is de�ned for the entry t in z for the guess sI
0, it will now be

de�ned for the entry t − 1 in z for the guess sI
1 as guaranteed by Theorem ??.

From this Ω becomes:

z−1 + z3 + z4 = 0
z5 + z9 + z10 = 0

z6 + z10 + z11 = 0
z12 + z16 + z17 = 0

We remove the �rst equation from Ω since it has a negative index, and �nd a new
index at the end of u1 where λ is de�ned. We �nd the equation z13+z17+z18 = 0
and add it to Ω. We test the equations to see if all the equations hold. If the set
does not hold, we continue the algorithm.

3.5 Complexity and Properties

Precomputation If the generator polynomial gu(x) for LFSRu has su�cient
low weight, say ≤ 10, we can use it directly in our algorithm with w = weight(gu)
and h(x) = gu(x). In such a case we do not need much precomputation. The
only precomputation is to generate u0 of length N , where the length of N is
calculated below.

If gu(x) has too high weight we use a modi�ed version of Wagners algorithm
for the generalized birthday problem [?] to �nd a multiple h(x)=a(x)g(x) of
weight w = 2r and degree lh. The multiple h(x) gives a new recursion of low
weight. The fast search algorithm is described in Appendix ??. See Table ?? for
some multiples found by the algorithm.

When we have found a polynomial h(x) = 1+xj1 + ...+xjw−1 with jw−1 = lh,
the corresponding equation λ over u is uk + uk+j1 + ... + uk+jw−1 = 0. We want
to �nd m places in the stream u where λ is de�ned. From equation (??) we
have that an equation of weight w is de�ned at an random entry in u with a
probability Pdef = (1−Pd)w. Thus we must test around m/(1−Pd)w entries to
�nd m equations over z. To be able to do this u must have length

N > lh +
m

(1− Pd)w
. (8)

To avoid false keys, we choose m > ls. From the expectation (??) of N we have
E(M) = N(1−Pd) = (1−Pd)lh + m

(1−Pd)w−1 , and we have proved the following
proposition:

Proposition 1. Let an equation over u be de�ned by h(x) of weight w and
degree lh. To get a equation set Ω of m > ls equations over z, the length of the
z stream must be



g(x) h(x) = a(x)g(x)

x40 + x38 + x35 + x32 + x28 + x26 + x22 + x20 + x17 + x16+
x14 + x13 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x24275 + x6116

+x1752 + 1

x60 + x58 + x56 + x52 + x51 + x50 + x49 + x48 + x47 + x46 + x44+
x41 + x40 + x39 + x36 + x29 + x28 + x27 + x26 + x25 + x23 + x21+
x20 + x19 + x16 + x15 + x11 + x10 + x9 + x4 + x2 + x + 1

x2464041 + x1580916

+x131400 + 1

x80 + x79 + x78 + x76 + x75 + x69 + x68 + x57 + x56 + x55 + x54 + x52 + x49+
x46 + x45 + x44 + x42 + x37 + x36 + x35 + x32 + x31 + x30 + x28 + x27 + x26+
x24 + x23 + x21 + x20 + x19 + x13 + x12 + x10 + x8 + x6 + x4 + x3 + 1

x312578783 + x309946371

+x210261449 + 1

Table 3. The table shows some weight 4 multiples of di�erent polynomials found using
the algorithm in Appendix ??. The algorithm used 1 hour and 15 minutes to �nd the
multiple of the degree 80 polynomial, mostly due to heavy use of hard disc memory.
The search for the multiple of the degree 60 polynomial took 14 seconds.

M > (1− Pd)lh +
m

(1− Pd)w−1
. (9)

where m ≈ ls + 10.

We see that the keystream length M is dependent of the degree lh of h(x) of
weight w = 2r. The degree lh is then again highly dependent on the search
algorithm we use to �nd h(x). When we use the search algorithm in Appendix
?? with the proposed parameters we show in the appendix that lh will be in

order of lu ≈ Tmem(lu, r) = 2
r+l
r+1 .

Decoding. If this algorithm is implemented properly (Appendix ??) it will have
worst case complexity O(2ls) with a very little constant factor. In average the
number of iterations will be in the order of 2ls−1.

At each iteration i we shift the sliding window ci
0 to the right over ui. Then

we shift the equation set 1 to the left over z, and test it. If we have the wrong
guess for sI, each equation in the set will hold with a probability 1

2 . When we
reach an equation that does not hold we know that the guess for sI is wrong
and we break o� the test. Thus the average number of equations we have to

evaluate per guess is
limm→∞

∑m
j=1 j·2ls/2j

2ls = limm→∞
∑m

i=1 i/2i = 2. This gives
an average constant factor of 2 parity check tests for each of the 2ls guesses.
Thus the complexity is O(2 · 2ls) = O(2ls)

Each time an equation gets a negative index, we must delete it and search
for a new equation at the end of ui. We expect to search through 1/(1− pd)w−1

entries in ui to �nd a new equation. This is done every M−lu(1−pd)
m iteration in

average, and will have little impact on the decoding complexity.
When we after i iterations have found the initialization bits for LFSRs, we

use the Gaussian algorithm on the linear equation set derived from LFSRu and



Degree ls Degree lu Degree lh of Number Decoding Length
of gs(x) of gu(x) h(x) of Iterations time M of z

25 40 24275 225 9 sec. 10000

26 40 24275 226 18 sec 10000

25 60 2464041 225 9 sec 1000000

26 60 2464041 226 18 sec 1000000

Table 4. The attacks are done in C code on a 2.2 GHz Pentium IV running under
Linux. Note how the running time is exactly the same for lu = 40 and lu = 60. We
have set the number of equations to m = 35. The polynomials g(x) and h(x) are from
Table ??

uito �nd the initialization bits for LFSRu. This has complexity O(l3u) and will
have little e�ect on the everall complexity of the algorithm.

4 Simulations

We have done the attack on 4 small cipher systems, de�ned with clock control
generator polynomials of degree 25 and 26, and the data generator polynomials
of degree 40 and 60 from Table ??. The clock function D() is the LILI-clock func-
tion as described in Section ??. Note that we only attack the irregular clocking
building block in LILI and not the complete LILI-128 cipher. In LILI-128 the
stream is �ltered through a boolean function, and this is beyond the scope of
this paper.

We have used Proposition ?? and Equation ?? to calculate the length M of
z and length N of u (rounded up to nearest thousand and hundred thousand).
The number of parity check equations over z is set to m = 35 ≈ ls + 10. Recall
that the number of paritycheck equations does not e�ect the complexity. Table
?? shows how the running time of the attack is unchanged when the degree of
gu(x) gets larger. The impact from a larger lu is that we need longer keystream.

Normally we would stop the search when we have found the correct key. But
then the running time would be highly dependent on where the key is in the
keyspace. To avoid this we have gone trough the whole key space to be able to
compare the di�erent attacks in the table. In a real attack the average running
time would be half the running times in Table ??. To compare with previous
LCT attacks, the Gaussian factor 1

3 l3u would be around 72000 for lu = 60, and
around 21333 for ls = 40. In our attack the constant factor is only 2 in average.



Thus the same attacks presented in Table ?? would take several hours or even
days using the previous LCT algorithm.

5 Conclusion

We have presented a new linear consistency attack with lower complexity than
previous on a general model for irregular clocked stream ciphers. We have tested
the attack in software and con�rmed that the attack has a very low running
time that follows the expected complexity O(2ls). Thus the run time complexity
is independent of the degree lu of LFSRu.

Further on, if we modify the algorithm, it will work on systems where noise is
added on keystream z. Using much higher m and giving each guess sI a metric,
we can perform an correlation attack with complexity O(m·2ls) on such systems.
Initial tests seem very promising and we will come back to this matter in future
work.
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Appendix

A Implementation Details

To reach the desired complexity O(2ls), the implementation of the algorithm
needs some tricky details:

1. In Lemma ?? we get ui+1 by among other things deleting the ci
0 �rst bits

of ui. This is done using the sliding window technique, which means that we
move the viewing to the right instead of shifting the whole sequence to the
left. This way the shifting can be done in just one operation. To avoid heavy
use of memory, we slide the window over an array of �xed length N , so that
the entries that become free at the beginning of the array are reused. Thus,
the left and right of the sliding window after i iterations will be

(left, right) = (imod N, i + Ni modN),

where N>Ni, for all i, 0 ≤ i < 2ls

2. In lemma ?? every reference zt+1 in u is replaced with zt for every 0 ≤ t ≤M ,
which would take M operations. If we skip the replacements we note that af-
ter i iterations the entry zt in u will become zt+i. It is also important to notice
that when we write u = (..., z0..., zt, ..., zM , ...), the entries z0, ..., zt, ..., zM

are pointers from u to z. They are not the actual key bits. Thus, in the im-
plementation we do not replace zt with zt−1. But when we after i iterations
in the search for equations �nd an equation ui

k + ui
k+j1

+ ... + ui
k+jw−1

=
0 that is de�ned, we replace the corresponding zt1 + zt2 + ... + ztw with
zt1−i + zt2−i + ... + ztw−i, to compensate.

3. We do not have to keep the whole clock control sequence ci in memory. We
only need the two clocks, ci

0 and ci+1
M−1, since they are used by lemma ?? to

generate ui+1.

B Proofs of Lemma ?? and Theorem ??

B.1 Proof of Lemma ??

Proof. Let ci be the clocking integer sequence for a given i, 0 ≤ i < 2ls . We
see that ci+1

t = ci
t+1, 0 ≤ t < M − 1, which means that pattern of the de�ned

bits in ui+1 are the same as the pattern in ui shifted ci
0 to the left. From this

we deduce the following for given 1 ≤ t ≤ M and k = ∑t−1
j=0c

i
j − 1: If ui

k = zt



for given k then ui+1
k−ci

0
= zt−1. If we delete the �rst ci

0 bits of ui and get u′ we

will have that if u′k = zt for given k, then ui+1
k = zt−1 for k = ∑t−1

j=0c
i+1
j − 1. If

we now replace every zt in u′ with zt−1 for 0 < t < M and get u′′ we see that
u′′k = ui+1

k , 0 ≤ k < Ni − ci
0. To �nally transform u′′ into ui+1 we just have to

append the ci+1
M−1 entries (∗, ..., zM−1) at the end of u

′′
.

B.2 Proof of Theorem ??

Proof. Let

ui = (..., z0︸︷︷︸
ci
0−1

, ..., ∗, ..., zt︸︷︷︸
k

, ..., zt+j1︸ ︷︷ ︸
k+k1

, ..., ∗, ... , zt+jw︸ ︷︷ ︸
k+kw−1

, ..., zM−1︸ ︷︷ ︸
Ni−1

)

be the stream of length Ni we get using ui = Q∗(ci, z). The notation means
that ui

ci
0−1

= z0, ui
k = zt, and ui

Ni−1 = zM−1. We see that the sum βui,k =
ui

k + ui
k+k1

+ ... + ui
k+kw−1

is de�ned over ui. The corresponding sum over z will
be γz,t = zt + zt+j1 + ... + zt+jw−1 . Then the clock control sequence we get from
ci+1
t = Li+1+t(1, 0, ..., 0) will be

ci+1 = (ci
1, ..., c

i
M−1, c

i+1
M−1) = (ci+1

0 , ..., ci+1
M−1).

The main observation here is the following: We transform ui into ui+1 by deleting
the �rst ci

0 entries (∗, ..., z0︸ ︷︷ ︸
ci
0

) in ui, appending (∗, ..., ∗, zM︸ ︷︷ ︸
ci+1

M

) at the end, and then

replacing zt with zt−1 for 1 ≤ t ≤ M , as explained in lemma ??. From this we
get the sequence

ui+1 = (..., z0︸︷︷︸
ci+1
0 −1

, ..., ∗, ..., zt−1︸︷︷︸
k−ci

0

, ..., zt+j1−1︸ ︷︷ ︸
k+k1−ci

0

, ..., ∗, ... , zt+jw−1︸ ︷︷ ︸
k+kw−1−ci

0

, ..., zM−1︸ ︷︷ ︸
Ni+1−1

). (10)

We can easily see from (??) that the sum βui+1,k−ci
0

= uk−ci
0
+ uk+k1−ci

0
+ ... +

ck+kw−1−ci
0
is de�ned since every entry in the sum is de�ned. The corresponding

sum over z is γz,t−1 = zt−1 + zt+j1−1 + ... + zt+jw−1−1.

C Searching for Parity Check Equations

C.1 The Generator Matrix

Let g(x) = 1 + gl−1x + gl−2x
2 + ... + g1x

l−1 + xl, gi ∈ F2, gl = g0 = 1 be
the primitive feedback polynomial of degree l for a shift register that generates
the sequence u = (u0, u1, ..., uN−1). The corresponding recurrence is ut+l =
g1ut+l−1 + g2ut+l−2 + ... + glut. Let α be de�ned by g(α) = 0. From this we get
the reduction rule αl = g1α

l−1 + g2α
l−2 + ... + gl−1α + 1. Then we can de�ne

the generator matrix for sequence ut,0 < t < N by the l ×N matrix



G = [α0α1α2...αN−1]. (11)

For each i > l, using the reduction rule αi can be written as αi = hi
l−1α

l−1 +
... + hi

2α
2 + hi

1α + hi
0. We see that every column i ≥ l is a combination of the

�rst l columns, and any column i in G can be represented by

gi = [hi
0, h

i
1, ..., h

i
l−1]

T. (12)

Now the sequence u with length N and initialization state uI = (u0, u1, ..., ul−1),
can be generated by

u = uIG.

The shift register is now turned in to a (N, l) block code.

C.2 Equations

Let u be a sequence generated by the generator polynomial g(x) with degree l.
It is well known that if we can �nd w > 2 columns in the generator matrix G,
that sum to zero,

(gj0 + gj1 + . . . + gjw−1)
T = (0, 0, ..., 0), (13)

for l ≤ j0, j1, ..., jw−1 < N , we get an equation of the form

uj0 + uj1 + ... + ujw−1 = 0. (14)

The equation (??) can be formulated as αj0 +αj1 + ...+αjw−1 = 0. Thus, if (??)
holds, the equation αt(αj0 +αj1 + ...+αjw−1) = αj0+t +αj1+t + ...+αjw−1+t = 0
also holds for 0 ≤ t < N − jw−1. From this we can conclude that the equation is
cyclic and can be written as

ut+j0 + ut+j1 + ... + ut+jw−1 = 0, (15)

for 0 ≤ t < N − jw.
We can also use the indexes j1, j2, ...jw to formulate the polynomial h(x) =

xj0 + xj1 + ... + xjw−1 . If j0, j1... is found using the method above, we will have
the relationship h(x) = g(x)a(x), for a polynomial a(x). Thus h(x) is a multiple
of g(x).

C.3 Fast Method for Finding an Multiple Weight w = 2r

A previous and naive search algorithm for �nding multiple h(x) of weight w and
degree <n is as follows. It corresponds to searching for w columns in G that sum
to zero mod 2.

First sort the generator matrix G. Then for every choice of the columns
gj0 ,gj1 , ...,gjw−2 in G search for the w'th column gjw−1that gives gjw−1 = gj0 +
gj1 + ... + gjw−2 . This algorithm is not very e�ective and has the complexity



O(nw−1logn). By using hashing techniques we can get down to O(nw−1). We
can do better if we use the iterative method explained next. The algorithm is a
modi�cation of the Generalized birthday algorithm in [?].

First we sort the n × l generator matrix G1 = G in respect to the l − B1

lowest entries in the columns, for a proper B1. The columns that are equal in
the lowest l − B1 bits, will now be beside each other. If we sum them, the sum
will be zero in the lowest l−B1 bits. Next we go through the matrix and sum all
the columns that are equal in the l − B1 lowest entries and store the sums in a
new matrix G2. If we �nd m1 sums, the matrix G2 will have size m1×B1, since
the m1 sums we �nd will have 0 in the l −B1 lowest entries. For each column i
in G2 we also store the indexes of the two columns from G that where summed
to column i. Next we sort G2 in respect to the B1 −B2 lowest bits, and do the
same procedure over again and get a new matrix G3 of size m2 ×B2.

We repeat the procedure until we in round r set Br to be zero. After the r'th
round we will hopefully have found 2r columns in G that sum to zero. According
to Section ?? we will now have found an multiple of g(x). This algorithm is
much faster than the naive algorithm, but it �misses� a lot possible multiples
and needs bigger matrix G.

Now we will present some new properties for this algorithm. The �rst round
of the algorithm is similar to the well known search algorithm in [?] for �nding
equations of the type c0u0+c1u1+...+cB−1uB−1 = ui+uj . >From this paper we
have that the expected number of equations m1 is given by m1 = n(n−1)/2l−B1 .
When n is large we can approximate m1 by

E(m1) =
n2

2l−B1+1
. (16)

Since the algorithm is iterative we can use (??) again for the next round and we

have E(m2) = m2
1

2B1−B2+1 = N4

22l−B1−B2+3 . Generally for each round i we will have

E(mi) =
m2

r−1

2Bi−1−Bi+1
(17)

for B0 = l and m0 = N .
The iterative search algorithm has complexity O(

∑r−1
i=0 milogmi) since we

have to sort the matrices G1, G2..., Gr. Thus, it is not the complexity that limits
the algorithm, but the memory. Given an polynomial g(x) of degree l, we will
now present a bound for needed memory for �nding a multiple h(x) of weight
w = 2r.

Assume that we have a computer with Tmem memory units and that one
column in G1 takes up one memory unit. Then it will be natural to use a column
G of the maximum size Tmem × l. To use the memory most e�ciently, we will
try �nd around mi = Tmem sums in each round i, that is Gi = Tmem ∗ Bi−1.
Thus we can set N = m1 = ... = mr−1 = Tmem. We just need �nd one multiple,
so mr = 1. Setting these restriction we can now give an easy expression for how
much memory that is needed to �nd a multiple of weight w = 2r of g(x) of
degree l.



Theorem 2. Given a primitive polynomial g(x) of degree l, and r + 1 divides
r + l, the expected amount of memory needed to �nd a weight w = 2r multiple
h(x) of g(x) using the iterative search algorithm is

Tmem(lu, r) = 2
r+l
r+1 , (18)

with Bi = i + l − i r+l
r+1 , 1 ≤ i ≤ r − 1, Br = 0.

Proof. >From equation (??) we have these formulas for m1, ...,mr:

m1 = n2

2l−B1+1 ,

m2 = m2
1

2B1−B2+1 ,
...

mr = m2
r−1

2Br−1−Br+1 .

We require that m1 = m2 = ... = mr−1 = n = Tmem, and mr = 1. We solve
n = m1 = n2

2l−B1+1 , in respect to B1 and get

B1 = 1 + l − logn. (19)

We use equation (??) and solve n = n2

2Bi−1+Bi+1 in respect to Bi and get

Bi = Bi−1 + 1− logn. (20)

Using (??) together with B1, we get this expression for Bi :

Bi = i + l − ilogn. (21)

Next we solve mr = 1, that is n2

2Br−1−Br+1 = 1. Solving in respect to n and

putting in (??) for i = r−1 and setting Br = 0, we get n = 2
r+l
r+1 . The algorithm

require that all the Bi's are integers. This will only be the case then we can set
n = 2x, for some x. If we want the expression to be exact, we get the requirement
that x = r+l

r+1 must be an integer. Thus r + 1 must divide r + l.

The theorem does not give a guarantee for �nding a equations, it just say that
we are expected to �nd one equation. Thus, in practical searches we may use
around twice as many bits to assure success.


