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Abstract. We develop several tools to derive linear independent multi-
variate equations from algebraic S-boxes. By applying them to maximally
nonlinear power functions with the inverse exponents, Gold exponents,
or Kasami exponents, we estimate their resistance against algebraic at-
tacks. As a result, we show that S-boxes with Gold exponents have very
weak resistance and S-boxes with Kasami exponents have slightly better
resistance against algebraic attacks than those with the inverse expo-
nents.
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1 Introduction

Recently, Courtois and Pieprzyk proposed an algebraic attack for block ci-
phers [4]. Their attack on AES [11] exploits algebraic properties of S-boxes:
If we can obtain many equations of small number of monomials from S-boxes,
a block cipher with the S-boxes can be represented by many equations of small
number of variables. By solving these multivariate equations by so called the
XSL algorithm, we may find the key of the block cipher.

In the AES case, they introduce another viewpoint of the S-box as a quadratic
equation xy = 1 in x and y rather than as a higher degree equation y = 1/x in
x, and obtain additional quadratic equations by multiplying appropriate mono-
mials. More precisely, they obtain 23 quadratic equations with a total of 81
distinct terms from the S-box of AES and show that the equations are linearly
independent by simulation.

In this paper, we give a theoretical approach to obtain linearly independent
multivariate equations from algebraic S-boxes. Multivariate equations are said
to be linearly independent if they are linearly independent when every distinct
monomial is considered as a new variable. We develop three tools to prove linear
independence. The first tool is that if a vector Boolean function is nonlinear, their
component functions should be linearly independent as multivariate equations.
We apply this to n× n S-boxes x2k+1 and n× 2n S-boxes (x2k+1, x2k+1+1) over
F2n which are known to be nonlinear when gcd(n, 2k) = 1 and |k − n/2| > 1,
respectively [5]. The second one is that if for a vector Boolean function F (x, y) :
F2n × F2n → F2m and g : F2n → F2n , F (x, g(x)) has m linearly independent
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component functions, so has F (x, y). The third one is that linear independence
of multivariate functions is invariant under affine transformation of inputs and
linear transformation of outputs.

By applying these tools, we can prove that 5n equations obtained from the
inverse function xy = 1 in F2n (or its affine transformation) are linearly in-
dependent for any positive integer n. Further we apply them to estimate the
resistance of power functions with well-known Gold exponents and Kasami expo-
nents against algebraic attacks [7, 8]. Those S-boxes are the only power functions
which are known to be maximally nonlinear (MN) and almost perfect nonlinear
(APN) [6]. Note that ‘MN’ and ‘APN’ imply the best resistance against linear
cryptanalysis and differential cryptanalysis, respectively [1, 2, 9]. Our analysis
shows that the S-boxes with Gold exponents have very weak resistance and the
S-boxes with Kasami exponents have better resistance against algebraic attacks
while all of them have similar resistance against differential and linear cryptanal-
ysis. It would be an interesting problem to apply algebraic attacks to the ciphers
using Gold power functions as S-boxes such as MISTY [10] which is selected as
standard block algorithms in NESSIE [12].

In Section 2, we introduce some preliminaries on nonlinearity, APN, and resis-
tance against algebraic attacks. In Section 3, we propose some auxiliary lemmas
used to show the linear independence of multivariate equations. In Section 4,
we deal with the resistance of the above three families of S-boxes and compare
them. We conclude in Section 5.

2 Preliminaries

In this section, we introduce the definitions of nonlinearity, APN, and resistance
against algebraic attacks, and remind some useful results for algebraic S-boxes.

Definition 1. A function F : F2n → F2n is called a almost perfect nonlinear
(APN) if each equation

F (x + a)− F (x) = b for a ∈ F∗2n , b ∈ F2n

has at most two solutions x ∈ F2n .

Note that APN functions have the best resistance against differential crypt-
analysis. When n is odd, we have many classes of APN power functions. But
when n is even, we have only two classes of APN power functions, that is, Gold
exponents and Kasami exponents [7, 8, 6].

The Hamming distance between two Boolean functions f : F2n → F2 and
g : F2n → F2 is the weight of f + g. The minimal distance between f and
any affine function from F2n into F2 is the nonlinearity of f . Given a vector
Boolean function F = (f1, . . . , fm) : F2n → F2m , b · F denotes the Boolean
function b1f1 + b2f2 + · · ·+ bmfm for each b = (b1, b2, · · · , bm) ∈ F2m . Then the
nonlinearity of F is defined as minimal nonlinearity of component functions as
follows:
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Definition 2. The nonlinearity of F , N (F ), is defined as

N (F ) = min
b∈F∗2m

N (b · F ) = min
b 6=0,φ∈A

wt(b · F + φ)

where A is the set of all affine functions over F2n .

It is known that N (F ) ≤ 2n−1 − 2
n−1

2 . If n is odd, N (F ) can be maximal,
we call such functions maximally nonlinear (MN) functions. For even n, it is an
open question to determine the maximal value. It is known that if n is odd and
F is maximally nonlinear then F is almost perfect nonlinear [6].

Now we define the resistance against algebraic attacks as in [4].

Definition 3. Given r equations of t monomials in Fn
2 , we define Γ = ((t −

r)/n)d(t−r)/ne as the resistance of algebraic attacks (RAA).

This quantity was introduced by Courtois and Pieprzyk [4]. They showed that
the S-box of AES and the S-boxes of Serpent have Γ ≈ 222.9 and Γ ≈ 28.0,
respectively. They claimed it can be a serious weakness of these ciphers and Γ
should be greater than 232 for secure ciphers.

Note that this measure is not an exact measure of XSL algorithm and an im-
provement of algorithm on solving multivariate equations may result in different
measures. However, it is true that this quantity reflects a difficulty of solving
multivariate equations in some sense. Thus we will use this quantity to measure
the resistance of algebraic attacks in this paper.

3 Auxiliary Lemmas

Definition 4. Given Boolean functions f1, . . . , fm from Fn
2 to F2, they are said

to be linearly independent over F2 if they are linearly independent as multivariate
polynomials, or equivalently if

∑m
i=1 aifi(x) = 0 for all x ∈ Fn

2 with a1, . . . , am ∈
F2 implies a1 = · · · = am = 0.

Lemma 1. Consider two vector Boolean functions F (x, y) : F2n × F2n → F2m

and g : F2n → F2n . If F (x, g(x)) has m linearly independent component func-
tions, so does F (x, y) in F2[x1, . . . , xn, y1, . . . , yn].

Proof. Suppose that F (x, y) = (f1(x, y), . . . , fm(x, y)) has m linearly depen-
dent component functions, i.e. there are not-all-zero a1, . . . , am ∈ F2 such that∑m

i=1 aifi(x, y) = 0. Then we have
∑m

i=1 aifi(x, g(x)) = 0, which implies that
fi(x, g(x))’s are linearly dependent. It contradicts that F (x, g(x)) has m linearly
independent components. Therefore F (x, y) should have m linearly independent
component functions.

Lemma 2. Any permutation F : F2n → F2n has n linearly independent compo-
nent functions.
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Proof. Suppose that there exist not-all-zero a1, . . . , an ∈ F2 such that
∑n

i=1 aifi(x) =
0 for F = (f1, . . . , fn). Then the image of F is a subset of the hyperplane given
by
∑n

i=1 aifi(x) = 0. Since the hyperplane has dimension less than n, F can not
be a permutation. Therefore if F is a permutation, its n component functions
should be linearly independent.

Lemma 3. Consider a vector Boolean function F : F2n → F2m . If the nonlin-
earity of F is non-zero, F has m linearly independent component functions.

Proof. Suppose that there exist not-all-zero a1, . . . , am ∈ F2 such that
∑m

i=1 aifi(x) =
0 for F = (f1, . . . , fm). If we take b = (a1, . . . , am), we can see that b ·F is a zero
function and so has zero nonlinearity. Thus the nonlinearity of F , the minimum
of nonlinearity of the component functions, is also zero. Therefore any nonlinear
function should have m linearly independent component functions.

For the nonlinearity of S-boxes, we have the following results [5]:

N (x2k+1) ≥ 2n−1 − 2
n+gcd(n,2k)

2 −1, (1)
N (x3, x5, · · · , x2k+1) ≥ 2n−1 − k · 2n

2 . (2)

By applying these results to Lemma 3, we obtain the following corollary:

Corollary 1. Let k be a positive integer.
(1) If n does not divide 2k, x2k+1 has n linearly independent component func-
tions.
(2) If k ≤ 2n/2−1, F = (x3, x5, · · · , x2k+1) : F2n → F2kn have kn linearly inde-
pendent component functions.

3.1 Invariants under Transformations

Now we show that linear independence is invariant under invertible transforma-
tions of inputs and invertible linear transformations of outputs.

Lemma 4. Let T : Fn
2 → Fn

2 be an invertible transformation and S : Fm
2 → Fm

2

an invertible linear transformation. A vector Boolean function F : Fn
2 → Fm

2

has m linearly independent component functions over F2 if and only if so does
S ◦ F ◦ T .

Proof. Since we consider invertible transformations T and S, we are enough to
show that F has m linearly independent component functions when either F ◦T
or S ◦ F does.

Let F (x) = (f1(x), . . . , fm(x)) for x ∈ Fn
2 . Assume a1, . . . , am ∈ F2 satisfies∑m

i=1 aifi(x) = 0 for all x ∈ Fn
2 . Since T is invertible, we have

∑m
i=1 aifi(Ty) = 0

for all y ∈ Fn
2 . Since F ◦ T has m linearly independent component functions,

we have a1 = · · · = am = 0, which implies the independence of m component
functions of F .



5

If we let S−1 = (pij) for pij ’s ∈ F2 and S ◦ F = (g1, . . . , gm), we have fi =∑m
j=1 pijgj . If there are not-all-zero a1, . . . , am ∈ F2 satisfying

∑m
i=1 aifi(x) = 0,

we have
m∑

i=1

{
m∑

j=1

aipijgj(x)} =
m∑

j=1

{
m∑

i=1

aipij}gj(x) = 0. (3)

Since g1, . . . , gm are linearly independent,
∑m

i=1 aipij = 0 for all j. We can see
a1 = · · · = am = 0 from the invertibility of S−1 = (pij). Hence m component
functions of F should be linearly independent.

Remark that if S is an affine transformation, Lemma 4 does not hold. For
example, F : F2

2 → F3
2 : (x1, x2) 7→ (x1 + 1, x2 + 1, x1 + x2 + 1) has 3 linearly

independent components, but after the affine transformation S : F3
2 → F3

2 :
(x, y, z) 7→ (x + 1, y + 1, z + 1) is taken to F , S ◦ F = (x1, x2, x1 + x2) is not
linearly independent anymore. However, if we consider a constant term as one
of variables, we can have this invariant property. That is, if 1, f1, . . . , fm are
linearly independent, S(f1, . . . , fm) are linearly independent. Also if all of fi’s
do not have constant terms, independence property is preserved under an affine
transformation S.

4 Independent Equations

From now on, we consider a polynomial over a finite field. If we fix a basis, this
polynomial can be regarded as multivariate equations. Unless confused, we will
consider a polynomial as multivariate equations without specifying a basis.

Because equations of higher degree than two do not help in the point of
algebraic attacks to S-box, our purpose is to get linearly independent equa-
tions whose degree are at most two as many as possible. When we are given m
quadratic equations from F (x) = 0, we can consider the following methods to
get more quadratic equations:

1. Multiplication by linear or quadratic equations.
2. Composition with quadratic equations.

Note that composition of a monomial with affine equations gives only depen-
dent equations and composition with equations of higher degree usually gives
equations of higher degree.

The first case is restricted by the following lemma.

Lemma 5. Suppose that n > 2 and k ≥ 1. Assume that the Hamming weight
of d is at most 2. The product xm of two monomials x2k+1 and xd is linear or
quadratic only in the following cases:

1. If d = 1, then m =

{
4 if k = 1, (Linear)
2k + 2 if k 6= 1. (Quadratic)

2. If d = 2k, then m = 1 + 2k+1. (Quadratic)
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3. If d = 3, then m =

{
23 if k = 2, (Linear)
2k + 22 if k 6= 2. (Quadratic)

4. If d = 2k + 1, then m = 2k+1 + 2. (Quadratic)
5. If d = 2k+1 + 2k, then m = 2k+2 + 1. (Quadratic)

Proof. It is sufficient to check the Hamming weight of m = 2k +1+d mod (2n−
1), since x2n−1 = 1. Assume that w(d) = 1, i.e d = 2l for some l < n. Then m
becomes 1 + 2k + 2l < (2n − 1). Unless two of {0, k, l} are equal, xm is cubic.
This covers first two cases of the lemma.

Assume that w(d) = 2, i.e d = 2l + 2s for some l < s < n. Then m becomes
1 + 2k + 2l + 2s < (2n − 1). If all of {0, k, l, s} are distinct, then xm is quartic.
Hence at least two of them are equal, especially l = 0 or l = k since 0 < k. If
l = 0 then s should be 1 or k (Case 3 and 4). If l = k then s should be k + 1
(Case 5). This completes the proof.

4.1 Inverse Exponents

First we count the number of linearly independent equations from xy − 1 = 0.
A composition of xy − 1 = 0 with any quadratic equation gives a equation of
degree larger than two. In order to get another quadratic equations, we must
multiply linear or quadratic equations:

1. The original equation: F (x, y) = xy − 1
2. Multiplied by x: G0(x, y) = x2y − x
3. Multiplied by y: H0(x, y) = xy2 − y
4. Multiplied by x3: G1(x, y) = x4y − x3

5. Multiplied by y3: H1(x, y) = xy4 − y3

First, we must show that each of equations has n linearly independent com-
ponent functions. Using Lemma 1 and Lemma 2, we can easily see that F (x, y)
has n linearly independent component functions since F (x, y) = xy−1 is permu-
tation for any nonzero y. Each component of G0 and H0 has a unique variable
xi and yi respectively, hence they are linearly independent. Both G1 and H1

have n linearly independent components by Lemma 1, Lemma 4, and Corollary
1 using the following equations:

G1(x, ax2n−2) = (a− 1)x3

H1(ay2n−2, y) = (a− 1)y3

since any non-zero (a− 1) is an invertible linear transformation.
In order to show that all components produced by the above polynomials are

linearly independent, it is better to look at the matrix form. Each row corre-
sponds to the equations from G = (G0, G1), H = (H0,H1), and F .M1 0 M2 0

0 M3 M4 0
0 0 M5 M6




xixj

yiyj

xiyj

1

 = 0,
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where each Mi represents a nonzero matrix and each monomial in the column
vector represents all monomials of similar forms (For example, xixj represents
all xixj for 1 ≤ i, j ≤ n.).

It is sufficient to show that the rank of the coefficient matrix is 5n. If we
consider the coefficient matrix as a 3 × 3 block matrix, we can see that the
rank is the sum of the ranks of M1, M3, and (M5 M6). Since F has n linearly
independent components, we know that the rank of (M5 M6) is n.

Lemma 6. Each of the ranks of M1 and M3 is 2n.

Proof. We refine the monomials xixj for 1 ≤ i, j ≤ n as xi and xixk for 1 ≤ i <
k ≤ n. Then M1(xixj) is expressed as the following:

M1(xixj) =
(

A B
C D

)(
xi

xixk

)
.

Since (A B) represents the term x in G0, A is the identity matrix of size n
and B = 0. Since (C D) represents the term −x3 in G1, we can write −x3 =
C(xi) + D(xixk). Since C(xi) is a linear function over Fn

2 , the nonlinearity of
D(xixk) is equal to that of x3. Therefore D(xixk) has n linearly independent
components by Lemma 3, hence the rank of D is n. This implies that the rank
of M1 is 2n.

We can show that the rank of M3 is also 2n by the similar argument.

Now we are ready to measure the resistance of S-boxes with inverse exponents
by Γ value. The type and the number of distinct monomials in the equations
from F , G, and H is as the following table.

Table 1. The type and the number of distinct monomials

Eq. Type #

F xiyj , 1 n2 + 1

G0 xiyj , xi n2 + n

H0 xiyj , yi n2 + n

G1 xiyj , xixj , xi
3n(n+1)

2

H1 xiyj , yiyj , yi
3n(n+1)

2

From Table 1, we have the following theorem.

Theorem 1. Consider xy = 1 in F2n . Let t be the number of monomials and
r the number of linearly independent equations. Then we can have the following
parameters (r, t, Γ ) for xy = 1:

1.

(
n, n2 + 1,

(
n2−n+1

n

)dn2−n+1
n e

)
for F
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2.

(
2n, n2 + n + 1,

(
n2−n+1

n

)dn2−n+1
n e

)
for F and {G0 or H0}

3.

(
3n, n2 + 2n + 1,

(
n2−n+1

n

)dn2−n+1
n e

)
for F , G0, and H0

4.

(
4n, (3n+2)(n+1)

2 ,
(

3n2−3n+2
2n

)d 3n2−3n+2
2n e

)
for F , G0, H0 and {G1 or H1}

5.

(
5n, 2n2 + n + 1,

(
2n2−4n+1

n

)d 2n2−4n+1
n e

)
for all 5 polynomials

4.2 Gold Exponents

When gcd(k, n) = 1, 2k+1 is called a Gold exponent [7]. Note that any quadratic
monomial can be changed into a monomial with a Gold exponent by an affine
transformation. By multiplying monomials, we obtain

1. The original equation: F1(x, y) = x2k+1 − y

2. Multiplied by linear equations: F2(x, y) = x2k+2−xy and F3(x, y) = x2k+1+1−
x2k

y
3. Multiplied by xd1yd2 : F4(x, y) = x4y − xy2 only for k = 1
4. Composition with xd: F5(x, y) = x9 − y3 only for k = 1.

Since the original equation consists of x2k+1 and y, we should multiply mono-
mials of type xd or xd1yd2 . In the first case, xd should be linear so that we have
d = 1 or d = 2k by Lemma 5. In the second case, x2k+1+d1 , yd2 , xd1 , and y1+d2

should be linear so that (d1, d2) = (1, 1).
For composition case, if d is 2s, the product produces only dependent equa-

tions on the original equations. Thus the Hamming weight of d should be two.
Then m = (2k + 1)(1 + 2l) = 1 + 2l + 2k + 2k+l. Only when l = k = 1, xm can
be quadratic.

F1 has n independent component functions since each component contains
distinct yi. We can see that F2(x, ax2k+1) = (1 − a)x2k+2 and F3(x, ax2k+1) =
(1 − a)x2k+1+1. When k = 1, F2(x, ax2k+1) = (1 − a)x4 and F3(x, ax2k+1) =
(1−a)x5 are permutations unless n 6= 2, 4. Also each of F4(x, ax3) = (1−a)x7 and
F5(x, a1/3x3) = (1−a)x9 has n linearly independent components if gcd(n, 3) = 1
and n 6= 2, 4 respectively. Thus F4 and F5 have by Lemma 1.

We show that all components produced by the above equations are linearly
independent by the matrix argument similar to the inverse exponents case. At
first, assume that k = 1. Each row corresponds to the equations from F1, F2,
F3, F4 and F5. 

M1 M2 M3 0 0
M4 0 0 0 M5

M6 0 M7 0 M8

0 0 0 0 M9

M10 M11 M12 M13 0




xi

yi

xixk

yiyk

xiyj

 = 0.
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Each of M2, M4, M7, M9, and M13 represents −y, x4, x5, x4y−xy2, and y3,
respectively. Since all of them has n linearly independent component functions,
each of the matrices has rank n. Further, if we consider the coefficient matrix by
a 5× 5 block matrix, we can easily convert it to a upper triangular matrix with
diagonal M2, M4, M7, M9, and M13 by elementary row operations. Thus it has
rank 5n and all components of the equations are linearly independent.

Next, assume that k > 1. Each row corresponds to the equations from F1,
F2, and F3. M1 M2 M3 0

M4 0 M5 M6

M7 0 M8 M9




xi

yi

xixk

xiyj

 = 0.

Since M2 represents −y, it is invertible. Thus we are enough to show that all
components of F2 and F3 are linearly independent. Let F (x, y) = (F2(x, y), F3(x, y)).
We have F (x, ax2k+1) = ((1 − a)x2k+2, (1 − a)x2k+1+1). By Corollary 1 we can
see (x2k−1+1, x2k+1+1) and (x2n−k+1+1, x2n−k−1+1) are nonlinear if k < n/2 − 1
and k > n/2+1, respectively. Note that both of them are affine transformations
of F (x, ax2k+1). Thus unless |k − n/2| ≤ 1, F (x, y) has 2n linearly independent
component functions.

Theorem 2. Consider y = x2k+1 with gcd(k, n) = 1 in F2n . Let t be the number
of monomials and r the number of linearly independent equations. Then we can
have the following parameters (r, t, Γ ):
(1) If k = 1, we can obtain 5 linearly independent polynomials. Thus we get the
followings:

1.
(
n, n(n+3)

2 ,
(

n+1
2

)dn+1
2 e
)

for F1

2.
(
3n, n(3n+1)

2 ,
(

3n−5
2

)d 3n−5
2 e
)

for F2, F3, and F4 if n 6= 2, 4 and gcd(n, 3) = 1

3.
(
4n, 3n(n+1)

2 ,
(

3n−5
2

)d 3n−5
2 e
)

for F1, F2, F3, and F4 if n 6= 2, 4 and gcd(n, 3) =
1

4.
(
5n, n(2n + 1), (2n− 4)d2n−4e

)
for all polynomials if n 6= 2, 4 and gcd(n, 3) =

1.

(2) Otherwise, we can obtain 3 linearly independent polynomials. Thus we get
the followings:

1.
(
n, n(n+3)

2 ,
(

n+1
2

)dn+1
2 e
)

for F1

2.
(
3n, 3n(n+1)

2 ,
(

3n−3
2

)d 3n−3
2 e
)

for F1, F2, and F3 if |k − n/2| ≤ 1.

4.3 Kasami Exponents

When gcd(n, k) = 1 and k > 1, 22k − 2k + 1 is called a Kasami exponent [8]. A
Kasami exponent has the Hamming weight k + 1, but by applying composition
by 2k + 1, we obtain a quadratic equation F1 : y2k+1 − x23k+1.
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By multiplying xd1yd2 to F1, we have xd1+1+23k

yd2 − xd1yd2+1+2k

. Hence
all xd1 , yd2 , xd1+1+23k

, and yd2+1+2k

should be linear monomials. It contra-
dicts Lemma 5. Thus F1 is the only quadratic equation we can obtain. F1 has
monomials of the type xixj and yiyj . The number of monomials is n2 + n.

Theorem 3. 1 Consider y = x22k−2k+1 with gcd(k, n) = 1 in F2n . We can
obtain n linearly independent equations in n2+n variables. Then RAA is Γ = nn.

4.4 Comparison

Exponent Alg. Deg. # of Eqns # of Monomials RAA Γ When n = 8

Inverse n − 1 3n n2 + 2n + 1
(

n2−n+1
n

)dn2−n+1
n

e
Γ = 222.7

5n 2n2 + n + 1
(

2n2−4n+1
n

)d 2n2−4+1
n

e
Γ = 246.8

Gold 2 n n(n+3)
2

(
n+1

2

)dn+1
2 e

Γ = 210.8

(k = 1) 3n n(3n+1)
2

(
3n−5

2

)d 3n−5
2 e

Γ = 232.5

4n 3n(n+1)
2

(
3n−5

2

)d 3n−5
2 e

Γ = 232.5

5n n(2n + 1) (2n − 4)d2n−4e Γ = 243.0

Gold (k > 1) 2 n n(n+3)
2

(
n+1

2

)dn+1
2 e

Γ = 210.8

|k − n/2| > 1 3n 3n(n+1)
2

(
3n−3

2

)d 3n−3
2 e

Γ = 237.3

Kasami k + 1 n n2 + n nn Γ = 224

Table 2. Comparison of RAA for Almost Perfect Nonlinear Functions.

Table 1 shows the comparison of the resistance of algebraic attacks. Sur-
prisingly, more equations give larger RAA in each exponent. It is because RAA
increases as t− r increases and additional equations requires new variables more
than new equations. From the table, we can see that the power functions with
Kasami exponents have slightly better resistance against algebraic attacks, and
the power functions with Gold exponents have very weak resistant against alge-
braic attacks.

5 Conclusion

In this paper, we developed several tools to prove linear independence of multi-
variate equations from algebraic S-boxes. By applying these tools to APN power

1 By substituting x = z2k+1, we can obtain two independent quadratic equations x =

z2k+1 and y = z23k+1 with n(n+5)/2 variables, which reduces its RAA significantly.
It will be introduced in the full version of this paper [3].
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functions, we learned that a power function with a Gold exponent is very weak
against algebraic attacks and a power function with a Kasami exponent has
slightly stronger resistance against algebraic attacks. An open problem is to find
S-boxes with Γ > 232 as indicated in [4]. Also, it is an interesting topic to apply
algebraic attacks to block ciphers using a power function with a Gold exponent
such as MISTY which is selected as standard block algorithms in NESSIE [12].
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