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Abstract. We introduce commutative diagram cryptanalysis, a frame-
work for expressing certain kinds of attacks on product ciphers. We show
that many familiar attacks, including linear cryptanalysis, differential
cryptanalysis, differential-linear cryptanalysis, mod n attacks, truncated
differential cryptanalysis, impossible differential cryptanalysis, higher-
order differential cryptanalysis, and interpolation attacks can be ex-
pressed within this framework. Thus, we show that commutative diagram
attacks provide a unifying view into the field of block cipher cryptanal-
ysis. Then, we use the language of commutative diagram cryptanalysis
to compare the power of many previously known attacks. Finally, we
introduce two new attacks, generalized truncated differential cryptanaly-

sis and bivariate interpolation, and we show how these new techniques
generalize and unify many previous attack methods.

1 Introduction

How do we tell if a block cipher is secure? How do we design good ciphers?
These two questions are central to the study of block ciphers, and yet, after
decades of research, definitive answers remain elusive. For the moment, the art
of cipher evaluation boils down to two key tasks: we strive to identify as many
novel cryptanalytic attacks on block ciphers as we can, and we evaluate new
designs by how well they resist known attacks.

The research community has been very successful at this task. We have accu-
mulated a large variety of different attack techniques: differential cryptanalysis,
linear cryptanalysis, differential-linear attacks, truncated differential cryptanal-
ysis, higher-order differentials, impossible differentials, mod n attacks, integrals,
boomerangs, sliding, interpolation, the yo-yo game, and so on. The list continues
to grow. Yet, how do we make sense of this list? Are there any common threads
tying these different attacks together?

In this paper, we seek unifying themes that can put these attacks on a com-
mon foundation. We have by no means accomplished such an ambitious goal;
rather, this paper is intended as a first step in that direction. In this paper, we
show how a small set of ideas can be used to generate many of today’s known
attacks. Then, we show how this viewpoint allows us to compare the strength
of different types of attacks, and possibly to discover new attack techniques. We
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Fig. 1. An example of a commutative diagram. The intended meaning of this diagram
is that h ◦ f = i ◦ g.

hope this perspective will be of some interest, if only to see a different way to
think about the known cryptanalytic attacks on block ciphers.

2 Background

What is a block cipher? A block cipher is a map E : K×M → M so that Ek is
invertible for all keys k ∈ K, and both Ek and E−1

k can be efficiently computed.
The set M is the space of texts; for instance, for AES, it is M = {0, 1}128.

When is a block cipher secure? A block cipher is secure if it behaves as a
pseudorandom permutation. In other words, it must be secure against distin-

guishing attacks: no efficient algorithm A given interactive access to encryption
and decryption black boxes should be to distinguish the real cipher (i.e., Ek and
E−1

k ) from a truly random permutation (i.e., π and π−1, where π is uniformly
distributed on the set of all permutations on M) with non-negligible advantage.

The distinguishing advantage of an attack A is given by Adv A = Pr[AEk,E
−1

k =

1] − Pr[Aπ,π−1

= 1].
In this paper, we focus exclusively on distinguishing attacks. Usually, once a

distinguishing attack is found, a key-recovery attack soon follows; the hard part
is in finding a distinguishing attack in the first place, or in building a cipher
secure against distinguishing attacks.

How are block ciphers built? Most block ciphers are product ciphers. In other
words, the cipher is built as the composition of individual round transformations:
we choose a round function f : M → M, compute a sequence of round keys
k1, . . . , kn as a function of the key k, and set Ek = fkn

◦ · · · ◦ fk1
. The function

f computes one round of the cipher.

Commutative diagrams. In the discussion to follow, it will be useful to introduce
a concept from abstract algebra: that of commutative diagrams. Commutative
diagrams are a concise notation for expressing functional composition properties.
An example of a commutative diagram can be found in Fig. 1. In this example,
the symbols A,B,X, Y represent sets, and the symbols f, g, h, i are functions
with signatures f : A → B, g : A → X, h : B → Y , and i : X → Y . We say that
the diagram “commutes” if h◦f = i◦g, or in other words, if h(f(a)) = i(g(a)) for



all a ∈ A. Notice how paths correspond to functions, obtained by composing the
maps associated with each edge in the path. In this diagram, there are two paths
from A to Y , corresponding to two functions with signature A → Y . Informally,
the idea is that it doesn’t matter which path we follow from A to Y ; we will
obtain the same map either way. More complicated diagrams can be used to
express more complex relationships, and identifying the set of implied identities
is merely a matter of chasing arrows through the diagram.

Markov processes. Also, we recall the notion of Markov processes. A Markov
process is a pair of random variables I, J , and to it we associate a transition
matrix M given by Mi,j = Pr[J = j|I = i]. We call the sequence of random
variables I − J −K a Markov chain if K is conditionally independent of I given
J . We can associate transition matrices M,M ′,M ′′ to the Markov processes
I − J , J − K, and I − K, respectively, and if I − J − K forms a Markov chain,
we will have M ′′ = M ′ · M . In other words, composition of Markov processes
corresponds to multiplication of their associated transition matrices.

The maximum advantage of an adversary at distinguishing one Markov pro-
cess from another can be calculated using decorrelation theory [14]. Let ||M ||∞
denote the ℓ∞ norm of the matrix M , i.e., ||M ||∞ = maxi

∑

j |Mi,j |. We can
consider an adversary A who is allowed to choose a single input, feed it through
the Markov process, and observe the corresponding output. The maximum ad-
vantage of any such adversary at distinguishing M from M ′ will then be exactly
1
2 ||M −M ′||∞. If U denotes the uniform m×n transition matrix, i.e., Ui,j = 1/n
for all i, j, then ||M1M2 − U ||∞ ≤ ||M1 − U ||∞ · ||M2 − U ||∞.

The above calculations can be extended to calculate the advantage Adv A =
Pr[AM = 1] − Pr[AM ′

= 1] of an adversary A who can interact repeatedly with
the Markov process. First, if 1

2 ||M−M ′||∞ = ǫ denotes the advantage of a single-
query adversary, then an adversary making q queries has advantage at most q · ǫ.
In practice, when ǫ is small, the advantage of a q-query adversary often scales
roughly as ∼ √

q · ǫ. Hence, as a rough rule of thumb, Θ(1/ǫ2) queries often are
necessary and sufficient to distinguish M from M ′ with non-trivial probability
[3]. We emphasize, though, that this heuristic is not always valid; there are many
important exceptions.

The advantage of a q-query adversary can be computed more precisely. If M is
a m×n matrix, let [M ]q denote the mq×nq matrix given by ([M ]q)i,j = Mi1,j1 ×
· · · × Miq,jq

. Define the matrix norm ||M ||a = maxi1

∑

j1
· · ·maxiq

∑

jq
|Mi,j |.

Then, in an adaptive attack, the maximum advantage of any q-query adver-
sary is exactly maxA Adv A = 1

2 ||[M ]q − [M ′]q||a. In a non-adaptive attack, the
maximum advantage of any q-query non-adaptive adversary is exactly 1

2 ||[M ]q −
[M ′]q||∞.

Organization. The rest of this paper studies cryptanalysis of product ciphers.
First, we describe commutative diagrams and their relevance to cryptanalysis.
Then, we explore statistical attacks, a probabilistic generalization of commuta-
tive diagram attacks, and then we further generalize by introducing the notion
of higher-order attacks. Finally, we explore algebraic attacks.
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Fig. 2. A local property of the round function fk.

3 Commutative diagram attacks

The basic recipe for analyzing a product cipher is simple:

1. Identify local properties of the cipher’s round functions.
2. Piece these together to obtain a global property of the cipher as a whole.

In this way, we seek to exploit the structure of a product cipher—namely, its
construction as a composition of round functions—to simplify the cryptanalyst’s
task.

How do we identify local properties of the round function that are both
non-trivial and can be spliced together suitably? This is where commutative
diagrams can help. Let fk : M → M denote a round function. Suppose we
can find a property of the input that is preserved by the round function; then
this would suffice as a local property. If there is some partial information about
x that allows to predict part of the value of fk(x), this indicates a pattern of
non-randomness in the round function that might be exploitable.

One way to formalize this is using projections. A projection is a function
ρ : M → Y from the text space to a smaller set Y . If we have two projections ρ, ρ′

so that ρ′(fk(x)) can be predicted from ρ(x), then we have a local property of the
round function. To make this more precise, we look for projections ρ : M → Y ,
ρ′ : M → Y ′ and a function g : Y → Y ′ so that ρ′ ◦ fk = g ◦ ρ for all k ∈ K, or
in other words, so that the diagram in Fig. 2 commutes for all k.

A commutative diagram is trivial if it remains satisfied if we replace fk by
any random permutation π. Each non-trivial commutative diagram for f is an
interesting local property of the round function.

Such local properties can be pieced together to obtain global properties by
exploiting the compositional behavior of commutative diagrams. Refer to Fig. 3.
If both small squares commute (i.e., if ρ′ ◦fk1

= g ◦ρ and ρ′′ ◦fk2
= g′ ◦ρ′), then

whole diagram commutes (e.g., ρ′′ ◦ fk2
◦ fk1

= g′ ◦ g ◦ ρ). In other words, if ρ, ρ′

form a local property of the first round fk1
and if ρ′, ρ′′ form a local property of

the second round fk1
, then ρ, ρ′′ form a global property of the first two rounds

fk2
◦ fk1

.
Note that the requirement is that we have a local property of each round,

and that the local properties match up appropriately. If ρ, ρ′ is a local property
of the first round and ϕ,ϕ′ is a local property of the second round, these two
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Fig. 3. Splicing together a local property for fk1
and a local property for fk2

to obtain
a property of their composition.

can only be composed if ρ′ = ϕ. Thus there is a compatibility requirement that
must be satisfied before two local properties can be composed.

The same kind of reasoning can be extended inductively to obtain a global
property of the cipher as a whole. The requirement is that we obtain local prop-
erties for the rounds that are compatible. See Fig. 4. If each local property is
non-trivial, then the global property so obtained will be non-trivial.

Any non-trivial global property for the cipher as a whole immediately leads
to a distinguishing attack. Suppose we have ρ, ρ′, g so that ρ′◦Ek = g◦ρ holds for
all k. Then our distinguishing attack is straightforward: we obtain a few known-

plaintext/ciphertext pairs (xi, yi) and we check whether ρ′(yi)
?
= g(ρ(xi)) holds

for all of them. When the known texts are obtained from the real cipher (Ek),
these equalities will always hold. However, since our property is non-trivial, the
equalities will not always hold if the pairs (xi, yi) were obtained from an ideal
cipher (π, a random permutation). The distinguishing advantage of such an
attack depends on the details of the projections chosen, but we can typically
expect to obtain a significant attack.

Example: Madryga. As a concrete example of a commutative diagram attack,
let us examine Madryga, an early cipher design. Eli Biham discovered that the
Madryga round function preserves the parity of its input. Hence, we may choose
the parity function as our projection ρ : {0, 1}64 → {0, 1}, i.e., ρ(x1, . . . , x64) =
x1 ⊕ · · · ⊕ x64. When taken with the identity function, we obtain a global prop-
erty for Madryga, as depicted in Fig. 5. This yields a distinguishing attack on
Madryga with advantage 1/2, as Pr[ρ(Ek(x)) = ρ(x)] = 1 yet Pr[ρ(π(x)) =
ρ(x)] = 1/2.

Commutative diagrams are mathematically elegant. However, they are not,
on their own, powerful enough to successfully attack many ciphers; another idea
is needed. We shall describe next how these ideas may be extended to model
statistical attacks, which turn out to be significantly more powerful.
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Fig. 4. Splicing together local properties for each round to obtain a global property
for Ek, the cipher as a whole.

{0, 1}64
ρ
- {0, 1}

{0, 1}64

Ek

?
ρ
- {0, 1}

id

?

Fig. 5. A global property of the Madryga block cipher. Here ρ is the parity function.

4 Statistical attacks

We now turn our attention to statistical attacks. The natural idea is to look at
diagrams that only commute with some probability.

A reasonable first attempt might be to introduce the notion of probabilistic

commutative diagrams. See Fig. 6, which is intended to show a diagram that
commutes with probability p. In other words, though the relation ρ′ ◦ fk = g ◦ ρ
does not hold, we do have

Pr
X←M

[ρ′(fk(X)) = g(ρ(X))] = p

for all k ∈ K, where here the probability is taken with respect to the choice
of X uniformly at random from M. Written informally: ρ′ ◦ fk = g ◦ ρ holds
with probability p. (We could easily imagine many variants of this definition, for
instance, by taking the probability over both the choice of X and k; however,
we will not pursue such possibilities here.)
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Fig. 6. A local property that holds with probability p.

Probabilistic commutative diagrams share many useful properties with their
deterministic cousins. First, probabilistic commutative diagrams can be com-
posed. Suppose projections ρ, ρ′ form a local property with prob. p for the first
round, and ρ′, ρ′′ form a local property with prob. p′ for the second round. Then
ρ, ρ′′ form a property for the composition of the first two rounds, and assuming
our cipher is a Markov cipher [9], the composed property holds with prob. at least
p · p′. Second, probabilistic commutative diagrams for the whole cipher usually
lead to distinguishing attacks. Suppose ρ′ ◦ Ek = g ◦ ρ holds with probability p,
and ρ′ ◦π = g ◦ ρ holds with probability q. Then there is a simple distinguishing
attack that uses one known-plaintext/ciphertext pair (x, y) and has advantage

|p − q|: we simply check whether ρ′(y)
?
= g(ρ(x)).

Probabilistic commutative diagrams may appear fairly natural on first glance,
but on further inspection, they seem to be lacking in some important respects.
For our purposes, it will be useful to introduce a more general notion, which
we term stochastic commutative diagrams. If we let the random variable X be
uniformly distributed on M, the maps ρ, ρ′, Ek induce a Markov process on the
pair of random variables ρ(x), ρ′(Ek(X)). The associated transition matrix M
is given by

Mi,j = Pr
X←M

[ρ′(Ek(X)) = j|ρ(X) = i].

Note that there is an implicit dependence on k, but for simplicity in this paper
we will only consider the case where each key k ∈ K yields the same transition
matrix M . (This corresponds to assuming that the Hypothesis of Stochastic
Equivalence holds.) An example stochastic commutative diagram is shown pic-
torially in Fig. 7.

Stochastic commutative diagrams yield distinguishing attacks. Let M ′ be the
transition matrix induced by the Markov process ρ(X), ρ′(π(X)), where π is a
random permutation. Then our stochastic commutative diagram yields a dis-
tinguishing attack that uses one chosen plaintext query and achieves advantage
1
2 ||M − M ′||∞.

Linear cryptanalysis. Linear cryptanalysis may now be recognized as a spe-
cial case of a stochastic commutative diagram attack. Suppose we have a ℓ-bit
block cipher Ek : {0, 1}ℓ → {0, 1}ℓ. In Matsui’s linear cryptanalysis [10], the
codebreaker somehow selects a pair of linear maps ρ, ρ′ : {0, 1}ℓ → {0, 1}, and
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Fig. 7. A stochastic commutative diagram for Ek. Here M is the transition matrix of
the Markov process ρ(X) − ρ′(Ek(X)).
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Fig. 8. A formulation of linear cryptanalysis as a stochastic commutative diagram
attack. Here ρ and ρ′ are linear maps.

then we use the stochastic commutative diagram shown in Fig. 8. For instance,
the linear characteristic Γ → Γ ′ corresponds to the projections ρ(x) = Γ · x,
ρ′(x) = Γ ′ · x.

In a linear attack, we obtain a 2 × 2 transition matrix M of the form

M =

[

1
2 + ǫ

2
1
2 − ǫ

2
1
2 − ǫ

2
1
2 + ǫ

2

]

. (1)

The transition matrix associated to a random permutation π is U , the 2 × 2
matrix where all entries are 1/2. Therefore, the distinguishing advantage of a
linear cryptanalysis attack using one known text is 1

2 ||M − U ||∞ = ǫ/2. It is
not hard to verify that Θ(1/ǫ2) known texts suffice to obtain an attack with
distinguishing advantage 1/2 (say). Compare to Matsui’s rule of thumb, which
says that 8/(ǫ/2)2 = 32/ǫ2 texts suffice.

Matsui’s piling-up lemma can also be re-derived within this framework. Let
M1,M2 be transition matrices for the first and second round, respectively, taking
the form shown in Equation (1) albeit with ǫ replaced by ǫ1, ǫ2. It is not hard to
verify that M1M2 also takes the form shown in Equation (1), but with ǫ replaced
by ǫ1ǫ2. Hence ||M1M2 −U ||∞ = ||M1 −U ||∞×||M2 −U ||∞. This is exactly the
piling-up lemma for computing the bias of a multi-round linear characteristic
given the bias of the characteristic for each round.

After seeing this formulation of linear cryptanalysis, our use of the name
“projection” to describe the maps ρ, ρ′ can be justified as follows. Consider the
vector subspace V = {0, Γ} of {0, 1}ℓ. We obtain a canonical isomorphism of



vector spaces V ∼= {0, 1}. Then we can view ρ : {0, 1}ℓ → V as taking the form of
a projection onto the subspace V. In other words, we write {0, 1}ℓ as the direct
sum {0, 1}ℓ = V ⊕ VT , write each x ∈ {0, 1}ℓ as a sum x = y ⊕ z for y ∈ V and
z ∈ VT , and then let ρ(x) = y be the projection of x onto V.

Mod n cryptanalysis. Notice that mod n attacks also fall within this framework.
If M = Z/2ℓ

Z, we can use the projection ρ : Z/2ℓ
Z → Z/nZ given by ρ(x) =

x mod n. In this way we recover the mod n attack.

In general, if M is any abelian group with subgroup S ⊆ M, we may con-
sider projections of the form ρ : M → M/S given by ρ(x) = x mod S. Linear
cryptanalysis is simply the special case where M = ({0, 1}ℓ,⊕) and S has index
2, and mod n cryptanalysis is the special case where M = (Z,+) and S = nZ.

Linear cryptanalysis with multiple approximations. Linear cryptanalysis with
multiple approximations also falls naturally within this framework. Suppose we
have a list of masks Γ1, Γ2, . . . , Γd ∈ {0, 1}ℓ, and assume that these masks are
linearly independent as vectors in {0, 1}ℓ. Let V be the vector subspace of di-
mension d spanned by Γ1, . . . , Γd, i.e., V = {0, Γ1, Γ2, Γ1 ⊕ Γ2, . . . }. Choose the
canonical isomorphism V ∼= {0, 1}d, i.e.,

∑

i ciΓi 7→ (c1, . . . , cd). We can define
the projection ρ : {0, 1}ℓ → {0, 1}d by ρ(x) = (Γ1 · x, . . . , Γd · x), or equivalently,
as the projection ρ : {0, 1}ℓ → V from {0, 1}ℓ onto the subspace V. We can build
ρ′ from Γ ′1, . . . , Γ

′
d similarly. Then, we consider the Markov process M induced by

Ek, ρ, ρ′. The distinguishing advantage of this attack is given by 1
2 ||M −M ′||∞,

as before, except that now we are working with 2d × 2d matrices. Notice that
these d-bit projections ρ, ρ′ simultaneously capture all 22d linear approximations
of the form Γ → Γ ′ for some Γ ∈ V, Γ ′ ∈ V ′, so this is a fairly powerful attack.

5 Higher-order attacks

The next idea is to examine plaintexts two (or more) at a time. If f : M → M
is any function, let f̂ : M2 → M2 be defined by f̂(x, x′) = (f(x), f(x′)). More

generally, we can take f̂ : Md → Md and f̂(x1, . . . , xd) = (f(x1), . . . , f(xd)) for
any fixed d; this is known as a d-th order attack. Then, to distinguish Ek from
π, the idea is to use stochastic commutative diagrams that separate Êk from π̂.

Complementation properties. Complementation attacks form a simple instance
of a higher-order attack. Suppose there is some ∆ so that Ek(x⊕∆) = Ek(x)⊕∆.
Then we can define ρ : M×M → M by ρ(x, x′) = x − x′, and we obtain the
diagram shown in Fig. 9. Note that in this case the existence of the comple-
mentation property implies that M∆,∆ = 1. If M ′ denotes the transition matrix
induced by an ideal cipher (namely, π), then M ′

∆,j = 1/(|M|−1) for each j 6= 0,
and so ||M −M ′||∞ ≥ 1− 1/(|M|− 1)+ (|M|− 2)/(|M|− 1) = 2− 2/(|M|− 1).
In other words, there is an attack using only 2 chosen plaintexts and achieving
distinguishing advantage 1 − 1/(|M| − 1).
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Êk

? ρ
- M

M

?

Fig. 9. The basis of differential-style attacks, as a commutative diagram. We use the
projection ρ(x, x′) = x − x′.

Differential cryptanalysis. A natural extension is to generalize the above attack
by looking for some matrix element M∆,∆′ with surprisingly large probability,
rather than looking for a matrix element with probability 1. Indeed, such a
modification yields exactly Biham & Shamir’s differential cryptanalysis [2], and
any large matrix element M∆,∆′ gives us a differential ∆ → ∆′ with probability
p = M∆,∆′ . Notice that when p ≫ 1/(|M| − 1), we have 1

2 ||M − M ′||∞ ≥ p −
1/(|M|−1), hence with 2 chosen plaintexts we obtain an attack with advantage
≈ p. One can readily verify that with 2m chosen plaintexts, the iterated attack
has advantage 1−(1−1/p)m−(1−1/(|M|−1))m, which is ≈ 1−1/e for m = 1/p.
Thus, 2/p chosen plaintexts suffice to distinguish with good advantage.

Also, our framework easily models differential cryptanalysis with respect to
other groups. For instance, when using additive differentials in the group M =
(Z/264

Z,⊞), we can choose the projection ρ : M×M → M given by ρ(x, x′) =
x − x′ mod 264.

Impossible differential cryptanalysis. Alternatively, we could look for matrix
elements in M that are surprisingly small. If we look for entries that have prob-
ability 0, say M∆,∆′ = 0, then we obtain the impossible differential attack. In
this case the differential ∆ → ∆′ will be impossible (it can never happen for the
real cipher Ek). This yields an attack that can distinguish with good advantage
once about |M| texts are available to the attacker.

Differential-linear cryptanalysis. Write Ek = f ′◦f . In a differential-linear attack
[5], one covers the first half of the cipher (f) with a differential characteristic and
approximates the second half of the cipher (f ′) with a linear characteristic. This
can be modeled within our framework as follows. Our development so far suggests
we should use the projections ρ, ρ′ : M2 → M, ρ(x, x′) = ρ′(x, x′) = x − x′ to
cover f and projections η, η′ : M → {0, 1} to cover f ′. However, in this case, we
will not be able to match η up with ρ′, because neither their domains nor their
ranges agree.

The solution is to introduce functions η̂, η̂′ : M2 → {0, 1} given by η̂(x, x′) =
η(x − x′) and η̂′(x, x′) = η′(x − x′). Suppose our differential characteristic has
probability p ≫ 1/|M|, or in other words, ρ, ρ′ commute with f with probability

p. Then ρ, η̂ will usually commute with f̂ with non-trivial probability (heuristi-



cally, about 1
2 + p

2 , though this is not guaranteed). Likewise, suppose our linear
characteristic holds with probability 1

2 ± ǫ
2 , or in other words, η, η′ commute

with f ′ with probability 1
2 ± ǫ

2 . Then η̂, η̂′ will form a linear approximation for

f̂ ′ with probability 1
2 ± ǫ2

2 . These two properties can be composed to obtain a

property ρ, η̂′ for the whole cipher, typically with probability 1
2 ± pǫ2

2 .
Hence a differential-linear attack with two chosen texts will typically have

distinguishing advantage roughly 1
2pǫ2. Consequently, our framework predicts

that such a cipher can be broken with Θ(1/pǫ2) chosen texts. This corresponds
closely to the classical estimate [1].

Higher-order differential cryptanalysis. Higher-order differentials [7] can also
be modeled within our framework. Let us give a simple example. If f(X) is a
polynomial of degree 2, then f(X +∆0 +∆1)−f(X +∆0)+f(X +∆1)−f(X) is
a constant polynomial, giving a way to distinguish f from random with 4 chosen
plaintexts. This corresponds to choosing 4th order projections ρ(w, x, y, z) =
(x − w, y − w, z − x − y + w) and ρ′(w, x, y, z) = z − x + y − w, deriving a
transition matrix M , and noticing that we have a matrix entry M(∆0,∆1,0),∆′

whose value is 1 for the real cipher but much smaller for a random permutation.
More generally, if f is a polynomial of degree d, then the dth order differential
of f is a constant, and the d + 1-th order differential is zero. Such higher order
differential attacks can likewise be expressed be expressed as a higher-order
commutative diagram attack.

Truncated differential cryptanalysis. Truncated differential attacks [8] also fit
within our framework. Given a block cipher Ek : {0, 1}ℓ → {0, 1}ℓ, we choose
projections of the form ρ : {0, 1}ℓ×{0, 1}ℓ → {0, 1}m, where ρ(x, x′) = ϕ(x−x′)
and ϕ : {0, 1}ℓ → {0, 1}m is an appropriately chosen linear map.

Then we can look for an entry M∆,∆′ in the transition matrix so obtained
that has surprisingly large probability, and this will correspond to a truncated
differential ∆ → ∆′ of the same probability. This truncated differential corre-
sponds to the class of 22ℓ−2m conventional differentials δ → δ′, where δ ∈ ϕ−1(∆)
and δ′ ∈ ϕ−1(∆′). Alternately, we can look for an entry with surprisingly low
probability, and this yields an impossible (or improbable) truncated differential
that can be used in an attack.

In most truncated differential attacks, the linear map ϕ simply ignores part
of the block. For instance, the truncated difference (a, 0, 0, b) (where a, b are
arbitrary differences) might correspond to the linear map ϕ(w, x, y, z) = (x, y)
and the projected value ∆ = (0, 0). However, for maximum generality, we allow
ϕ to be chosen as any linear map whatsoever.

The above account of truncated differentials is slightly naive. It leads to
very large matrices, because a truncated difference of the form (say) (a, 1, 2, b)
is distinguished from the truncated difference (a, 1, 3, b). However, in practice
it is more common for cryptanalysts to care only about distinguishing between
zero and non-zero words, with little reason to make any distinction between the
different non-zero values.



Fortunately, our treatment can be amended to better incorporate typical
cryptanalytic practice, as follows. Consider, as a concrete example, truncated
differential attacks on Skipjack, where the block is M = {0, 1}64 and where at-
tacks typically look at which of the four 16-bit words of the difference are zero or
not. Consider the following 67 vector subspaces of {0, 1}64: {0}, {(a, 0, 0, 0) : a ∈
{0, 1}16}, {(0, a, 0, 0) : a ∈ {0, 1}16}, . . . , {(a, a, 0, 0) : a ∈ {0, 1}16}, {(a, 0, a, 0) :
a ∈ {0, 1}16}, . . . , {(a, b, 0, 0) : a, b ∈ {0, 1}16}, {(a, 0, b, 0) : a, b ∈ {0, 1}16}, . . . ,
{(a, b, c, d) : a, b, c, d ∈ {0, 1}16}. These can be put into one-to-one correspon-
dence with the 67 vector subspaces of {0, 1}4 in a natural way. Moreover, to
any block x ∈ {0, 1}64 we can associate its characteristic vector (χ1, . . . , χ67),
where χi is 1 if x is in the i-th subspace and 0 otherwise. This induces an
equivalence relation ∼ on {0, 1}64, where two blocks are considered equivalent
if they have the same characteristic vector. We can now consider the projection
ρ : {0, 1}64 → {0, 1}64/ ∼ that maps x to its equivalence class under ∼. In this
way we obtain a 67 × 67 transition matrix M that captures the probability of
all 672 word-wise truncated differentials for Skipjack [11]. A similar construction
can be used for ciphers of other word and block lengths. This leads to smaller
transition matrices and a more satisfying theory of truncated differential crypt-
analysis.

Generalized truncated differential cryptanalysis. Armed with these ideas, we can
now propose a new attack not previously seen in the literature. We retain the
basic set-up from truncated differential attacks, but we replace the probabilistic
commutative diagrams with stochastic commutative diagrams. In other words,
instead of looking for a single entry in the transition matrix with unusually large
(or small) probability, we use the matrix norm 1

2 ||M − M ′||∞. This approach
allows us to exploit many small biases spread throughout the matrix M , rather
than being confined to only taking advantage of one bias and ignoring the rest.

This may look like a very small tweak; however, it contributes considerable
power to the attack. As we shall see, it subsumes all the previous attacks as spe-
cial cases of generalized truncated differentials. The ability to unify many existing
attacks, and to generate new attacks, using such a simple and natural-looking
extension to prior work is one of the most striking features of our framework.

Generalized truncated differentials generalize conventional differential and
impossible differential attacks. If there is a single entry in M with unusually
large (or small) probability, then the matrix norm 1

2 ||M − M ′||∞ will also be
large. Hence, the existence of a conventional differential or impossible differential
attack with advantage ǫ implies the existence of a generalized truncated attack
with the same advantage ǫ.

Likewise, linear cryptanalysis can also be viewed as a special case of general-
ized truncated differentials. As we argued before, if η, η′ : {0, 1}ℓ → {0, 1} form a
linear characteristic with probability 1

2± ǫ
2 , then η̂, η̂′ given by η̂(x, x′) = η(x−x′),

etc., has probability 1
2 ± ǫ2

2 . It may appear that we have diluted the power of
the attack, because the distinguishing advantage has decreased from ǫ/2 (for
one known text in a linear attack) to ǫ2/2 (for one pair of texts in a generalized
truncated attack). However, this is offset by an increase in the number of pairs of



texts available in a generalized truncated attack: given a pool of n known texts,
one can form n2 pairs of texts. These two factors turn out to counterbalance
each other. If k out of n texts follow η, η′, then k2 + (n − k)2 out of n2 pairs
follow η̂, η̂′. Note that h(k) = k2 + (n − k)2 is a strictly increasing function of
k, for k ≥ n/2. Hence for any threshold T in a linear attack, there is a corre-
sponding threshold h(T ) that makes the generalized truncated differential attack
work with the same number of known texts and roughly the same distinguishing
advantage. Consequently, the existence of a linear attack implies the existence
of a generalized truncated attack with about the same advantage.

Differential-linear attacks are also subsumed by generalized truncated differ-
entials. Because both a differential and a linear characteristic can be viewed as
a generalized truncated differential, they can be concatenated. In a differential-
linear attack, the transition is abrupt and binary, but generalized truncated
attacks allow to consider other attacks, for instance with a gradual transition
between differential- and linear-style analysis, or with hybrids partway between
differential and linear attacks.

Intuitively, the power of generalized truncated differential attacks comes from
the extra degrees of freedom available to the cryptanalyst. In a differential attack,
the cryptanalyst can freely choose which matrix entry M∆,∆′ to focus on, but
has little control over ρ, ρ′. In a linear attack, the cryptanalyst can freely choose
ρ, ρ′ in some clever way, but has no choice over the matrix M . A generalized
truncated differential attack allows the cryptanalyst to control both aspects of
the attack at the same time.

6 Algebraic attacks

One noticeable trend over the past few decades is that more and more block ci-
pher designs have come to incorporate algebraic structure. For instance, the AES
S-box is based on inversion in the field GF (28). Yet this brings an opportunity
for attacks that exploit this structure, and a rich variety of algebraic cryptan-
alytic methods have been devised: interpolation attacks, rational interpolation,
probabilistic interpolation, and so on.

Interpolation attacks. The basic interpolation attack [7] is easy to understand.
We express each round fki

as a polynomial qki
(X) ∈ F[X] over some field F,

and in this way we obtain the commutative diagram shown in Fig. 10. Notice
that composition of commutative diagrams allows to express the whole cipher
as a polynomial qk(X) = qkn

(· · · (qk2
(qk1

(X))) · · · ). The polynomial qk(X) may
depend on the key k in some possibly complex way, hence the attacker usually
will not know qk(X) a priori. Consequently, a distinguishing attack based on
this property must work a little differently.

The standard interpolation attack exploits the fact that d + 1 points suffice
to uniquely determine a polynomial of degree d. Given deg qk(X) + 1 known
plaintext/ciphertext pairs for Ek, we can reconstruct the polynomial qk(X) us-
ing Lagrange interpolation (for instance), and then check one or two additional
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Fig. 10. The basis of an interpolation attack. Here each qki
(X) is a polynomial over

the field F.

known texts for consistency with the recovered polynomial. This allows to dis-
tinguish any cipher with this property from a random permutation.

The idea can be generalized in many ways. We need not restrict ourself
to univariate polynomials; we can generalize to multivariate polynomials q(X),
where X = (X1, . . . ,Xm) represents a vector of m unknowns, and where q(X) =
(q1(X), . . . , qm(X)) represents a vector of m multivariate polynomials. In this
case, the number of texts needed corresponds to the number of coefficients of qk

not known to be zero.
Also, one can naturally derive statistical versions of interpolation cryptanaly-

sis by replacing the commutative diagram in Fig. 10 with a probabilistic commu-
tative diagram with some probability p. Then noisy polynomial reconstruction
techniques (e.g., list decoding of Reed-Solomon codes) will allow us to mount a
distinguishing attack.

We can also use meet-in-the-middle techniques, using the polynomial qk to
cover the first half of the cipher and q′k to cover the remaining rounds. Notice how
these generalizations come naturally under the commutative diagram framework.

Rational interpolation attacks. Another generalization is the notion of rational
interpolation attacks. If q(X), q′(X) are any two polynomials with no common
factor and where q′(X) is not the zero polynomial, then r(X) = q(X)/q′(X) is
called a rational polynomial. It is then natural to consider the variant on the
commutative diagram in Fig. 10 where each polynomial qki

is replaced by a
rational polynomial rki

.
Note that rational polynomials are closed under composition, hence we can

derive a global approximation for the whole cipher from rational approxima-
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Fig. 11. The basis of a bivariate interpolation attack. Here bk(X, Y ) represents a bi-
variate polynomial over F, and the intended interpretation of the diagram is that
bk(x, Ek(x)) = 0 for all x ∈ F.

tions of the individual round functions. If we can express the cipher as a ratio-
nal polynomial Ek(x) = qk(x)/q′k(x), and if we have a supply of known plain-
text/ciphertext pairs (xi, yi), then we obtain the equations yi · q′k(xi) = qk(xi).
Linear algebra reveals the rational polynomial qk(X)/q′k(X), which gives us a
distinguishing attack on the cipher.

Bivariate interpolation. The notion of interpolation and rational interpolation
can be generalized to obtain what might be called a bivariate interpolation attack.
The idea is to seek a family of bivariate polynomials bk(X,Y ) ∈ F[X,Y ] so that
bk(x, fk(x)) = 0 for all x ∈ M and all k ∈ K. This gives a local property of the
round function f .

Local bivariate properties can be composed to obtain a global property for the
whole cipher. Suppose the first round satisfies a bivariate relation b(x, f(x)) = 0
and the second round satisfies b′(y, f ′(y)) = 0. Define

b′′(X,Z) = ResY (b(X,Y ), b′(Y,Z)).

Then the composition of the two rounds will satisfy the relation b′′(x, f ′(f(x))) =
0 for all x ∈ F. The latter follows from a property of the resultant: given
f(Y ), g(Y ) ∈ R[Y ], the resultant ResY (f(Y ), g(Y )) is a value in R, and if
f, g share a common root over R, then the resultant will be zero. Letting
R = F[X,Z], f(Y ) = b(X,Y ), and g(Y ) = b′(Y,Z) verifies the claimed result
about b′′(X,Z).

In this way, we can compose bivariate relations for each round to obtain
a bivariate relation for the whole cipher. Once we have a bivariate relation
bk(x,Ek(x)) = 0 for the whole cipher, we can use polynomial interpolation to
reconstruct bk given a sufficient quantity of known plaintext/ciphertext pairs.
Unfortunately, in general the degree of the bivariate polynomial for the whole
cipher can grow rapidly as the number of rounds increases.

Notice that interpolation attacks fall out as a special case of bivariate in-
terpolation. If the first and second rounds of the cipher can be expressed as
polynomials q(X), q′(Y ), this induces bivariate relations b(X,Y ) = q(X) − Y



and b′(Y,Z) = q′(Y ) − Z. Taking the resultant yields

b′′(X,Z) = ResY (b(X,Y ), b(Y,Z)) = ResY (q(X)−Y, q′(Y )−Z) = q′(q(X))−Z,

which is nothing more than a round-about derivation of the obvious fact that
the composition of first and second rounds may be expressed by the polynomial
q′(q(X)).

Likewise, rational interpolation attacks are a special case of bivariate in-
terpolation. Suppose the first and second rounds can be expressed as ratio-
nal polynomials p(X)/p′(X) and q(Y )/q′(Y ). We obtain the bivariate relations
b(X,Y ) = p′(X) ·Y −p(X) and b′(Y,Z) = q′(Y ) ·Z− q(Y ). Taking the resultant
yields a bivariate relation for the composition of the first two rounds.

Probabilistic bivariate attacks have actually been suggested before by Jakob-
sen [6] and applied by others to DES [12], but it was not previously explained
how to compose local approximations to obtain global approximations, nor was
it noticed that bivariate attacks generalize and unify interpolation and rational
interpolation.

7 Discussion

Closure properties. The common theme here seems to be that closure properties
enable cryptanalysis. For instance, differential and linear attacks exploit the fact
that the set of linear functions is closed under composition: g ◦ f is linear if
f, g are. Likewise for the set of polynomials, of rational polynomials, and so on.
More generally, we may form a norm N (·) on functions that grows slowly under
composition and that corresponds somehow to the cost of an attack. Consider
interpolation attacks: letting N (q) = deg q for polynomials q(X), we find N (g ◦
f) ≤ N (f) × N (g), hence if we can find low-degree properties for individual
round functions, the corresponding global property for the whole cipher will
have not-too-large degree. Perhaps other ways to place a metric space structure
on the set of bijective functions f : M → M will lead to other cryptanalytic
advances in the future.

Related work. Commutative diagram cryptanalysis draws heavily on ideas found
in previous frameworks, most notably Vaudenay’s chi-squared cryptanalysis [13]
and Harpes’ partitioning cryptanalysis [4]. Vaudenay’s work used linear projec-
tions ρ, ρ′ : {0, 1}ℓ → {0, 1}m, and then applied the χ2 statistical test to the pair
(ρ(X), ρ′(Ek(X)). It turns out that the power of the χ2 test is closely related
to the ℓ2 norm, ||M − M ′||2, hence chi-squared cryptanalysis can be viewed as
a variant of stochastic commutative diagrams where a different matrix norm is
used. Partitioning cryptanalysis generalized this to allow arbitrary (not neces-
sarily linear) projections ρ, ρ′.

We borrowed methods from Vaudenay’s decorrelation theory [14] to calculate
the distinguishing advantage of our statistical attacks. Also, Vaudenay shows
how to build ciphers with provable resistance against all non-adaptive d-limited



attacks, which corresponds to security against dth order commutative diagram
attacks.

This work builds on an enormous quantity of work in the block cipher liter-
ature; it is a synthesis of many ideas that have previously appeared elsewhere.
Due to space limitations, we have been forced to omit mention of a great deal
of relevant prior work, and we apologize for all omissions.

8 Conclusion

We have introduced commutative diagram cryptanalysis and shown how it pro-
vides a new perspective on many prior attacks in the block cipher literature. We
also described two new attack methods, generalized truncated differential crypt-
analysis and bivariate interpolation, and demonstrated how they generalize and
unify many previous attacks. It is an interesting open problem to extend this
framework to incorporate more attacks, to discover more new attacks, or to build
fast ciphers that are provably secure against commutative diagram cryptanalysis.
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