
New Cryptographic Primitives Based on

Multiword T-functions

Alexander Klimov and Adi Shamir

Computer Science department, The Weizmann Institute of Science
Rehovot 76100, Israel

{ask,shamir}@weizmann.ac.il

Abstract. A T-function is a mapping from n-bit words to n-bit words
in which for each 0 ≤ i < n bit i of the output can depend only on bits
0, 1, . . . , i of the input. All the boolean operations and most of the nu-
meric operations in modern processors are T-functions, and their com-
positions are also T-functions. In earlier papers we considered ‘crazy’
T-functions such as f(x) = x + (x2 ∨ 5), proved that they are invertible
mappings which contain all the 2n possible states on a single cycle for any
word size n, and proposed to use them as primitive building blocks in a
new class of software-oriented cryptographic schemes. The main practical
drawback of this approach is that most processors have either 32 or 64
bit words, and thus even a maximal length cycle (of size 232 or 264) may
be too short. In this paper we develop new ways to construct invertible
T-functions on multiword states whose iteration is guaranteed to yield
a single cycle of arbitrary length (say, 2256). Such mappings can lead to
stream ciphers whose software implementation on a standard Pentium 4
processor can encrypt more than 5 gigabits of data per second, which is
an order of magnitude faster than previous designs such as RC4.

1 Introduction

There are two basic approaches to the design of secret key cryptographic schemes,
which we can call ‘tame’ and ‘wild’. In the tame approach we try to use only
simple primitives (such as linear feedback shift registers) with well understood
behaviour, and try to prove mathematical theorems about their cryptographic
properties. Unfortunately, the clean mathematical structure of such schemes can
also help the cryptanalyst in his attempt to find an attack which is faster than
exhaustive search. In the wild approach we use crazy compositions of operations
(which mix a variety of domains in a nonlinear and nonalgebraic way), hoping
that neither the designer nor the attacker will be able to analyse the math-
ematical behaviour of the scheme. The first approach is typically preferred in
textbooks and toy schemes, but real world designs often use the second approach.

In several papers published in the last few years [5, 6], we tried to bridge this
gap by considering ‘semi-wild’ constructions which look like crazy combinations
of boolean and arithmetic operations, but have many analyzable mathematical
properties. In particular, we defined the class of T-functions which contains arbi-
trary compositions of plus, minus, times, or, and, xor operations on n-bit words,



and showed that it is easy to analyse their invertibility and cycle structure for
arbitrary word sizes. Such constructions can replace LFSRs and linear congru-
ential mappings (which are vulnerable to correlation and algebraic attacks) in a
new class of stream ciphers and pseudo random generators.

The paper is organized in the following way. In section 2 we recall the basic
definitions from [5] for single word mappings, and consider several ways in which
they can be extended to the multiword case. In section 3 we extend our bit-slice
technique to analyse the invertibility of multiword T-functions. In section 4 we
extend our technique from [6] to analyse the cycle structure of multiword T-
functions. Finally, in section 5 we provide experimental data on the speed of
several possible implementations of our functions on a PC.

2 Multiword T-functions

Invertible mappings with a single cycle have many cryptographic applications.
The main context in which we study them in this paper is pseudo random gen-
eration and stream ciphers. Modern microprocessors can directly operate on up
to 64-bit words in a single clock cycle, and thus a univariate mapping can go
through at most 264 different states before entering a cycle. In some crypto-
graphic applications this cycle length may be too short, and in addition the
cryptanalyst can guess a 64 bit state in a feasible computation. A common way
to increase the size of the state and extend the period of a generator is to run
in parallel and combine the outputs of several generators with different periods.
The overall period is determined by the least common multiple of their individual
periods. This works well with LFSRs, whose periods 2n1 − 1, 2n2 − 1, . . . can be
relatively prime, and thus the overall period can be their product. However, our
univariate mappings have periods of 2n1 , 2n2 , . . . whose least common multiple
is just 2max(n1,n2,...).

A partial solution to this problem is to cyclically use a large number of
different state update functions, starting from a secret state and a secret index.
For example, we can use 64-bit words and 216 − 1 different constants Ck to get
a guaranteed cycle length of almost 280 from the following simple generator:

Theorem 1. Consider the sequence {(xi, ki)} defined by iterating

xi+1 = xi + (x2
i ∨ Cki

) mod 2n,

ki+1 = ki + 1 mod m,

where each x is an n-bit word and Ck is some n-bit constant for each k =
0, . . . ,m − 1. Then the sequence of pairs (xi, ki) has a maximal period (of size

m2n) if and only if m is odd, and for all k, [Ck]0 = 1 and
⊕m−1

k=0 [Ck]2 = 1.

A special case of this theorem for m = 1 is that the function f(x) = x +
(x2 ∨ C) is invertible with a single cycle if and only if both the least significant
bit and the third least significant bit in C are 1, and the smallest such C is 5.



Unfortunately, the cyclic change of state update functions is inconvenient,
and it cannot yield really large cycles (e.g., of 2256 possible states). We can
try to solve the problem by using a single high precision variable x (say, with
256 bits), but the multiplication of such long variables can become prohibitively
expensive. What we would like to do is to define the mapping by operating
separately on the various input words, without trying to interpret the result as
a natural mathematical operation on multi-precision words.

Let us first review the definitions from [5] in the case of univariate map-
pings. Let x be an n-bit word. We can view x as a vector of bits denoted by
([x]n−1 , . . . , [x]0), where the least significant bit has number 0. In this bit nota-
tion, the univariate function f(x) = x + 1 (mod 2n) can be expressed in the
following way:

[f(x)]0 = f0([x]0) = [x]0 ⊕ 1
[f(x)]1 = f1([x]1 ; [x]0) = [x]1 ⊕ α1([x]0)
[f(x)]2 = f2([x]2 ; [x]1 , [x]0) = [x]2 ⊕ α2([x]1 , [x]0)

.

.

.
.
.
.

[f(x)]
n−1 = fn−1([x]

n−1 ; [x]
n−2 , . . . , [x]0) = [x]

n−1 ⊕ αn−1([x]
n−2 , . . . , [x]0),

(1)

where each αi denotes one of the carry bits. Note that for any bit position i,
[f(x)]i depends only on [x]i , . . . , [x]0 and does not depend on [x]n−1 , . . . , [x]i+1.
We call any univariate function f which has this property a T-function (where
‘T’ is short for triangular). Note further that each carry bit αi depends only on
strictly earlier input bits [x]i−1 , . . . , [x]0 but not on [x]i. This is a special type of a
T-function, which we call a parameter. To provide some intuition from the theory
of linear transformations on n-dimensional spaces, we can say that T-functions
roughly correspond to lower triangular matrices, parameters roughly correspond
to lower triangular matrices with zeroes on the diagonal, and a T-function can
be roughly represented as a diagonal matrix plus a parameter.

Let us now define these notions for functions which map several input words
into one output word. The natural extension of the notion of a T-function in this
case is to allow bit i of the output to depend only on bits 0 to i of each one of
the inputs. The observation which makes this notion interesting is that all the
boolean operations and most of the arithmetic operations available on modern
processors are T-functions. In particular, addition (‘+’), subtraction (‘binary
−’), negation (‘unary −’), multiplication (‘∗’), or (‘∨’), and (‘∧’), exclusive or
(‘⊕’), and complementation (‘¬’) (where the boolean operations are performed
on all the n bits in parallel and the arithmetic operations are performed modulo
2n) are T-functions with one or two inputs. We call these eight functions primi-
tive operations. Note that circular rotations and right shifts are not T-functions,
but left shifts can be expressed as multiplication by a power of 2 and thus they
are T-functions. Since the composition of T-functions is also a T-function, any
‘crazy’ function which contains arbitrarily many primitive operations is always
a T-function.

In order to define multiword mappings f which can be iterated, we have to
further extend the notion to functions with the same number m of input and
output words. We can represent the multiword input as the following n×m bit



matrix Bn×m:

x =











x0

x1

...
xm−1











=











[x]0,n−1 . . . [x]0,1 [x]0,0

[x]1,n−1 . . . [x]1,1 [x]1,0
...

. . .
...

...
[x]m−1,n−1 . . . [x]m−1,1 [x]m−1,0











. (2)

We can now consider the columns of the bit matrix as parallel bit slices with
no internal bit order, and say that a multiword mapping is a T-function if all
the bits in column i of the matrix of output words can depend only on bits
in columns 0 to i of the matrix of input words. In this interpretation it is still
true that any composition of primitive operations is a multiword T-function, but
some of the proven properties of univariate T-functions (e.g., that all the cycle
lengths are powers of 2) are no longer true.

An alternative definition of multiword T-functions is to concatenate all the
input words into one long word, to concatenate all the output words into one
long word, and then to use the standard univariate definition of a T-function in
order to limit which input bits can affect which output bits. If we denote the l
input words by xu, xv, . . ., then we define the single logical variable x by

x = (xu, . . . , xw) = ([x]
n(l−1)+(n−1) , . . . , [x]

n(l−1) , . . . [x]
n−1 , . . . , [x]0). (3)

Note that in this interpretation f(x) = (fu, fv) = (xu + xv, xv) is a T-function,
but the very similar f(x) = (fu, fv) = (xu, xu + xv) is not a T-function, and
thus we cannot compose primitive operations in an arbitrary way. On the other
hand, we can obtain many new types of T-functions in which low-order words
can be manipulated by non-primitive operations (such as cyclic rotation) before
we use them to compute higher order output words.

Our actual definition of multiword T-functions combines and generalizes
these two possible interpretations. Let x be an nl × m bit matrix (Bnl×m):

0

B

B

B

B

@

[x]0,n(l−1)+(n−1) · · · [x]0,n(l−1)+1 [x]0,n(l−1) · · · [x]0,n−1 · · · [x]0,0

[x]1,n(l−1)+(n−1) · · · [x]1,n(l−1)+1 [x]1,n(l−1) · · · [x]1,n−1 · · · [x]1,0

.

.

.
. . .

.

.

.
.
.
. · · ·

.

.

.
. . .

.

.

.
[x]

m−1,n(l−1)+(n−1) · · · [x]
m−1,n(l−1)+1 [x]

m−1,n(l−1) · · · [x]
m−1,n−1 · · · [x]

m−1,0

1

C

C

C

C

A

. (4)

We consider it as an m × l matrix of n bits words:

x =







x0,u . . . x0,w

...
. . .

...
xm−1,u . . . xm−1,w






.

We concatenate the l words in each row into a single logical variable, and then
consider the collection of the m long variables as the inputs to the T-function.
Finally, we allow the bits in column i of the output matrix to depend only on
bits in columns 0, . . . , i in the input matrix.



To demonstrate this notion, consider the following mapping over 4-tuples of
words:

f(x) =

(

x0,u + x1,ux0,v x0,v + x1,v

x0,u − x1,u(x1,v � 1) x0,v ⊕ x1,v

)

.

This is a valid T-function under our general multiword definition even though it
contains the non-primitive right shift operation � 1 .

3 Bit slice analysis and invertibility

The main tool we use in order to study the invertibility of T-functions is bit
slice analysis. Its basic idea is to define the mapping from [x]i to [f(x)]i by ab-
stracting out the complicated dependency on [x]0...i−1 via the notion of param-
eters. For example, the size of the explicit description of the mapping [f(x)]i =
φ([x]0 , . . . , [x]i) in the function f(x) = x + (x2 ∨ 5) grows exponentially with
i, but it can be written as [f(x)]i = [x]i ⊕ αi, where αi is some function of
[x]0 , . . . , [x]i−1 (that is, a parameter). By using this parametric representation
we can easily prove the invertibility of the mapping by induction on i, since if we
already know bits 0 to i − 1 of the input x and bit i of the output f(x), we can
(in principle) calculate the value of αi and thus derive in a unique way bit i of
the input. Intuitively, this is the same technique we use in order to solve a trian-
gular system of linear equations, except that in our case the explicit description
of αi can be extremely complicated, and thus we do not use this technique as a
real inversion algorithm for f(x), but only in order to prove that this inverse is
uniquely defined.

The main observation in [5] was that such an abstract parametric represen-
tation can be easily derived for any composition of primitive operations by the
following recursive definition, in which i can be any bit position except zero:

[xy]0 = [x]0 ∧ [y]0
[

x
+
−

⊕
y
]

0
= [x]0 ⊕ [y]0

[

x∧

∨y
]

0
= [x]0

∧

∨ [y]0
[xy]i = [x]i α[y]0

⊕ α[x]0
[y]i ⊕ αxy

[

x +
−y

]

i
= [x]i ⊕ [y]i ⊕ αx±y

[

x
⊕

∧

∨
y
]

i
= [x]i

⊕

∧

∨
[y]i

(5)

To demonstrate this technique, consider our running example:
[

x + (x2 ∨ 5)
]

0
=

[x]0 ⊕
[

x2 ∨ 5
]

0
= [x]0 ⊕ 1 and, for i > 0,

[

x + (x2 ∨ 5)
]

i
= [x]i ⊕ (

[

x2
]

i
∨ [5]i)⊕

αx+(x2∨5) = [x]i ⊕ (([x]i α[x]0
⊕ α[x]0

[x]i ⊕ αx2) ∨ [5]i) ⊕ αx+(x2∨5) = [x]i ⊕ α.
This invertibility test can be easily generalized to the multivariate case (2).

Let us show an example of such a construction. We start from an arbitrary non
singular matrix which denotes a possible bit slice mapping, such as:

1 α
0 1



We can add to this linear mapping an affine part (where α, β, and γ are arbitrary
parameters) and get the following bit slice structure:

(

[x0]i
[x1]i

)

→

(

[x0]i ⊕ α [x1]i ⊕ β
[x1]i ⊕ γ.

)

(6)

It is easy to check that for i > 0 the i-th bit slice of the following mapping
matches (6):

(

x0

x1

)

→

(

x0 + (x2
0 ∧ x1)

x1 + x2
0.

)

Unfortunately, the least significant bit slice of this mapping is not invertible:

(

[x0]0
[x1]0

)

→

(

[x0]0 ⊕ [x0]0 [x1]0
[x1]0 ⊕ [x0]0 .

)

So we have to apply a little tweak to fix it:

(

x0

x1

)

→

(

x0 + ((x2
0 ∧ x1) ∨ 1)

x1 + x2
0.

)

The reader may get the impression that the bit slice mappings of invertible
functions are always linear. From (5) it is easy to see that every expression which
uses only ⊕, +, − and × has linear i-th bit slice, but in general this is not true.

4 The single cycle property

A T-function has the single cycle property if its repeated application to any
initial state goes through all the possible states. Let us recall the basic results
from [6] in the univariate case. Invertibility is a prerequisite of the single cycle
property. If a T-function has a single cycle modulo 2k then it has a single cycle
modulo 2k−1. If a T-function has a cycle of length l modulo 2k−1 then modulo
2k it has either a cycle of length 2l or two cycles of length l. Taking into account
the fact that modulo 21 a function has either one cycle of length two or two
cycles of length one we can conclude that the size of any cycle of a T-function
is always a power of 2.

In the univariate case a bit slice of an invertible T-function has the form
[f(x)]i = [x]i ⊕ α. From (5) it follows that f(x) has one of the following forms:
f1(x) = x ⊕ r1(x), f2(x) = x + r2(x) or f3(x) = xr3(x), where the ri are
parameters (in the case of multiplication additionally we need [r3]0 = 1). It is
easy to see that [f3(x)]0 = [x]0 [r3(x)]0 = [x]0, that is it has two cycles modulo 2
and so it can not form a single cycle modulo 2n. So, a single cycle function has
either1 the first or the second form. In order to analyse the cycle structure of
these forms the following definitions of even and odd parameters were introduced.

1 Note that there is no exclusive or here since every function can be represented in
both forms, for example x + 1 = x ⊕ (x ⊕ (x + 1)).



Suppose that r(x) is a parameter, that is r(x) = r(x + 2n−1) (mod 2n). So,
r(x) = r(x + 2n−1) + 2nb(x) (mod 2n+1). Consider

B[r, n] = 2−n

2n−1−1
∑

i=0

(r(i + 2n−1) − r(i)) (mod 2) =
2n−1−1
⊕

i=0

b(i). (7)

The parameter is called even if B[r, n] is always zero, and odd if B[r, n] is always
one2.

Let us give several examples of even parameters:

– r(x) = C, where C is an arbitrary constant (r(x) = r(x + 2n−1) and so,
b = 0 and B = 0);

– r(x) = 2x (r(x + 2n−1) = r(x) + 2n (mod 2n+1), so b(x) = 1 and B is even
as long as 2n−1 is even, that is for n ≥ 2);

– r(x) = x2 (r(x + 2n−1) = r(x) + 2nx + 22(n−1), so b(x) = [x]0 and B is even
for n ≥ 3);

– r(x) = 4g(x), where g(x) is an arbitrary T-function (r(x + 2n−1) − r(x) =
4(g(x + 2n−1) − g(x)) = 0 (mod 2n));

– r(x) = r′(x)
+
−

⊕
r′′(x), where r′ and r′′ are simultaneously even or odd param-

eters (B = B′ ⊕ B′′).
– r(x) = r′(x) ∨ C, where C is an arbitrary constant and r′(x) is an even

parameter (if [C]i = 0 then [r(x)]i = [r′(x)]i, and if [C]i = 1 then [r(x)]i =
[C]i, so in both cases [r(x)]i is the same as for some even parameter.)

The following theorem was proved in [6]:

Theorem 2. Let N0 be such that x → x + r(x) mod 2N0 defines a single cycle
and for n > N0 the function r(x) is an even parameter. Then the mapping
x → x + r(x) mod 2n defines a single cycle for all n.

We can use our running example of f(x) = x + (x2 ∨C) to demonstrate this

theorem. If the binary form of C ends with . . . 1 0
11, then C = 5, 7 (mod 8),

and x2 ∨ C = C (mod 8) is an odd constant modulo 23 so x + C has a single
cycle modulo 23. In addition, x2 is an even parameter for n ≥ 3, and this is
not affected by ‘or’ing it with an arbitrary constant. In [6] it was shown that
x → x+(x2∨C) is the smallest nonlinear expression which defines a single cycle,
in other words there is no nonlinear expression which defines a single cycle and
consists of less than three operations.

Another important class of single cycle mappings is f(x) = 1 + x + 4g(x)
for an arbitrary T-function g(x). It turns out that x86 microprocessors have an
instruction which allows us to calculate 1+x+4y with a single instruction3 and

2 Note that in the general case B is a function of n, and thus the parameter can be
neither even nor odd. We often relax these definitions by allowing exceptions for
small n such as 1 or 2.

3 The lea (load effective address) instruction makes it possible to calculate any ex-
pression of the form C+R1+kR2, where C is a constant, R1 and R2 are registers and
k is a power of two. Its original purpose was to simplify the calculation of addresses
in arrays.



thus the single cycle mapping f(x) = 1 + x + 4x2 can be calculated using only
two instructions.

Odd parameters are less common and harder to construct. Their main appli-
cation is in mappings of the form x ⊕ r(x):

Theorem 3. Let N0 be such that x → x ⊕ r(x) mod 2N0 defines a single cycle
and for n > N0 the function r(x) is an odd parameter. Then the mapping
x → x ⊕ r(x) mod 2n defines a single cycle for all n.

Proof. Let us prove this by induction: suppose that the mapping defines a sin-
gle cycle modulo 2n and we are going to prove that it defines a single cycle
modulo 2n+1. Since there are only two possible cycle structures modulo 2n+1

(a single cycle of size 2n+1 or two cycles of size 2n) we will prove that the
second case is impossible, that is

[

x(0)
]

n
6=

[

x(2n)
]

n
at least for one x. Re-

call that [x]n is the most significant bit of x modulo 2n+1. Let x(0) = 0,
since r is a parameter it follows that r(i) = r(i + 2n) (mod 2n+1), and so
[

x(2n)
]

n
=

[

r(x(0)) ⊕ . . . ⊕ r(x(2n−1))
]

n
=

⊕2n−1
i=0 [r(i)]n =

⊕2n−1−1
i=0 (

[

r(i + 2n−1)
]

n
⊕ [r(i)]n) =

⊕2n−1−1
i=0 (

[

r(i + 2n−1) − r(i)
]

n
) = 1.

Here we use the fact that
[

r(i + 2n−1)
]

n
− [r(i)]n =

[

r(i + 2n−1) − r(i)
]

n
.

Recently the related notions of measure preservation and ergodicity of com-
patible functions over p-adic numbers were independently studied by Anashin
[1].4 His motivation was mathematical rather than cryptographic, and he used
different techniques. In order to study if a T-function is invertible (respectively,
has a single cycle property) he tried to represent it as f(x) = d + cx + pv(x)
(respectively, f(x) = c + rx + p(v(x + 1) − v(x))), or to represent it as Mahler
interpolation series, or to use the notion of uniform differentiability. The first
characterization is the most general (that is v(x) can be any T-function) and
complete (he proved that every invertible (respectively, a single cycle function)
can be represented in this form. For example, it follows that there exists vf (x),
such that f(x) = x + (x2 ∨ 5) = 1 + x + 2(vf (x + 1) − vf (x)) and in order to
prove that f(x) defines a single cycle it is enough to find such a function vf (x).
This example shows that this criterion is not that good in practice in checking
properties of a given function but it allows us to construct arbitrary complex
functions with needed properties. For the second approach any function f can be

represented as a Mahler interpolation series
∑∞

i=0 ai

(

x(x−1)···(x−i+1)
i!

)

. It turns

out, for example, that a T-function is invertible if and only if ‖a1‖2 = 1 and
‖ai‖2 ≤ 2−⌊log2 i⌋−1, for i = 2, 3, . . .. This is used to prove theoretical results sim-
ilar to the previous one, but once again for practical purposes it is usually hard to
represent a given function as a Mahler series. The uniformly differentiable5 func-

4 This could be translated to our terminology as follows: measure preservation —
invertibility, ergodicity — a single cycle property, compatible — T-function. To sim-
plify reading we will continue to use our terminology, but an interested reader who
will refer to his paper should keep in mind this “dictionary”.

5 It is exactly the same concept as the usual notion of uniform differentiability of real
functions, but with respect to the p-adic distance.



tions allow us to use Hensel lifting. However, there are several obstacles to the
application of this theorem in practice. First of all, it is not always easy to tell if
a given function is uniformly differentiable. Consider, for example, x + (x2 ∨ 5):
∨ is not a differentiable operation but according to [2] in this particular case
(x+(x2∨5))′ = (x+x2 +5−(x2∧5))′ = 1+2x+2x(u∧5)|′

u=x2 , but (u∧5)′ = 0
for ‖h‖2 ≤ 1

8 , and so the whole expression is uniformly differentiable. Unfortu-
nately, this trick does not work for the general case x+(x2∨C). Moreover, there
are invertible mappings which are not uniformly differentiable. The second ob-
stacle is how to find N0. In the very restricted case of polynomials (expressions
which use only +, − and ×) it is possible to calculate this number in advance,
but this is not possible even if we add only ⊕: we found a family of functions
fi(x) (which use only +, −, and ⊕) such that for every N there is N0 ≥ N ,
iN0

such that fiN0
has a single cycle modulo 2N0 but not modulo 2N0+1. In

particular, if f0 = x − 1, fi = ((f(i − 1, x) ⊕ x) + x) ⊕ (x + x) then N0 = i + 2,
i = 2r.

Both Anashin’s techniques and our techniques can be used to completely
characterize all the univariate polynomial mappings modulo 2n which are in-
vertible with a single cycle:

Theorem 4. A polynomial P (x) =
∑d

i=0 aix
i is invertible modulo any 2n if and

only if it is invertible modulo 4, and it has a single cycle modulo any 2n if and
only if it has a single cycle modulo 8.

Proof. From (5) it follows6 that [P (x)]0 = [a0]0 + [(a1 + · · · + ad)]0 [x]0 and
[P (x)]i = [a1]0 [x]i ⊕

⊕

odd k≥3 [ak]0 [x]0 [x]i ⊕ α. Since a T-function is invertible
if and only if each bit slice is invertible, the following conditions are necessary and
sufficient for the invertibility of a polynomial: [(a1 + · · · + ad)]0 = 1, [a1]0 = 1
and

⊕

odd k≥3 [ak]0 = 0. In order to prove the single cycle property let us repre-
sent the polynomial in the following form: P (x) = x+P ′(x). Since in order to gen-
erate a single cycle P (x) should be invertible it follows that [(a′

1 + · · · + a′
d)]0 = 0,

[a′
1]0 = 0 and

⊕

odd k≥3 [a′
k]0 = 0. Now we need to prove that P ′(x) is an even

parameter, that is, that
⊕2n−1−1

i=0 b(i) = 2−n
∑2n−1−1

i=0 (P ′(i + 2n−1) − P ′(i))
(mod 2) = 0. Let us do it separately for different parts of P ′. It is easy to
show that a0, a1x with even a1 and akxk for even k are even parameters for
n ≥ 3. Let us prove that the sum of odd powers is also an even parameter if
∑

k [ak]0 = 0 mod 2 and n ≥ 3: 2−n
∑2n−1−1

i=0

∑

odd k≥3(ak(i + 2n−1)k − akik) =

2−n
∑

i

∑

k akkik−12n−1 +
∑

i

∑

k ak(k(k−1)
2 ik−222(n−1)−n + · · ·) = 0 (mod 2).

So, if P (x) defines a single cycle modulo 8 then it defines a single cycle modulo
any 2n. On the other hand if P (x) does not define a single cycle modulo 8 then
it does not define a single cycle modulo any 2n ≥ 8.

It is easy to verify that exactly 1/8 of all the polynomials are invertible,
and 1/64 of all the polynomials have a single cycle, and thus it is easy to pick
random polynomials with these properties. Typical examples of quadratic single
cycle polynomials are f(x) = (x + 1)(2x + 1) and f(x) = 6x2 − x + 1.

6 See [5] for details



Our goal now is to construct invertible multiword T-functions whose iteration
defines a single cycle. Let us start with T-functions of type (2), which map m
parallel input words to m parallel output words. We would like to construct a
mapping







x0

...
xm−1






→







f0(x0, . . . , xm−1)
...

fm−1(x0, . . . , xm−1)







which is invertible and has the maximum possible period of 2mn. Several simple
constructions can be easily shown to be impossible. For example:

Theorem 5. No T-mapping of the form (x0, x1) → (f0(x0), f1(x0, x1)) can have
a period of 22n.

Proof. Suppose there is a mapping (x0, x1) → (f0(x0), f1(x0, x1)), where f0 and
f1 are T-functions, such that it has a period of size P = 22i modulo 2i. This
means that, for example, f (P )(0, 0) = (0, 0) and ∀p < P , f (p)(0, 0) 6= (0, 0). Let
p = 22(i−1). Since the period of the mapping modulo 2i−1 is at most 22(i−1)

it follows that f (p)(0, 0) 6= (0, 0) if and only if the same holds for the most
significant bits, but since f0 depends only on x0 modulo 2i the period of f0 is at

most 2i and so (for sufficiently large i) the most significant bit of f
(p)
0 = f

(2p)
0 =

f
(3p)
0 and since the most significant bit of f1 can assume only two possible values

it follows that either f (p) = f (2p) or f (p) = f (3p) which is a contradiction.

Also it can be shown that it is impossible to obtain a single cycle function of this
type from slice-linear mappings, which are T-functions which have the following
form: [fj ]i =

⊕m−1
k=0 [Cj,k]

i
[xk]i⊕αj,i, where (Ci,j) is a constant invertible matrix

and m > 2.
Note that the construction is trivial in the two extreme cases of m = 1 and

n = 1. In the univariate case (m = 1) the answer is given by theorem 3: x → x⊕α,
where α is an odd parameter. The case of n = 1 is also simple because every
function is then a T-function, and it is easy to define a counting transformation
such as fi = xi⊕(x0∧· · ·∧xi−1) which goes through all the states in the natural
order 0 . . . 00 → 0 . . . 01 → 0 . . . 10 → · · · → 1 . . . 11 → 0 . . . 00. Let us combine
these two cases:

fi(x0, . . . , xm−1) = xi ⊕ (αi(x0, . . . , xm−1) ∧ x0 ∧ · · · ∧ xi−1), (8)

where each αi is an odd parameter, that is

(2n−1,...,2n−1)
⊕

(x0,...,xm−1)=(0,...,0)

[αi(x0, . . . , xm−1)]n = 1

and [αi]0 = 1. We can now prove:

Theorem 6. The mapping defined by (8) defines a single cycle of length 2mn.



Proof. Let us prove it by induction. For n = 1 we know that it is true. Suppose
that it is a single cycle modulo 2n and let us prove this for 2n+1. Suppose
without loss of generality that (x0, . . . , xm−1)

(0) = (0, . . . , 0). From the induction
hypothesis it follows that {(x0, . . . , xm−1)

(i) mod 2n}2mn

i=0 contains all the possible

tuples, so
[

x
(2mn)
0

]

n
= x

(0)
0 ⊕

⊕

α0 = 1, more generally,
[

x
(l+2mn)
0

]

n
=

[

x
(l)
0

]

n
⊕1,

so

(2n+1−1,2n−1,...,2n−1)
⊕

(x0,...,xm−1)=(0,...,0)

[α1(x0, . . . , xm−1)]n ∧ [x0]n =

(2n−1,2n−1,...,2n−1)
⊕

(x0,...,xm−1)=(0,...,0)

[α1(x0, . . . , xm−1)]n .

So, if we consider the next variable x1:
[

x
(2mn+1)
1

]

n
= x

(0)
1 ⊕

⊕

α1∧x0 = x
(0)
1 ⊕1.

Using similar arguments, we can prove that
[

x
(2mn+(m−1))
m−1

]

n
=

[

x0
m−1

]

n
⊕1, that

is modulo 2n+1 the period is 2mn+m = 2m(n+1).

In order to use this theorem we need an odd parameter. We know that
f(x) = x + r(x) defines a single cycle if r(x) is an even parameter. We also
know that every such function can be represented as f(x) = x⊕s(x), where s(x)
is an odd parameter. So, for any even parameter r(x) the following expression
s(x) = (x + r(x)) ⊕ x is an odd parameter. For example, if r(x) = x2 ∨ 5, then
s(x) = (x+(x2∨5))⊕x is an odd parameter. Note that if f(x) is invertible then
[r(x)]0 = 1 and so [s(x)]0 = [r(x)]0 = 1. To construct an odd parameter with m
variables we need the following lemma:
Lemma 1.

2n

⊕

t=0

α(t) =

(2n−1,...,2n−1)
⊕

(x0,...,xm−1)=(0,...,0)

α(x0 ∧ · · · ∧ xm−1)

Proof. In order to prove the lemma it is sufficient to prove that for every t there
is an odd number of tuples (x0, . . . , xm−1) such that x0 ∧ · · · ∧ xm−1 = t. In
fact, we can directly calculate this number: if t contains k zeros then there are
(2m − 1)k such tuples, which is an odd number.

For example, the following mapping defines a single cycle for any m and n:

fi(x0, . . . , xm−1) = xi ⊕ (s(x0 ∧ · · · ∧ xm−1) ∧ x0 ∧ · · · ∧ xi−1), (9)

where s(t) = (t+(t2∨5))⊕t. Note that to evaluate this mapping for each particu-
lar (x0, . . . , xm−1) we need one squaring, one addition and 3m bitwise operations,
or 3m+2 operations in total. Unfortunately, this mapping has the property that
during update each bit of xm−1 is changed with probability 2−(m+1) instead of
1
2 as expected for a random mapping. To avoid this we can add any even param-
eter7 with zero in the least significant bit, simplify s(t) and obtain, for example,

7 Note that in the multivariate case every parameter which does not use all the vari-
ables is even.



the following mapping:









x0

x1

x2

x3









→









x0 ⊕ s ⊕ (x2
1 ∧ M)

x1 ⊕ (s ∧ a0) ⊕ (x2
2 ∧ M)

x2 ⊕ (s ∧ a1) ⊕ (x2
3 ∧ M)

x3 ⊕ (s ∧ a2) ⊕ (x2
0 ∧ M)









, (10)

where a0 = x0, a1 = a0 ∧ x1, a2 = a1 ∧ x2, a3 = a2 ∧ x3, s = (a3 + C) ⊕ a3, C
is any odd constant and M = 1 . . . 11102 or we can enhance the inter-variable
mixing with the following mapping:









x0

x1

x2

x3









→









x0 ⊕ s ⊕ 2x1x2

x1 ⊕ (s ∧ a0) ⊕ 2x2x3

x2 ⊕ (s ∧ a1) ⊕ 2x3x0

x3 ⊕ (s ∧ a2) ⊕ 2x0x1









(11)

During the iteration of these mappings each bit is changed in approximately one
half of the cases. Each mapping requires 24 operations to obtain a cycle of size
2256.

We next analyse mappings of type (3), which consider multiple words as
concatenated parts of a single multi-precision logical variable x, for example, x =
23nxa+22nxb+2nxc+xd. In this case our running example x → x+(x2∨C) can be
represented as (xa, xb, xc, xd) → (fa(xa;xb, xc, xd), . . . , fd(xd)) with appropriate
fa, fb, fc and fd, but the squaring of a 4n-bit word would be rather inefficient
on an n-bit processor. Note that there is no requirement that the whole mapping
x → f(x) has a simple interpretation as a mapping of a 4n bit word although
we need this interpretation to prove the single cycle property.

Let us start with the simplest single cycle mapping x → x + 1. It can be
implemented as follows: (xa, xb, xc, xd) → (xa + κb, xb + κc, xc + κd, xd + 1),
where κd is the carry (overflow) from xd, κc is the carry from xc, et cetera.
Many contemporary processors (including x86 and SPARC) have an operation
adc (addition with carry) (x, y, c) → (z, c′), where z = (x + y + c) mod 2n and
c′ = (x + y + c ≥ 2n), so the addition of κ can be done at no additional cost8 if
the mapping has the following form: (xa, xb, xc, xd) → (xa + fa + κb, xb + fb +
κc, xc + fc + κd, xd + fd + 1). The only restriction on each f is that it should be
an even parameter. For example,









xd

xc

xb

xa









→









xd + (s2
d ∨ Cd)

xc + (s2
c ∨ Cc) + κd

xb + (s2
b ∨ Cb) + κc

xa + (s2
a ∨ Ca) + κb,









(12)

8 This is not always true. For example, on Intel Pentium 4 processor the ordinary
add instruction has the latency (the number of clock cycles that are required for
the execution core to complete the execution of all of the µops that form a IA-32
instruction) 0.5 and the throughput (the number of clock cycles required to wait
before the issue ports are free to accept the same instruction again) 0.5, but adc has
the latency 8 and the throughput 3 [4].



where sd = xd, sc = sd ⊕ xc, sb = sc + xb, sa = sb ⊕ xa, Ca, Cb, Cc are odd

constants9 and Cd ends with . . . 1 0
112.

This mapping uses 15 operations to obtain a cycle of size 2256. So, it can
be much faster than the previous example but only on processors that have the
adc instruction. If this instruction has to be emulated10 this mapping can be
slower. Note that almost all high level programming languages do not have such
an instruction so it has to be emulated or to be written in assembly language.

The number of operations is not usually a good predictor of the speed of
the implementation, since on modern microprocessors several operations can
be done in parallel, use different number of clocks, etc. We should take into
account that an update function is not the complete generator. There is also an
output function which produces the output bits given the internal state. Since
the least significant bits of the state are repeated in small cycles the simplest
output function is the one that gives away the most significant bits of the state. It
seems that it is easier to implement such a function for the second mapping since
xa and xb form the most significant part of the state, but their least significant
bits are also weak since they depend only of the least significant bits of xi and
a single bit carry.11 One solution is to give away the most significant part of
xa (32 bits) or use a more sophisticated output function and give away more
bits thus raising the ratio of the output bits per operation. For example, O1 =
((xa �

n
2 ) ⊕ xb)(((xc �

n
2 ) ⊕ xd) ∨ 1), where � could be substituted with circular

rotation if the target microprocessor supports it, uses only five operations and
doubles the size of the output. It can be shown that O1 has maximal period and
produces each possible value with the same probability (since it is an invertible
mapping of xb for fixed xa, xc and xd). Note that we give here only examples of
the possible mappings and output functions, but in order to construct a secure
stream cipher they have to be subjected to a lengthy and thorough cryptanalysis.

5 Experimental results

We tested the actual execution speed of our mappings on an IA-32 machine. We
used a standard PC with a 1.7 GHz Pentium 4 processor with 256KB of cache.
In each experiment we encrypted one gigabyte of data by encrypting 104 times
a buffer which is 105 bytes long (this ensured that the data was prefetched into
L2 cache). The tests were done on an otherwise idle Linux system. To calculate
the overhead produced by memory access we “encrypted” the buffer by xoring

9 Note that the only purpose of Ca, Cb and Cc is to make parameters out of x2

·
, that

is mask the least significant bit. The evenness of the parameter is guaranteed since
n from (7) is larger than 3.

10 There are basically two ways to emulate it: check if a+b ≥ a or a+b ≥ b for unsigned
a and b or, usually faster since conditions break pipeline, to set n = 63 and use the
most significant bit of the sum as κ

·
. The second approach adds two operation for

each addition of κ
·
and gives 21 operations overall with reduced word size.

11 It is possible to change the definitions of sa,sb,sc,sd to incorporate right shifts or
rotations, but this will also increase the calculation time.



it with a 32 bit constant. It took 0.42 seconds, and we did not subtract it from
our actual results.

In this paper we propose a general approach rather than a concrete stream
cipher, and thus in our performance tests we experimented with many different
state sizes, update mappings and output functions. As a typical example, we
used 256 bit states defined as four words of length n = 64 and updated them
by (11). We wanted to use a simple output function which is just the top half
of each xi, but we discovered that this variant is vulnerable to a (theoretical)
attack in which the attacker guesses the 17 least significant bits of each xi (i.e.,
a total of 68 guessed bits) and searches in 234 bytes of data for places where
two of the xi end with 17 zeroes and thus their product ends with 34 zeros. To
protect against this attack, we slightly modified the state update function to:









x0

x1

x2

x3









→









x0 ⊕ s ⊕ (2(x1 ∨ C1)x2)
x1 ⊕ (s ∧ a0) ⊕ (2x2(x3 ∨ C3))
x2 ⊕ (s ∧ a1) ⊕ (2(x3 ∨ C3)x0)
x3 ⊕ (s ∧ a2) ⊕ (2x0(x1 ∨ C1))









, (13)

where C1 and C2 are constants with several ones in the least significant half,
for example, C1 = 1248124816 and C3 = 4812481216. To take advantage of the
SSE2 instruction set of Pentium 4 processors (which contains 128-bit integer
instructions that allow us to operate on two 64-bit integers simultaneously), we
run two generators ((x0, x1, x2, x3) and (x′

0, x
′
1, x

′
2, x

′
3)) in parallel and the output

is generated by (x0 � 32)⊕ x1, (x2 � 32)⊕ x3, (x′
0 � 32)⊕ x′

1 and (x′
2 � 32)⊕ x′

3.
Since each command operates on a pair (xi, x

′
i) we can run two generators instead

of one at no additional cost. With this optimization, the complete encryption
operation required only 1.56 seconds per gigabyte, and thus the experimentally
verified encryption speed was approximately 5.13 gigabits/second.

To put our results in perspective, the reader should consider the RC4 stream
cipher, which is one of the fastest software oriented ciphers available today. The
web site of Crypto++ contains benchmarks for highly optimized implementations
of many well known cryptographic algorithms [3]. For RC4 it quotes a speed of
110 megabyte per second on a 2.1 GHz Pentium 4 processor. This can be scaled
to 1000/110×1.7/2.1 = 11.2 seconds required to encrypt a gigabyte of data on a
1.7GHz processor, which is almost an order of magnitude slower than the speed
we obtain with our approach.

References

1. V. Anashin, “Uniformly Distributed Sequences of p-adic integers, II”. Available
from http://www.arxiv.org/ps/math.NT/0209407.

2. V. Anashin, private communication.
3. Crypto++ 5.1 Benchmarks: http://www.eskimo.com/∼weidai/benchmarks.html
4. “IA-32 Intel Architecture Optimization Reference Manual”. Available from

http://www.intel.com/design/pentium4/manuals/248966.htm
5. A. Klimov and A. Shamir, “A New Class of Invertible Mappings”, CHES 2002.
6. A. Klimov and A. Shamir, “Cryptographic Applications of T-functions”, SAC 2003.


