
A Concrete Security Analysis for 3GPP-MAC

Dowon Hong1 Ju-Sung Kang1 Bart Preneel2 Heuisu Ryu1

1Information Security Technology Division, ETRI

161 Kajong-Dong, Yusong-Gu, Taejon, 305-350, KOREA

fdwhong,jskang,hsryug@etri.re.kr

2Katholieke Universiteit Leuven, ESAT/COSIC

Kasteelpark Arenberg 10, B-3001, Leuven-Heverlee, Belgium

Bart.Preneel@esat.kuleuven.ac.be

Abstract. The standardized integrity algorithm f9 of the 3GPP algo-

rithm computes a MAC (Message Authentication Code) to establish the

integrity and the data origin of the signalling data over a radio access

link of W-CDMA IMT-2000. The function f9 is based on the block ci-

pher KASUMI and it can be considered as a variant of CBC-MAC. In

this paper we examine the provable security of f9. We prove that f9

is a secure pseudorandom function by giving a concrete bound on an

adversary's inability to forge a MAC value in terms of her inability to

distinguish the underlying block cipher from a random permutation.

Keywords: Message authentication code, 3GPP-MAC, Provable secu-

rity, Pseudo-randomness.

1 Introduction

Within the security architecture of 3GPP (the 3rd Generation Partnership Pro-

ject) a standardized data authentication algorithm f9 has been de�ned; this

MAC (Message Authentication Code) algorithm is a variant of the standard

CBC-MAC (Cipher Block Chaining) based on the block cipher KASUMI [22].

We refer to this MAC algorithm as \3GPP-MAC." The purpose of this work is

to provide a proof of security for the 3GPP-MAC algorithm.

Providing a security proof in the sense of reduction-based cryptography intu-

itively means that one proves the following statement: if there exists an adversary

A that breaks a given MAC built from a block cipher E, then there exists a cor-

responding adversary A0 that breaks the block cipher E. The provable security

treatment of MACs based on a block cipher started by Bellare et al. [1]. They

have provided such a security proof for CBC-MAC. However, their proof is re-

stricted to the case where the input messages are of �xed length. It is well known

that CBC-MAC is not secure when the message length is variable [1]. A match-

ing birthday attack has been described by Preneel and van Oorschot in [17].

Petrank and Racko� [16] were the �rst to rigorously address the issue of mes-

sage length variability. They provided a security proof for EMAC (Encrypted

CBC-MAC) which handles messages of variable unknown lengths. Black and

Rogaway [3] introduced three re�nements to EMAC that improve the eÆciency.

They also provided a new security proof by using new techniques which treat

EMAC as an instance of the Carter-Wegman paradigm [5, 20]. Jaulmes, Joux,

and Valette [7] proposed RMAC (Randomized MAC) which is an extension of

EMAC. They showed that the security of RMAC improves over the birthday

bound of [17] in the ideal-cipher model. This is not a reduction-based provable

security result. Note that RMAC is currently being considered for standard-

ization by NIST. However, recently it has been demonstrated that RMAC is

vulnerable to related-key attacks [12{14]. Furthermore, it has been shown that

it is not possible to provide a proof of security for the salted variant of RMAC

[19]. Black and Rogaway [4, 18] have proposed a parallelizable block cipher mode

of operation for message authentication (PMAC) together with a security proof.

Several other new modes, such as XECB-MAC [6] and TMAC [8] have been

submitted to NIST for consideration, but they will probably not be included in

the standard [24].

The security evaluation of 3GPP-MAC has primarily been performed by the

3GPP SAGE group (Security Algorithms Group of Experts) [21]. Based on some

ad hoc analysis, the general conclusion of [21] is that 3GPP-MAC does not ex-

hibit any security weaknesses. Recently, Knudsen and Mitchell [11] analyzed

3GPP-MAC from the viewpoint of a birthday attack. They have described sev-

eral types of forgery and key recovery attacks for 3GPP-MAC; they have also

shown that key recovery attacks are infeasible: the most eÆcient attack requires

around 3 � 248 chosen messages. We believe that it is important to provide

a security proof for a MAC algorithm based on an information theoretic and

a complexity theoretic analysis. Such a security proof can be considered as a

theoretical evidence of the soundness of the overall structure of a MAC algo-

rithm. However so far no security proof has been provided in the literature for

3GPP-MAC. This observation motivates this paper.

In this paper we prove that 3GPP-MAC is secure in the sense of reduction-

based cryptography. More speci�cally, we prove that 3GPP-MAC is a pseudo-

random function which means that no attacker with polynomially many queries

can distinguish 3GPP-MAC from a perfect random function; by using this fact,

we show that 3GPP-MAC is a secure MAC algorithm under the assumption that

the underlying block cipher is a pseudorandom permutation. This assumption

is a reasonable one since the pseudorandomness of the 3GPP block cipher KA-

SUMI has recently been investigated by Kang et al. [9, 10]. We do not address

the question whether the distinguishing bound we have obtained is suÆciently

tight or not. We leaves this as an open problem.

2 Preliminaries

2.1 Notation

Let f0; 1gn denote the set of all n-bit strings, and f0; 1gn� be the set of all

binary strings whose bit-lengths are positive multiples of n. Let Rn�!l be the

set of all functions � : f0; 1gn� ! f0; 1gl, Pn be the set of all permutations

� : f0; 1gn ! f0; 1gn, and K be the key space which is the set of all possible key

values K.

For any given key space K, message space f0; 1gn�, and codomain f0; 1gl, a
MAC is a map F : K � f0; 1gn� ! f0; 1gl. A MAC F can be regarded as a

family of functions from f0; 1gn� to f0; 1gl indexed by a key K 2 K. In fact, F
is a multiset since two or more di�erent keys may de�ne the same function.

Let E : K � f0; 1gn ! f0; 1gn be a block cipher; then EK(X) = Y denotes

that E uses a key K 2 K to encrypt an n-bit string X to an n-bit ciphertext Y .

2.2 The 3GPP-MAC algorithm

The 3GPP-MAC algorithm operates as follows. Suppose the underlying block

cipher E has n-bit input and output blocks. Every messageM in 3GPP-MAC is

�rst padded such that the length is a multiple of n. The padding string in 3GPP-

MAC is appended even if the size of the message is already a multiple of n; it is

of the following form: Count jjFresh jjMessage jjDirection jj 1 jj 00 � � �0, where
Count, Fresh, and Direction are system dependent parameters. Throughout

this paper we assume that the lengths of all messages are multiples of n since

the details of the padding scheme are not relevant for our proof of security.

The 3GPP-MAC algorithm uses a pair of 128-bit keys K and K 0, where

K 0 = K � Const and Const = 0xAA � � �A. For any r-block message M =

M [1] � � �M [r], 3GPP-MAC is computed as follows:

O[0] 0

for i = 1; � � � ; r do

I [i] O[i� 1]�M [i]

O[i] EK(I [i])

OK(M) O[1]�O[2]� � � � �O[r]

MK(M) the leftmost l bits of EK0(OK(M))

returnMK(M)

EK

. . .

. . .

M[1] [2] [r]MM

()

EK'EK EK

. . .

I [1] I [2] I[r]

O O O[1] [2] [r]

OK M
3GPP-MAC ()MK
(left-most -bit)l

Fig. 1. The 3GPP-MAC algorithm

HereMK(M) is the 3GPP-MAC value of the message M . The 3GPP-MAC

algorithm is also depicted in Fig. 1. The 3GPP integrity algorithm f9 in the

3GPP technical speci�cation [22] states that the underlying block cipher is KA-

SUMI: KASUMI is a 64-bit block cipher with a 128-bit key. The 3GPP-MAC

value consists of the leftmost 32 bits of the �nal encryption or l = 32.

Note that in the 3GPP-MAC algorithm, K and K 0 should be distinct to

handle variable length messages. In fact, it is easy to break the 3GPP-MAC

algorithm if K = K 0. For example, if an adversary requests MK(X) for a

1-block message X , obtaining T , and requests MK(0) of a 1-block message

0, obtaining S, then she can compute the MAC MK(X jj0jjT � X jj0jjT) =

S. In other words, from the MACs of X and 0, one can forge the MAC of

X jj0jjMK(X)�X jj0jjMK(X) without knowing the key K.

2.3 Comparison between CBC-MAC, EMAC, and 3GPP-MAC

The basic CBC-MAC algorithm [23] works as follows: for any r-block mes-

sage M = M [1] � � �M [r], the CBC-MAC of M under the key K is de�ned as

CBCEK
(M) = Cr, where Ci = EK(M [i] � Ci�1) for i = 1; � � � ; r and C0 = 0.

The CBC-MAC is illustrated in Fig. 2.

EK EKEK

. . .

. . .

M[1] [2] [r]MM

C CC1 2 r = CBC M ()EK

Fig. 2. The CBC-MAC algorithm

It is well known that CBC-MAC is secure for messages of constant length,

while it is insecure for arbitrary variable length messages [1]. There have been

several e�orts to design a variant of CBC-MAC for variable length messages.

Bellare et al. [1] have suggested three variants of CBC-MAC, Input-length key

separation, Length-prepending, and Encrypt last block, to handle variable length

messages. Out of these three variants the most attractive method is the last one,

since the length of message is not needed until the end of the computation. The

method of encrypting the last block is called the EMAC; it has been proposed

by the RIPE project in 1993 [2] and subsequently included in the ISO standard

[23]; its security has been rigorously analyzed by Petrank and Racko� [16].

For any r-block message M = M [1] � � �M [r], EMAC of M is de�ned as

EMACEK1
;EK2

(M) = EK2
(CBCEK1

(M)), where K1 and K2 are two di�erent

keys in K. The EMAC algorithm is depicted in Fig. 3. In fact, Petrank and

Racko� [16] used one secret key K to produce two secret keys K1 = EK(0) and

K2 = EK(1), and they regarded EK1
and EK2

as two independently chosen

random functions f1 and f2 for the proof of security.

EK1
EKEK

. . .

. . .

M[1] [2] [r]MM

C CC1 2 r EMAC M ()

1 1
EK2

EK1
EK2,

Fig. 3. The EMAC algorithm

In order to optimize eÆciency for constructions that accept arbitrary bit

strings, Black and Rogaway [3] re�ned EMAC in three methods which they

called ECBC, FCBC, and XCBC, respectively.

On the other hand, 3GPP-MAC can be seen as a variant of EMAC. There

are two di�erences between 3GPP-MAC and EMAC. First, 3GPP-MAC uses

a pair of keys K and K 0 such that K 0 is straightforwardly derived from K by

XORing the �xed constant, but in EMAC, two keys K1 and K2 are obtained by

encrypting two plaintexts 0 and 1 with the same key K. Thus we cannot regard

EK and EK0 as two independently chosen random functions f and f 0 for the

proof of security. This situation of 3GPP-MAC is di�erent from that of EMAC.

Second, while 3GPP-MAC uses CBCEK
(M)�(C1�C2�� � ��Cr�1) as the input

of the �nal block computation EK0 , EMAC uses CBCEK1
(M) without XORing

Ci's as the input of the �nal computation EK2
. These two distinct points give

rise to a di�erent security proof for EMAC and 3GPP-MAC.

2.4 Security model

We consider the following security model. Let A be an adversary and AO denote

thatA can access an oracleO. Without loss of generality, adversaries are assumed

to never ask a query outside the domain of the oracle, and to never repeat a query.

For any g 2 F , we say that A forges g if A outputs g(x) for some x 2 f0; 1gn�

where Ag never queried x to its oracle g. De�ne

Advmac

F (A) = Pr
�
A forges g j g

R
 F

�
;

where g
R
 F denotes the experiment of choosing a random element from F .

Assume that for any random function � 2 Rn�!l, the value of �(x) is a

uniformly chosen l-bit string from f0; 1gl, for each x 2 f0; 1gn�. That is, for

any � 2 Rn�!l, x 2 f0; 1g
n�, and y 2 f0; 1gl, Pr(�(x) = y) = 2�l. This is a

reasonable assumption since for any uniformly chosen function g : f0; 1gm !
f0; 1gl, Pr(g(x) = y) = 2�l for each x 2 f0; 1gm and y 2 f0; 1gl, regardless of
the input length m. We de�ne the advantage of an adversary A to distinguish a

MAC F from the family of random functions Rn�!l as

AdvRn�!l

F
(A) = Pr

�
Ag outputs 1 j g

R
 F

�
�Pr

�
A� outputs 1 j �

R
 Rn�!l

�
:

We overload the notation de�ned above and write that

Advmac

F (t; q; �) = max
A
fAdvmac

F (A)g

and

AdvRn�!l

F
(t; q; �) = max

A
fAdvRn�!l

F
(A)g ;

where the maximum is over all adversaries A who run in time at most t and ask

its oracle q queries having aggregate length of � blocks.

On the other hand, we regard the block cipher �n as a family of permutations

from f0; 1gn to itself indexed by a secret key K 2 K. De�ne

AdvPn
�n

(A) = Pr
�
Af outputs 1 j f

R
 �n

�
� Pr

�
A� outputs 1 j �

R
 Pn

�

and

AdvPn
�n

(t; q) = max
A
fAdvPn

�n
(A)g ;

where the maximum is over all distinguishers A that run in time at most t and

make at most q queries.

In what follows it will be convenient for us to think of 3GPP-MAC as using

two functions f and f 0 instead of EK and EK0 , respectively. We do this by

denoting f to be EK for a randomly chosen key K and f 0 to be EK0 for a second

key K 0. Note that f 0 is derived from f . Now, we may write

Mf (M) = the leftmost l bits of f 0(�Of (M)) ;

where �Of (M) = O[1] � O[2] � � � � � O[r], O[i] = f(I [i]), I [i] = O[i � 1] �M [i]

for 1 � i � r, and O[0] = 0.

We consider two function families related to 3GPP-MAC. A familyM�n
for

a block cipher �n is the set of all functions Mf for all f 2 �n and a family

MPn is the set of all functionsM� for all � 2 Pn. TheM� is similarly de�ned

asMf by considering � and �0 instead of f and f 0, that is, for any message M ,

M�(M) = the leftmost l bits of �0(�O�(M)) ;

where �0 2 Pn � f�g is automatically determind by �. Note that our result in

the next section have nothing to do with the method of determining �0 from �.

3 The security of 3GPP-MAC

3.1 Main results

In this section we prove that the security ofM�n
is implied by the security of the

underlying block cipher �n. We call a block cipher secure if it is a pseudorandom

permutation: this means that no attacker with polynomially many encryption

queries can distinguish the block cipher from a perfect random permutation.

This approach to modeling the security of a block cipher was introduced by

Luby and Racko� [15].

We �rst give the following information-theoretic bound on the security of

3GPP-MAC. We start by checking the possibility of distinguishing a random

function in Rn�!l from a random function inMPn . We show that even a com-

putationally unbounded adversary cannot obtain a too large advantage.

Theorem 1 Let A be an adversary that makes queries to a random function

chosen either fromMPn or from Rn�!l. Suppose that A asks its oracle q queries,

these queries having aggregate length of � blocks. Then

AdvRn�!l

MPn
(A) �

(�2 + 2q2)

2n
:

The proof of Theorem 1 will be given in Sect. 3.2. It is a well-known result that

if a MAC algorithm preserves pseudorandomness, it resists an existential forgery

under adaptive chosen message attacks [1]. By using this fact and Theorem 1,

we can obtain the main result:

Theorem 2 Let �n : K�f0; 1gn ! f0; 1gn be a family of permutations obtained

from a block cipher. Then

AdvRn�!l

M�n
(t; q; �) � AdvPn

�n
(t0; �) +

(�2 + 2q2)

2n
(3.1)

and

Advmac

M�n
(t; q; �) � AdvPn

�n
(t0; �) +

(�2 + 2q2)

2n
+

1

2l
; (3.2)

where t0 = t+O(�n).

Proof. Let A be an adversary distinguishing M�n
from Rn�!l which makes

at most q oracle queries having aggregate length of � blocks and runs in time

at most t. In order to prove equation (3.1), we �rst show that there exists an

adversary BA which distinguishes �n from Pn such that

AdvPn
�n

(BA) = AdvRn�!l

M�n
(A) �AdvRn�!l

MPn
(A) ;

where BA makes at most � queries and runs in time at most t0 = t + O(�n).

The adversary BA gets an oracle f : f0; 1gn ! f0; 1gn, a permutation chosen

from �n or Pn. It will run A as a subroutine, using f to simulate the oracle

h : f0; 1gn� ! f0; 1gl that A expects.

Adversary Bf
A

for i = 1; � � � ; q do
when A asks its oracle a query Mi, answer withMf (Mi)

end for

A outputs a bit b

return b

The oracle supplied to A by BA isMf , where f is BA's oracle, and hence

AdvPn
�n

(BA) = Pr
�
Bf
A
= 1 j f

R
 �n

�
� Pr

�
Bf
A
= 1 j f

R
 Pn

�

= Pr
�
Ah = 1 j h

R
 M�n

�
� Pr

�
Ah = 1 j h

R
 MPn

�
:

However

AdvRn�!l

MPn
(A) = Pr

�
Ah = 1 j h

R
 MPn

�
� Pr

�
Ah = 1 j h

R
 Rn�!l

�
:

Therefore by taking the sum of the two equations above, we obtain that

AdvPn
�n

(BA) +AdvRn�!l

MPn
(A)

= Pr
�
Ah = 1 j h

R
 M�n

�
� Pr

�
Ah = 1 j h

R
 Rn�!l

�

= AdvRn�!l

M�n
(A) :

From this equation and the result of Theorem 1, we get

AdvPn
�n

(BA) � AdvRn�!l

M�n
(A) �

(�2 + 2q2)

2n
;

and the equation (3.1) follows, since

AdvRn�!l

M�n
(t; q; �) = max

A

n
AdvRn�!l

M�n
(A)

o

� max
A

�
AdvPn

�n
(BA) +

(�2 + 2q2)

2n

�

� AdvPn
�n

(t0; �) +
(�2 + 2q2)

2n
:

Using Proposition 2.7 of [1], we can easily show that

Advmac

M�n
(t; q; �) � AdvRn�!l

M�n
(t0; q; �) +

1

2l
; (3.3)

where t0 = t + O(�n). Combining (3.1) and (3.3) we obtain the equation (3.2)

which completes the proof. �

3.2 Proof of Theorem 1

Remember that the second permutation �� inM�(�) is derived from �. In order

to prove Theorem 1 we �rst prove the result under the condition that the second

permutation �� is not related with the �rst permutation � in 3GPP-MAC. Assume

that � and �0 are chosen independently from Pn. For any r-block message M =

M [1] � � �M [r], we set

M�;�0(M) = the leftmost l bits of �0
�
�O�(M)

�
;

where �O�(M) = O[1]� � � � � O[r], O[i] = �(I [i]), and I [i] = O[i � 1]�M [i] for

1 � i � r. Let MPn�Pn be the set of all functions M�;�0 , where � and �0 are

chosen independently from Pn.
Lemma 1 below provides an information-theoretic bound on the security of

MPn�Pn .

Lemma 1 Let A be an adversary that makes queries to a random function

chosen either from MPn�Pn or from Rn�!l. Suppose that A asks its oracle

q queries, these queries having aggregate length of � blocks. Then

Adv
Rn�!l

MPn�Pn
(A) �

(�2 + 2q2)

2n+1
:

Proof. To prove Lemma 1 we apply the idea from the proof of PMAC's security

in [18]. Let A be an adversary distinguishing MPn�Pn from Rn�!l. Since the

adversary A is not limited in computational power, we may assume it is deter-

ministic. One can imagine A interacting with a MPn�Pn oracle as A playing

the following game, denoted Game 1.

Game 1: Simulation ofMPn�Pn

1 unusual false; for all x 2 f0; 1gn do �(x) unde�ned, �0(x) unde�ned

2 When A makes its t-th query, Mt =Mt[1] � � �Mt[rt] where t 2 f1; � � � ; qg
3 It[1] Mt[1]

4 For i = 1; � � � ; rt do
5 A fIt[j] j 1 � j � i� 1g [fIs[j] j 1 � s � t� 1; 1 � j � rsg
6 if It[i] 2 A then Ot[i] �(It[i])

7 else Ot[i]
R

 f0; 1gn

8 A� f�(It[j]) j 1 � j � i�1g[f�(Is[j]) j 1 � s � t�1; 1 � j � rsg

9 if Ot[i] 2 A� then [unusual true; Ot[i]
R
 AC

�
]

10 �(It[i]) Ot[i]

11 if i < rt then It[i+ 1] Ot[i]�Mt[i+ 1]

12 �Ot(Mt) Ot[1]� � � � �Ot[rt]

13 B f �Os(Ms) j 1 � s � t� 1g
14 If �Ot(Mt) 2 B then [unusual true; MACt �0(�Ot)]

15 else MACt

R
 f0; 1gn

16 B�0 f�
0(�Os(Ms)) j 1 � s � t� 1g

17 if MACt 2 B�0 then [unusual true; MACt

R
 BC

�0
]

18 �0(�Ot(Mt)) MACt

19 M�;�0(Mt) the leftmost l-bit of MACt

20 ReturnM�;�0(Mt)

Here we use AC

�
and BC

�0
to denote the complements of A� and B�0 , respectively.

Two particular permutations � and �0 are equally likely among all permutations

from f0; 1gn to f0; 1gn. In our simulation, we will view the selection of � and

�0 as an incremental procedure. This will be equivalent to selecting � and �0

uniformly at random. This game perfectly simulates the behavior ofMPn�Pn .

Let UNUSUAL be the event that the
ag unusual is set to true in Game 1.

In the absence of event UNUSUAL, the returned valueM�;�0(Mt) at line 20 is

random since the leftmost l bits of the string randomly selected at line 15. That

is, the adversary sees the returned random values on distinct points. Therefore

we get that

AdvRn�!l

MPn�Pn
(A) � Pr(UNUSUAL) : (3.4)

First we consider the probability that the
ag unusual is set to true in line 9

or 17. In both cases, we have just chosen a random n-bit string and then we

check whether it is a element in a set or not. We have that

Pr(unusual = true in lines 9 or 17 in Game 1)

�
1 + 2 + � � �+ (� � 1) + 1 + � � �+ (q � 1)

2n

�
�2 + q2

2n+1
: (3.5)

Now we can modify Game 1 by changing the behavior when unusual = true,

and adding as a compensating factor the bound given by equation (3.5). We

omit lines 8, 9, 16 and 17, and the last statement in line 14. The modi�ed game

is as follows.

Game 2: Simpli�cation of Game 1

1 unusual false; for all x 2 f0; 1gn do �(x) unde�ned, �0(x) unde�ned

2 When A makes its t-th query, Mt =Mt[1] � � �Mt[rt] where t 2 f1; � � � ; qg
3 It[1] Mt[1]

4 For i = 1; � � � ; rt do
5 A fIt[j] j 1 � j � i� 1g [fIs[j] j 1 � s � t� 1; 1 � j � rsg
6 if It[i] 2 A then Ot[i] �(It[i])

7 else [Ot[i]
R
 f0; 1gn; �(It[i]) Ot[i]]

8 if i < rt then It[i+ 1] Ot[i]�Mt[i+ 1]

9 �Ot(Mt) Ot[1]� � � � �Ot[rt]

10 B f �Os(Ms) j 1 � s � t� 1g
11 If �Ot(Mt) 2 B then unusual true

12 MACt

R
 f0; 1gn

13 �0(�Ot(Mt)) MACt

14 M�;�0(Mt) the leftmost l-bit of MACt

15 ReturnM�;�0(Mt)

By the equation (3.5) we have that

Pr(UNUSUAL) � Pr(unusual = true in Game 2) +
�2 + q2

2n+1
: (3.6)

In Game 2 the value M�;�0(Mt) returned in response to a query Mt is a

random l-bit string. Thus we can �rst select these MACt values in Game 2.

This does not change the view of the adversary that interacts with the game

and the probability that unusual is set to true. This modi�ed game is called

Game 3, and it is depicted as follows.

Game 3: Modi�cation of Game 2

1 unusual false; for all x 2 f0; 1gn do �(x) unde�ned, �0(x) unde�ned

2 When A makes its t-th query, Mt =Mt[1] � � �Mt[rt] where t 2 f1; � � � ; qg

3 MACt

R
 f0; 1gn

4 M�;�0(Mt) the leftmost l-bit of MACt

5 ReturnM�;�0(Mt)

6 When A is done making its q queries

7 For t = 1; � � � ; q do
8 It[1] Mt[1]

9 For i = 1; � � � ; rt do
10 A fIt[j] j 1 � j � i� 1g [fIs[j] j 1 � s � t� 1; 1 � j � rsg
11 if It[i] 2 A then Ot[i] �(It[i])

12 else [Ot[i]
R
 f0; 1gn; �(It[i]) Ot[i]]

13 if i < rt then It[i+ 1] Ot[i]�Mt[i+ 1]

14 �Ot(Mt) Ot[1]� � � � �Ot[rt]

15 B f �Os(Ms) j 1 � s � t� 1g
16 If �Ot(Mt) 2 B then unusual true

17 �0(�Ot(Mt)) MACt

We note that

Pr(unusual = true in Game 3) = Pr(unusual = true in Game 2) : (3.7)

Now we want to show that the probability of unusual = true in Game 3, over the

random MACt values selected at line 3 and the random Ot[i] values selected at

line 12, is small. In fact, we will show something stronger: even if one arbitrarily

�xes the values ofMAC1; � � � ;MACq 2 f0; 1g
n, the probability that unusual will

be set to true is still small. Since the oracle answers have now been �xed and

the adversary is deterministic, the queries M1; � � � ;Mq that the adversary will

make have likewise been �xed. The new game is called Game 4(C). It depends

on constants C = (q;MAC1; � � � ;MACq ;M1; � � � ;Mq).

Game 4(C)

1 unusual false; for all x 2 f0; 1gn do �(x) unde�ned, �0(x) unde�ned

2 For t = 1; � � � ; q do

3 It[1] Mt[1]

4 For i = 1; � � � ; rt do

5 A fIt[j] j 1 � j � i� 1g [fIs[j] j 1 � s � t� 1; 1 � j � rsg

6 if It[i] 2 A then Ot[i] �(It[i])

7 else [Ot[i]
R

 f0; 1gn; �(It[i]) Ot[i]]

8 if i < rt then It[i+ 1] Ot[i]�Mt[i+ 1]

9 �Ot(Mt) Ot[1]� � � � �Ot[rt]

10 B f �Os(Ms) j 1 � s � t� 1g

11 If �Ot(Mt) 2 B then unusual true

12 �0(�Ot(Mt)) MACt

We know that

Pr(unusual = true in Game 3)]

� max
C

fPr(unusual = true in Game 4(C))g : (3.8)

Thus, by (3.4) and (3.6)-(3.8) we have that

AdvRn�!l

MPn�Pn
(A) � max

C

fPr(unusual = true in Game 4(C))g+
�2 + q2

2n+1
; (3.9)

where, if A is limited to q queries of aggregate length �, then C speci�es q, mes-

sage strings M1; � � � ;Mq of aggregate block length �, and MAC1; � � � ;MACq 2
f0; 1gn.

Finally, we modify Game 4(C) by changing the order of choosing a random

Ot[i] in line 7. This game is called Game 5(C).

Game 5(C)

1 unusual false; for all x 2 f0; 1gn do �(x) unde�ned, �0(x) unde�ned

2 For t = 1; � � � ; q do

3 For i = 1; � � � ; rt do

4 It[1] Mt[1] ; Ot[i]
R
 f0; 1gn

5 A fIt[j] j 1 � j � i� 1g [fIs[j] j 1 � s � t� 1; 1 � j � rsg

6 if It[i] 2 A then Ot[i] �(It[i])

7 else �(It[i]) Ot[i]

8 if i < rt then It[i+ 1] Ot[i]�Mt[i+ 1]

9 �Ot(Mt) Ot[1]� � � � �Ot[rt]

10 B f �Os(Ms) j 1 � s � t� 1g

11 If �Ot(Mt) 2 B then unusual true

12 �0(�Ot(Mt)) 0n

Notice that in Game 5, we choose a random Ot[i] value in line 4. To avoid that the

game depends on the MACt-values, we also set �0(�Ot(Mt)) to some particular

value, 0n, instead of to MACt in the last line. The particular value associated

to this point is not used unless unusual has already been set to true. Thus we

obtain that

Pr(unusual = true in Game 4(C))

= Pr(unusual = true in Game 5(C)) : (3.10)

The coins used in Game 5 are O1(M1) = O1[1] � � �O1[r1]; � � � ; Oq(Mq) =

Oq [1] � � �Oq [rq], where either Os[i]'s are random coins or are a synonym Ou[j].

Here we set Ot[0] = 0 and It[k] Ot[k�1]�Mt[k] for 1 � t � q and 1 � k � rt,

and if there exists the smallest number u < s such that Is[i] = Iu[j] then

Os[i] = Ou[j], else if there exists the smallest number j < i such that Is[i] = Is[j]

then Os[i] = Os[j], else Os[i] is a random coin.

Run Game 5 on M1; � � � ;Mq and the indicated vector of coins. Suppose that

unusual gets set to true on this execution. Let s 2 f1; � � � ; qg be the particular
value of t when unusual �rst get set to true. Then

�Os(Ms) = �Ou(Mu) for some u 2 f1; � � � ; s� 1g :

In this case, if we had run Game 5 using coins Ou and Os and restricting the

execution of line 2 to t 2 fu; sg, then unusual still would have been set to true.

In this restricted Game 5, we get

Pr
�
�Os(Ms) = �Ou(Mu)

�
= Pr (Os[1]� � � � �Os[rs] = Ou[1]� � � � �Ou[ru])

= 2�n

because Ou[1] in �Ou(Mu) is a random string in f0; 1gn. Thus we obtain that

max
C

fPr(unusual true in Game 5(C))g

� max
r1;��� ;rq
�=
P
ri

8<
:

X
1�u<s�q

2�n

9=
;

�

�
q(q � 1)

2

�
�
1

2n

�
q2

2n+1
: (3.11)

Combining (3.9)-(3.11), we get that

AdvRn�!l

MPn�Pn
(A) �

�2 + q2

2n+1
+

q2

2n+1
:

This completes the proof of Lemma 1. �

Now we check the possibility of distinguishing a random function in the

originalMPn from a random function inMPn�Pn . To obtain the result, we �rst

need to de�ne what inner collisions are inMPn andMPn�Pn .

De�nition 1 Let M1; � � � ;Mq be q strings in f0; 1gn�, and let �; �0 be two ran-

dom permutations in Pn. We say that there occurs an inner collision ofM� on

the queries M1; � � � ;Mq if the collision occurs before invoking the second per-

mutation �� which is derived from �. Namely, if there exists a pair of indices

1 � i < j � q for which �O�(Mi) = �O�(Mj). Similarly, we say that there exists

an inner collision of M�;�0 on the queries M1; � � � ;Mq if the collision occurs

before invoking the second permutation �0.

Lemma 2 Let A be an adversary that makes queries to a random function cho-

sen either fromMPn or fromMPn�Pn. Suppose that A asks its oracle q queries,

these queries having aggregate length of � blocks. Then

Adv
MPn�Pn

MPn
(A) �

�2 + 2q2

2n+1
:

Proof. Let ICol(MPn) be the event that there is an inner collision among the

messages in MPn and let ICol(MPn�Pn) be the event that there is an inner

collision among the messages inMPn�Pn . Observe that since both algorithms are

the same before invoking the second permutation, the inner collision probabilities

in both algorithms are the same. Thus the following equation holds:

Pr
�
ICol(MPn) j �

R
 Pn

�
= Pr

�
ICol(MPn�Pn) j �; �

0 R
 Pn

�
: (3.12)

For the same reason, if no inner collisions occur, the adversary outputs 1 with

the same probability forMPn andMPn�Pn because she sees outputs of permu-

tations on distinct points and the second permutations of MPn and MPn�Pn

are independent. Let Pr1(�) denote the probability that AM� outputs 1 under

the experiment �
R
 Pn and Pr2(�) denote the probability that AM�;�0 outputs

1 under the experiment �; �0
R
 Pn . Then the following holds:

Pr1

�
AM� = 1 j ICol(MPn)

�
= Pr2

�
AM�;�0 = 1 j ICol(MPn�Pn)

�
; (3.13)

where ICol(MPn) and ICol(MPn�Pn) are complements of ICol(MPn) and

ICol(MPn�Pn), respectively. Therefore, by using the equation (3.12) and (3.13),

we can write the adversary's advantage as follows:

Adv
MPn�Pn

MPn
(A)

�
��Pr1 �AM� = 1)� Pr2(A

M�;�0 = 1
���

=
��Pr1 �AM� = 1jICol(MPn)

�
� Pr1 (ICol(MPn))

+ Pr1

�
AM� = 1jICol(MPn)

�
� Pr1

�
ICol(MPn)

�

� Pr2
�
AM�;�0 = 1jICol(MPn�Pn)

�
� Pr2 (ICol(MPn�Pn))

� Pr2

�
AM�;�0 = 1jICol(MPn�Pn)

�
� Pr2

�
ICol(MPn�Pn)

����
= jPr2 (ICol(MPn�Pn))

�
�
Pr1

�
AM� = 1jICol(MPn)

�
� Pr2

�
AM�;�0 = 1jICol(MPn�Pn)

�	��
� Pr2 (ICol(MPn�Pn)) :

To bound this quantity, we consider again the proof of Lemma 1. In the proof of

Lemma 1, Game 1 perfectly simulates the behavior of MPn�Pn . Observe that

when an inner collision occurs in MPn�Pn , the
ag unusual is set to true in

Game 1. Thus by Lemma 1, we obtain that

Pr2 (ICol(MPn�Pn)) � Pr (unusual = true in Game 1)

�
�2 + 2q2

2n+1
;

which completes the proof of Lemma 2. �

Proof of Theorem 1: From Lemma 1 and 2, the proof of Theorem 1 follows

immediately. �

4 Conclusion

In this work we have examined the provable security of the 3GPP-MAC algo-

rithm f9. We have provided a proof of security for 3GPP-MAC in the sense of

reduction-based cryptography. More speci�cally, we have shown that if there is

an existential forgery attack on 3GPP-MAC, then the underlying block cipher

can be attacked with comparable parameters. It might be seen as highly unlikely

that a realistic attack exists on the 3GPP block cipher KASUMI. If that is indeed

the case, our results establish the soundness of the 3GPP-MAC algorithm.

References

1. M. Bellare, J. Kilian, and P. Rogaway, The security of cipher block chaining,

Crypto'94, LNCS 839, Springer-Verlag, 1994, pp. 341-358. An updated version

can be found in the personal URLs of the authors. See, for example, http://www-

cse.ucsd.edu/users/mihir/.

2. A. Berendschot et al., Integrity Primitives for Secure Information Systems. Final

Report of RACE Integrity Primitives Evaluation (RIPE-RACE 1040), LNCS 1007,

Springer-Verlag, 1995

3. J. Black and P. Rogaway, CBC-MACs for arbitrary-length messages: the three-key

constructions, Crypto 2000, LNCS 1880, Springer-Verlag, 2000, pp. 197-215.

4. J. Black and P. Rogaway, A Block-Cipher Mode of Operation for Parallelizable

Message Authentication, EUROCRYPT 2002, LNCS 2332, Springer-Verlag, 2002,

pp. 384-397.

5. L. Carter and M. Wegman, Universal hash functions, J. of Computer and System

Sciences, 18, 1979, pp. 143-154

6. V. Gligor and P. Donescu, Fast encryption and authentication: XCBC encryption

and XECB authentication modes, Contribution to NIST, April 20, 2001. Available

at http://csrc.nist.gov/encryption/modes/.

7. �E. Jaulmes, A. Joux, and F. Valette, On the security of Randomized CBC-MAC

Beyond the Birthday Paradox Limit: A New Construction, FSE 2002, LNCS 2365,

Springer-Verlag, 2002, pp. 237-251.

8. K. Kurosawa and T. Iwata, TMAC: Two-Key CBC-MAC, Contribution to NIST,

June 21, 2002. Available at http://csrc.nist.gov/encryption/modes/.

9. J. Kang, S. Shin, D. Hong and O. Yi, Provable security of KASUMI and 3GPP en-

cryption mode f8, ASIACRYPT 2001, LNCS 2248, Springer-Verlag, 2001, pp. 255-

271.

10. J. Kang, O. Yi, D. Hong, and H. Cho, Pseudorandomness of MISTY-type transfor-

mations and the block cipher KASUMI, ACISP 2001, LNCS 2119, Springer-Verlag,

2001, pp. 60-73.

11. L. R. Knudsen and C. J. Mitchell, Analysis of 3gpp-MAC and two-key 3gpp-MAC,

Discrete Applied Mathematics, to appear.

12. L. Knudsen, Analysis of RMAC, Contribution to NIST, November 10, 2002. Avail-

able at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

13. T. Kohno, Related-Key and Key-Collision Attacks Against RMAC, Contribution to

NIST, 2002. Available at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

14. J. Lloyd, An Analysis of RMAC, Contribution to NIST, November 18, 2002. Avail-

able at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

15. M. Luby and C. Racko�, How to construct pseudorandom permutations and pseu-

dorandom functions, SIAM J. Comput., 17, 1988, pp. 189-203.

16. E. Petrank, C. Racko�, CBC-MAC for Real-Time Data Source, J. of Cryptology,

13, 2000, pp. 315-338.

17. B. Preneel, P.C. van Oorschot, MDx-MAC and building fast MACs from hash func-

tions, Crypto'95, LNCS 963, Springer-Verlag, 1995, pp. 1{14.

18. P. Rogaway, PMAC: A parallelizable message authentication code, Contribution to

NIST, April 17, 2001. Available at http://csrc.nist.gov/encryption/modes/.

19. P. Rogaway, Comments on NIST's RMAC Proposal, Contribution to NIST, Decem-

ber 2, 2002. Available at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

20. M. Wegman and L. Carter, New hash functions and their use in authentication

and set equality, J. of Computer and System Sciences, 22, 1981, pp. 265-279.

21. 3GPP TR 33.909, Report on the evaluation of 3GPP standard con�dentiality and

integrity algorithms, V1.0.0, 2002-12.

22. 3GPP TS 35.201 Speci�cation of the 3GPP con�dentiality and integrity algorithm;

Document 1: f8 and f9 speci�cations.

23. ISO/IEC 9797-1:1999(E) Information technology - Security techniques - Message

Authentication Codes(MACs) - Part 1.

24. http://csrc.nist.gov/encryption/modes/

