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Abstract. In this paper, we study the security of randomized CBC–
MACs and propose a new construction that resists birthday paradox
attacks and provably reaches full security. The size of the MAC tags
in this construction is optimal, i.e., exactly twice the size of the block
cipher. Up to a constant, the security of the proposed randomized CBC–
MAC using an n–bit block cipher is the same as the security of the
usual encrypted CBC–MAC using a 2n–bit block cipher. Moreover, this
construction adds a negligible computational overhead compared to the
cost of a plain, non-randomized CBC–MAC. We give a full standard
proof of our construction using one pass of a block-cipher with 2n-bit
keys but there also is a proof for n-bit keys block-ciphers in the random
oracle model.

1 Introduction

The message authentication code (MAC) is a well-known and widely used cryp-
tographic primitive whose goal is to authenticate messages and to check their
integrity in a secret key setting. For historical and efficiency reasons, MACs are
often based on block ciphers. Of course, other constructions are possible. A well-
known method to build MACs is for example to start from a hash function and
transform it into a secure MAC. The idea first appeared in the work of Wegman
and Carter [15]. Other existing constructions are for example XOR-MACs [3],
HMAC [1] and UMAC [6]. However, in low end cryptographic devices, the ability
to reuse an existing primitive is an extremely nice property. In practice, a simple
construction called CBC–MAC is frequently encountered. Several variants of the
CBC–MAC are described in normative documents [9, 14]. The simplest of those
works as follows: let E be a block cipher using a key K to encrypt n–bit blocks.
To compute the CBC–MAC of the message M with the key K, we split M into
a sequence of n–bit blocks M1, . . . , Ml and compute

C0 = 0n,

Ci = EK(Mi ⊕ Ci−1) for i in 1 · · · l.
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After this computation, the value of the CBC–MAC is CBCEK
(M) = Cl. Note

that the length of the messageM has to be a multiple of the block size n, however
several padding techniques have been proposed to remove this constraint [9].

This simple CBC–MAC has been proved secure in [4] for messages of fixed
(non zero) length. However, when the length is no longer fixed, forgery attacks
exist. The simplest of those uses two messages of one block each M and M ′,
and queries their MACs C and C ′. Then it can forge the MAC of M‖(M ′ ⊕C),
namely C ′.

In order to remove this limitation, it is shown in [11] and [7] that it suffices
to encrypt the plain CBC–MAC of a message with another key. However, the
security level offered by these CBC–MACs is not optimal, since they all suffer
from a common weakness: birthday paradox based attacks. In fact, all iterated
MACs suffer from this kind of attacks, as has been shown in [12]. The basic idea
beyond the birthday paradox attacks is to find two different messages with the
same MAC value. Due to the birthday paradox, this search can be done in 2n/2

MAC computations, where n is the size of the MAC tag. Then one just need to
append any fixed string to these messages and the MAC values of the extended
messages are again the same. Thus forgery is easy since it suffices to query the
MAC of one of the extended messages and use it as a forged MAC of the other
extended message.

In order to protect MACs from birthday paradox attacks, it is suggested
in [9] to add to each message a unique identifier, leading to a stateful MAC, or
some kind of randomization, leading to a randomized MAC. These ideas have
been studied in deeper details by some recent papers. In [3], a stateful construc-
tion based on XOR-MAC is given. It turns out that this leads to a reasonably
simple and efficient construction. However, this approach has a major drawback,
since it forces the MAC generation device to maintain an internal state from one
generation to the next, which is extremely inconvenient when several MAC gen-
eration devices share the same key. On the other hand, randomization is much
easier to deal with in practice. However, building a randomized MAC provably
secure against birthday paradox attacks is not a simple matter. Indeed, the best
currently known solution, called MACRX [2], is not CBC–MAC based and it
expands the size of the MAC values by a factor of 3 instead of the expected 2.
Indeed since with a MAC of size kn, an adversary can always obtain collisions in
2

kn
2 , in order to have a security against birthday paradox, the size of the MAC

must be at least 2n bits. So MACRX is not optimal. Moreover it proposes to use
hash functions and requires the use of a pseudorandom function family which
itself is secure beyond the birthday paradox limit. Up to now, the only known so-
lutions for designing pseudorandom functions with security beyond the birthday
limit using block-ciphers (pseudorandom permutations) are counter-based [5, 8].
Moreover, it was shown in [13] that the simple and arguably reasonable approach
of adding a random value at the beginning of a message before computing its
CBC–MAC does not give full security. Indeed, this construction suffers from
the so-called L-collision attack and forgery is possible after 2αn queries, where
α = 2/3.
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Our paper is organized as follows. In section 2 we recall the standard de-
terministic CBC–MAC algorithm, DMAC, and explain how we construct our
randomized CBC-MAC RMAC from DMAC. We also present our security
model and recall a few notations. The section 3 contains the theorems stating
the security of our construction as well as some sketches of proof. In section 4
we show how to instantiate our construction with a block-cipher. Two proofs
are given. The first one is in the standard model but make use of block-ciphers
with 2n-bit keys, the second one is in the random oracle model and uses only
block-ciphers with n-bit keys. Then section 5 proposes a detailed instantiation
using the AES block-cipher and we conclude in section 6.

2 Preliminaries

2.1 Standard Deterministic CBC–MAC

According to [11] and [7], we know that encrypted CBC–MAC has a security level
of O(2n/2). In particular, in [11] the security of a CBC–MAC named DMAC is
analyzed. We briefly recall the definition of DMAC. Given two random permu-
tations f1 and f2 on n bits, DMACf1,f2 is defined on messages whose length is
a multiple of n. Given M = (M1,M2, · · · ,Ml), we compute:

C0 = 0n,

Ci = f1(Mi ⊕ Ci−1) for i in 1 · · · l,

CBCf1(M) = Cl

DMACf1,f2(M) = f2(CBCf1(M)).

The first block appearing in the computation C0 is called the initial value, it can
safely be chosen as the all-zero block 0n. The resulting algorithm may be seen
on figure 1.

f1 f1
f1

f2

M 1 M 2

m

M

0
n

l

Fig. 1. The DMAC algorithm.
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In order to deal with messages of arbitrary size, it suffices to define a padding
process Pad such that for any pair of distinct messages M and M ′, we have
Pad(M) 6= Pad(M ′). Such a padding can be obtained by simply adding a ’1’
bit at the end of the message followed by enough ’0’ bits to turn the length
of the padded message into a multiple of n. Note that in order to ensure that
Pad(M) 6= Pad(Pad(M)), we need to pad messages whose length is already a
multiple of n. In that case one full block is added.

Another approach for dealing with messages of arbitrary length was proposed
in [7]. This approach nicely avoids the padding of messages which already contain
an integral number of blocks. This is achieved by taking one permutation f2 for
messages that need to be padded and a different permutation f ′2 for others. In
fact, this is a first step towards randomizing the function f2 and it neatly fits
into the construction we propose in this paper. However, to avoid cumbersome
details, we ignore this variation in the proofs.

An advantage of [7] is that the security proof it gives for DMAC is much
simpler than the proof from [11]. However, the result stated in [7] is slightly
weaker. Indeed, in [11] the probability for an adversary of attacking DMAC is
bounded by a function of the form O(L2/2n), where L is the sum of the length
(in blocks) of the messages whose MAC are computed during the attack. In [7],
the result is expressed in terms of the number of messages q and of the length l of
the longer message as a function of the form O(l2q2/2n). When all the messages
are roughly of the same length, the two are equivalent. However, if the adversary
queries 2n/4− 1 messages of one block and a single message of 2n/4 blocks, then
L = 2n/4+1 − 1, q = 2n/4 and l = 2n/4, we see that the result from [11] bounds
the advantage of the adversary as O(2−n/2) while the bound from [7] is O(1).
In truth, it seems that the authors of [7] chose to present a weaker result for
the sake of clarity. In the security proof we present in this paper, we closely
mimic the proof from [7], however we bound the advantage of the adversary as
a function of L instead of using q and l.

2.2 Randomizing CBC-MACs

The above definition can easily be turned into a randomized CBC–MAC. Let f1

be a random permutation on n bits and F2 be a set of random permutations or

functions f
(R)
2 on n bits, indexed by R a r–bit number. A randomized CBC–MAC

is built on the following function:

RMACf1,F2
(M,R) =

(

DMAC
f1,f

(R)
2

(M), R
)

.

To compute the MAC of a message, we proceed as follows: we choose a random
r–bit value R and returns RMACf1,F2

(M,R). To verify a given MAC (m,R) of
a message M , we check whether RMACf1,F2

(M,R) = (m,R). The algorithm
may be seen on figure 2.

When dealing with messages of arbitrary length, we can pad all messages as
in [11]. Alternatively, we can also follow the approach from [7] (see section 2.1)
to avoid padding messages whose length is already a multiple of n. This is simply
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f1 f1
f1

M 1 M 2

f2
(R)

random
generator

m

R

R

M l

Fig. 2. The RMAC algorithm.

done by adding one bit to R, thus turning it into a (r+1)–bit number. The added
bit is set to ’0’ when computing or verifying the MAC tag of a padded message
and is set to ’1’ for an unpadded message. This ensures that a padded and a
non-padded message never share the same R. In the boundary (non-randomized)
case r = 0, we are clearly back to the proposal from [7], i.e. using f2 in one case
and f ′2 in the other.

2.3 Security Model

The main goal of the paper is to prove that RMAC achieves full security. In
order to make this statement precise, we need to define a new security model.

Perfect MACs. A perfect (ordinary) MAC is usually seen as a random function
f from the set of messages {0, 1}

∗
to the set of possible MAC tags {0, 1}

n
.

Thus to each message the function associates a random MAC tag. Similarly, a
perfect randomized MAC is a family of independent random functions f (R)

indexed by R, a r–bit number. Each function in the family goes from {0, 1}
∗
to

{0, 1}
n
and is randomly and independently chosen for each R ∈ {0, 1}

r
among

all possible such functions. This family of functions can be accessed through
two oracles, a MAC generation oracle Gf and a MAC verification oracle Vf .
The generation oracle takes a message M , chooses a random r–bit value R and
returns (f (R)(M), R). The verification oracle takes a message M and a MAC
tag (m,R), checks whether f (R)(M) = m and accordingly returns valid MAC or
invalid MAC.

When there is no randomness, i.e. when r = 0, we get a perfect MAC as
special case. In that case, the verification oracle becomes redundant since veri-
fication can be achieved by generating a MAC for M and testing equality with
m.
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Information theoretic model. The classical approach in proving the secu-
rity of DMAC is to show the security of an information theoretic version of
the construction and then come to the computational result (see [11] or [7]).
Recall that DMAC uses two functions f1 and f2. For a padded message M =
(M1,M2, · · · ,Ml), we compute:

DMACf1,f2(M) = f2(CBCf1(M)).

In the information theoretic version of the construction, it is first assumed that
the functions f1 and f2 are randomly chosen among all possible functions and
the security of the resulting construction is shown. Then f1 and f2 are replaced
by block ciphers and it is proved that such an instantiation still offers a good
security.

Now if we look at RMAC, we see that

RMACf1,F2
(M,R) =

(

DMAC
f1,f

(R)
2

(M), R
)

.

Here we assume that f1 is a random permutation and that F2 is a family of
independent random permutations indexed by R and we are going to prove the
security of RMAC under these assumptions. But before proceeding further, we
need to define a few notations.

Notations. Let Rand(A,B) be the set of all functions from A to B. When A
or B is replaced by a positive number n, then the corresponding set is {0, 1}

n
.

Let Perm(n) be the set of all permutations on {0, 1}
n
. By x

R
← A we denote

the choice of an element x uniformly at random in A.
A function family F is a set of functions from A to B where A and B are

subsets of {0, 1}
∗
. Each element in F is indexed by a key K. A block cipher is a

function family from A to A that contains permutations only.

Adversaries against ordinary MACs. When dealing with ordinary MACs,
an adversary is an algorithm given access to an oracle that computes some
function. Adversaries are assumed to never ask queries outside the domain of
the oracle and to never repeat the same query.

Let F be a function family from A to B, f be a function randomly chosen in
F and A be an adversary. We say that Af forges, if A outputs (x, f(x)) and A
never queried its oracle f at x. We denote:

Advmac
F (A) = Pr[f

R
← F |Af forges],

Adv
prf
F (A) =

∣

∣

∣
Pr[f

R
← F |Af = 1]−Pr[f

R
← Rand(A,B)|Af = 1]

∣

∣

∣
,

and when A = B = {0, 1}
n
:

Adv
prp
F (A) =

∣

∣

∣
Pr[f

R
← F |Af = 1]−Pr[f

R
← Perm(n)|Af = 1]

∣

∣

∣
.
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Advmac
F (A) represents the probability for the adversary A of forging a valid

MAC knowing that the MAC function f is not a true random function but is

randomly chosen among the family F . Adv
prf
F (A) represents the advantage for

adversary A of distinguishing a function f randomly chosen from one chosen in
the family F . Adv

prp
F (A) is the same as above but with permutations instead

of functions.
We also write Advmac(t, µ) for the maximal value of Advmac(A) among

adversaries that are bounded as follows: the running time should be less than t,
and the sum of the bit length of all the oracle queries should be less than µ. We

likewise define Advprf (t, µ) and Advprp(t, µ). In the case of Advmac(t, µ), µ
also counts the length of an additional query to verify if the adversary’s output
is a valid forgery.

Adversaries against randomized MACs. When dealing with randomized
MACs, an adversary is an algorithm given access to the generation and to the
verification oracles for some randomized MAC. Adversaries are assumed to never
ask queries outside the domain of the oracle, however, they may repeat the same
query. Indeed, it might be useful to obtain several different MAC tags for the
same message. Without loss of generality, since the adversary can always get rid
of duplicates, we may assume that when MAC generation is queried several times
with the same message, the generation oracle always chooses a different random
value (among a total of 2r possibilities). In that case, the adversary should not
be allowed to query a given message more than 2r times from the generation
oracle. Moreover, we may assume that the adversary never repeats verifications,
and never verifies previously generated MAC tags or obviously false tags. This
means that when a tag (m,R) was generated for a message M , the adversary
never verifies (M, (m′, R)). Indeed, the answer is obviously valid when m = m′

and invalid otherwise.
Let P be the family of all perfect randomized MAC from a set A to a set B, let

F be a given family of randomized MAC from A to B and let f be a randomized
MAC randomly chosen in F . We say that AGf ,Vf forges, if A obtains the answer
valid MAC from the oracle Vf for a tag (x, (f (R)(x), R)) where A never got this
MAC tag from its generation oracle Gf . We let:

AdvRmac
F (A) = Pr[f

R
← F|AGf ,Vf forges],

Adv
Rprf
F

(A) =
∣

∣

∣
Pr[f

R
← F|AGf ,Vf = 1]−Pr[f

R
← P|AGf ,Vf = 1]

∣

∣

∣
.

AdvRmac
F (A) represents the probability for an adversary A of forging a

valid MAC knowing that the family f is not a perfect randomized MAC but is

randomly chosen among the set F . Adv
Rprf
F

(A) represents the advantage for
an adversary A of distinguishing a family f randomly chosen among all possible
perfect randomized MACs from one chosen in the set F .

As before, we write AdvRmac(t, µ) for the maximal value of AdvRmac(A)
among adversaries that are bounded as follows: the running time should be less
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than t, and the sum of the bit length of all the oracle queries should be less

than µ. We likewise define AdvRprf (t, µ). In the case of AdvRmac(t, µ), no
additional queries are necessary, since the adversary has access to a verification
oracle and can test its forgery by itself. This differs from Advmac(t, µ) in the
case of non randomized MAC.

3 Security of RMAC

We are now going to state the security reached by RMAC in the information-

theoretic model. We evaluate this security in terms of AdvRmac
G (A) when G is

the family described in 2.3, i.e. G is the family of all couples (f1, F2) where f1 is a
random permutation and F2 is a family of independent random permutations

indexed by R.
Theorem 1 states that the advantage of a forging adversary against RMACf1,F2

with f1 and F2 as above increases as a linear function of L, the total length of
messages.

Theorem 1. [Forging RMAC is hard] Fix n ≥ 2, r = n and let N = 2n. Let
G denotes the family of randomized MAC RMACf1,F2

built from the couple
(f1, F2) where f1 is a random permutation and F2 a family of random permuta-

tions f
(R)
2 . Let A be an adversary which asks queries of total length at most L

n–bit blocks. Assume L ≤ N/4, then:

AdvRmac
G (A) ≤

4nL+ 4L+ 2

N
.

Proof of theorem 1. If an adversary A is able to forge, then he is able to dis-
tinguish between RMAC and a Rprf . Indeed recall that A forges when he has
verified his forgery through the verification oracle, thus forgery leads directly to
distinction. We have:

AdvRmac
G (A) ≤ Adv

Rprf
G

(A) +
1

N
.

We just need to prove an indistinguishability theorem in the information-
theoretic model. Theorem 2 states that the advantage for distinguishing RMACf1,F2

from a perfect randomized MAC increases as a linear function of L.

Theorem 2. [RMAC ≈ Rand] Fix n ≥ 1, r = n and let N = 2n. Let G denotes
the family of randomized MAC RMACf1,F2

built from the couple (f1, F2) where
f1 is a random permutation and F2 a family of random permutations. Let A be
an adversary which asks queries of total length at most L n–bit blocks. Assume
L ≤ N/4, then:

Adv
Rprf
G

(A) ≤
4nL+ 4L+ 1

N
.

In order to prove this theorem, we are first going to prove a lemma where
the family F2 of random permutations has been replaced by a family of random
functions.
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Lemma 1. Fix n ≥ 1, r = n and let N = 2n. Let F denotes the family of ran-
domized MAC RMACf1,F2

built from the couple (f1, F2) where f1 is a random
permutation and F2 a family of random functions. Let A be an adversary which
asks queries of total length at most L n–bit blocks. Assume L ≤ N/4, then:

Adv
Rprf
F

(A) ≤
3nL+ 3L+ 1

N
.

Sketch of proof of Lemma 1. 1 Here f1 is a random permutation and F2 a
family of random functions. The proof of the theorem is close to the proof given
in [7] but there are some fundamental differences. The adversary A has access
to the two oracles described in section 2.3, the generation and the verification
oracles. The total length of the queries it may ask is bounded by L. An adaptive
adversary can always be replaced by a non-adaptative adversary that performs
as well, so we are going to separately bound the advantage AdvG(A) gained by
A by means of the generation queries and the advantage AdvV (A) gained by
means of the verification queries, those two advantages being independent from
each other.

In order to bound AdvG(A), we observe that only a small number of mes-

sages will be processed with the same R2. Moreover since all the functions f
(R)
2

for different Rs are independent, the adversary only learns information from
MACs generated with the same R (else he only sees outputs of independent
functions). Within such a group, the adversary only learns information when
the CBC output of two messages is the same (else he only sees the outputs of a
random function on different inputs). So we need to evaluate the probability of
collision within a group of messages at the end of the CBC computation. The
collision probability is defined as follows:

Vn(M,M ′) = Pr[π
R
← Perm(n)|CBCπ(M) = CBCπ(M

′)].

We improve a lemma from [7]3 and obtain that the probability of collision
among qR messages Mi of size mi blocks is

Pr[π
R
← Perm(n)|∃i 6= j such that CBCπ(Mi) = CBCπ(Mj)] ≤

3qR
∑qR

i=1 mi

2n
,

with
∑qR

i=1 mi ≤ N/4.
So the advantage AdvG(A) is bounded by the sum of the probability of

collision within the different groups plus the probability of existence of a group
larger than n:

AdvG(A) ≤
∑

R

3qR
∑qR

i=1 mi

2n
+

1

2n
≤

3n

2n

∑

R

qR
∑

i=1

mi +
1

2n
≤

3nL

2n
+

1

2n
.

1 The full proof is given in [10].
2 Less than n messages with probability 1− 1/2n, see in the full paper [10].
3 See in the full paper [10].
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In order to bound AdvV (A), we observe that the adversary learns informa-
tion only when he checks a previously received MAC with a new message (else
he just guesses at random). The adversary succeeds if the new message collides
with the reference message at the end of the CBC computation. We thus need
to evaluate the probability of collision of messages with a reference message4.
We find that

Pr[π
R
← Perm(n)|∃i ∈ [1, q] such that CBCπ(Mi) = CBCπ(M0)] ≤

3
∑q

i=0 mi

2n
.

Summing over all reference messages of total length L we get:

AdvV (A) ≤
3L

2n
.

Finally, adding AdvG(A) and AdvV (A), we conclude the proof of lemma 1.

Adv
Rprf
F

(A) ≤
3nL+ 3L+ 1

N
.

Sketch of proof of Theorem 2. In theorem 2 we replace the family F2 of ran-
dom functions by a family of random permutations. We evaluate the advantages

Adv
(2)
G (A) and Adv

(2)
V (A) obtained by A respectively with generation and ver-

ification queries when we do this modification.

We use the well-known PRF/PRP switching lemma [4] on each permutation

f
(R)
2 . Indeed the adversary tries to separately distinguish the different permuta-

tions from functions. If qR denotes the number of calls made to f
(R)
2 , we recall

from the proof of theorem 2 that with probability 1/2n we have qR ≤ n. So we
obtain

Adv
(2)
G (A) ≤

∑

R

q2
R

2n+1
≤ n

∑

R

qR
2n+1

≤
nL

2n+1
.

During the verification phase, the adversary wins when he distinguishes the

random permutations f
(R)
2 from random functions. This happens when the veri-

fication oracle answers valid MAC for either a guessed MAC or a MAC obtained
for another message. We find that:

Adv
(2)
V (A) ≤

L

2n − n
.

Finally, adding Adv
(2)
G (A) and Adv

(2)
V (A) with Adv

Rprf
F

(A), we conclude
the proof of theorem 2.

4 See in the full paper [10].
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4 Instantiation of the RMAC Construction with a Block

Cipher

4.1 The Computational Model

Proof in the standard model. When proving the security of a MAC con-
struction, it is customary to first show that their information-theoretic versions
approximate random functions. Then, we need to transport the result from the
information-theoretic model to the computational complexity model. This im-
proves the advantage of the adversary since he can now try to distinguish the
pseudo-random functions or permutations from truly random ones. It is a general
principle that the advantage in the computational-complexity model is the sum
of the advantage in the information-theoretic model and of the advantages to dis-
tinguish each component of the construction from its idealized version with the
number of calls made in the construction. An example of this principle appears
in section 4 of [4].

To go from the information theoretic model to the computational model,
we replace the random permutation f1 with a block-cipher B. The adversary

gains that way an advantage Adv
prf
B of distinguishing the block-cipher B from

a random function.
The random family of permutations F2 indexed by a n-bit key can be viewed

as a function f2(R,X) = f
(R)
2 (X) of 2n-bit to n-bit where f

(R)
2 is a permutation.

We want to replace the family F2 by a construction based on a block-cipher B
with keys of 2n bits. We propose to choose a random 2n-bit key K and to let

f
(R)
2 (X) = BK⊕R(X), where R has been padded with n zeroes for the XOR.
When such a construction is used, the adversary gains some new advantage. This
advantage comes either from a weakness in the block cipher or from a weakness
in the construction itself. In order to separate the two kinds of weaknesses, we
would like to assume that the block cipher is “perfect”. In order to do this, we
use the following model. Assume that the block cipher is replaced by a family F3

containing 22n random permutations together with a numbering. Given access
to F3, can an adversary distinguish the case where F2 is built from F3 as above
from the case where F2 itself is a family of random permutations ? Clearly, the
adversary gains no advantage unless in the former case he manages to query
the same function once through F2 and once through F3. In order to bound the
probability that this event occurs and since the adversary is computationally
bounded, we assume that he makes less than 2n calls to F3. Thus he queries at
mots 2n permutations among a total of 22n. On the other hand, with q queries,
at most q permutations can be seen on the F2 side. Unless the two sets collide,
the adversary sees nothing. Thus, the probability for an adversary to detect that

F2 is a subfamily of F3 is at most
2nq

22n
=

q

2n
.

Now, when using a real block-cipher, some new weaknesses may arise. In
that case, this leads to a correlated key attack against the block-cipher. Indeed,
the MAC construction allows us to distinguish B from F3, when given access to
BK⊕R (and the corresponding decryption oracle).
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The advantage gained by the adversary from the information-theoretic model

to the computational complexity model is thus equal to
q

2n
+ AdvF3

B , where

AdvF3

B is the advantage for an adversary of distinguishing the block-cipher B
from a “perfect” block-cipher.

Now that no attack other than exhaustive search is possible against B, we
can express the advantage of an adversary is the standard model. We can bound
q by L, the total number of queries done by the adversary.

AdvRMACB
≤ AdvRMAC

G + Adv
prf
B ≤

4nL+ 5L+ 2

2n
+

t

2n
.

Going further with the random oracle model. Instead of a 2n-bit key
block cipher, it would be more satisfying to use a standard n-bit key. We see in
this section that this can be done if we accept a weaker security proof. Indeed
with n-bit keys, we only prove security in the random oracle model. As above,

we define f2(R,X) = f
(R⊕K)
3 (X). However, F3 is now a smaller family made of

2n permutations “only”. The adversary trying to forge the MAC in this model
has still access to the two oracles Gf and Vf and to F3 through two other oracles
Cf and C−1

f . These computation oracles work as follows. In Cf , the adversary

queries a chosen function f
(S)
3 of the family F3, indexed by some n-bit integer S,

with some input X and the oracle returns f
(S)
3 (X). In C−1

f , the adversary also
queries a chosen instance of the block-cipher F3, indexed by S and asks for the

value of X corresponding to the output U ; the oracle returns
(

f
(S)
3

)−1

(U).

Let H be the family of all triplets (f1, F2, F3) as described above. We want
to bound the probability of forging for the adversary A:

AdvRmac
H (A) = Pr

[

f
R
← H|AGf ,Vf ,Cf ,C

−1
f forges

]

.

Theorem 3. [Forging RMAC with idealized block-cipher] Fix n ≥ 2, r = n and
let N = 2n. Let H denotes the family of randomized MAC RMACf1,F2,F3

built
from the triplet (f1, F2, F3) where F3 is a random family of 2n permutations, f1

is a random permutation and F2 is a permuted copy of the family F3 determined
by a key K. Let A be an adversary which asks queries of total length at most L
n–bit blocks. Assume L ≤ N/4, then:

AdvRmac
H (A) ≤

4nL+ 6L+ 2

N
.

Sketch of proof of theorem 3. 5 Let A be an adversary trying to forge. A has
access to the four oracles Gf , Vf , Cf and C−1

f . Against A, we play a simulator
S that works as follows. When A queries Gf or Vf on a value of a permutation
of the family F2, S chooses this value randomly under the condition that the

5 The full formal proof is given in the full paper [10].
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underlying function f
(R)
2 is a permutation. Of course this implies that when

asked twice the value of some permutation it answers twice the same result.
When A queries Cf or C−1

f on a value of a permutation of the family F3, S also
chooses this value randomly under the same conditions as above. The important
fact here is that the simulator answers questions about F3 independently from
questions about F2. When the attacker A terminates, the simulator chooses an
n-bit key K uniformly at random. Then he tries to redefine F2 using the formula

f
(R)
2 = f

(K⊕R)
3 . Unless two incompatible answers were given while the attacker

asks questions, this can be done easily. Indeed, all the answers define some f
(S)
3

and thus f
(S⊕K)
2 or some f

(R)
2 and thus f

(R⊕K)
3 . The rest of F3 (and F2) can

be chosen randomly (under the condition that all f
(S)
3 are permutations). When

two incompatible answers were given, we assume that the simulator has lost, i.e.
that the adversary wins.

We want to evaluate the probability Pr[F2 and F3 incompatible]. The an-
swers to F2 and F3 match if the tables of the answers for F2 and those for F3 are
compatible for the chosen key K. The probability that F2 and F3 are not com-

patible is less than the probability that f
(R)
2 and f

(R⊕K)
3 have been evaluated on

one common point or that f
(R)
2 and f

(R⊕K)
3 have one common output. Since the

simulator independently answers questions on permutations of F3 and F2, the
adversary cannot adapt its queries to one family from the answers to the queries
of the other family. Moreover, when K is chosen, A has already terminated and
it is too late for him to be adaptative. Since A cannot be adaptative on K, we
can compute an upper bound on the probability that F2 and F3 mismatch. We
find:

Pr [F2 and F3 incompatible] ≤
2L

2n
.

Since AdvRmac
H (A) ≤ AdvRmac

G (A) +
2L

2n
, we have AdvRmac

H (A) ≤

4nL+ 6L+ 2

2n
.

This concludes the sketch of proof of theorem 3.

5 Detailed Instantiations with the AES

Up to now, the only known attack against the AES is exhaustive search. We
propose two different instantiations of RMAC with the AES. The first one
assumes that all messages are padded. The second instantiation takes advantage
of the technique from [7] that allows not to pad messages which are formed from
an integral number of blocks (see section 2.2). We describe here the instantiations
with the AES using n-bit keys and 2n-bit keys. In these instantiations, the
longest key size for K2 gives security in the standard model, while the shortest
key size restricts us to security in the random oracle model.
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First instantiation. LetK1 be a 128-bit key andK2 a 128 or 256-bit key. Let f1 =

AESK1
and f

(R)
2 = AESK2⊕R. Here R is a 128-bit integer padded with zeros

for the XOR if necessary. The proposed instantiation is simply RMACf1,F2
.

Second instantiation. Let K1 be a 128-bit key and K2 be a 192 or 256-bit key.

Let f1 = AESK1
and f

(R)
2 = AESK2⊕R. Here R is a 129-bit number padded

with zeros for the XOR. The 128 low order bits of R are randomly chosen by the
generation oracle. The 129-th bit is a ’0’ when the message needs to be padded
and a ’1’ otherwise. This additional bit is never included as part of the MAC
tags, it should be set by the verification oracle according to the properties of the
message being verified.

Security of the instantiations. Glueing together theorem 1 and theorem 3 with
the known attacks against the AES, we claim that the advantage of an adversary
making queries of total length at most L and with runtime t – including the run
time of the generation and verification queries themselves – is at most:

AdvRMACAES
≤

4 · 128L+ 5L+ 2

2128
+

t

2128
≤

518L+ t

2128
,

using a key K2 of 256 bits and

AdvRMACAES
≤

4 · 128L+ 6L+ 2

2128
+

t

2128
≤

519L+ t

2128
,

using a key K2 of 128 bits.
This should be compared with the security of the traditional DMAC:

AdvDMACAES
≤

2L2 + t

2128
.

In other words, RMACAES is secure as long as the total length of the
queries is smaller than 2118, while DMACAES is secure as long as the total
length of the queries is smaller than 263. In fact, the security of RMACAES is
almost as good as the security of DMAC with a good 256–bit block cipher.

6 Conclusion

The RMAC construction proposed in this paper gives an efficient solution to the
problem of constructing a randomized CBC–MAC provably secure against birth-
day paradox attacks. The only previously known example of a birthday paradox
resistant MAC was given in [2] and called MACRX. Compared to MACRX,
RMAC has two main advantages. Firstly, its output has twice the length of the
underlying block-cipher instead of three times for MACRX. Secondly, being a
CBC–MAC variant, RMAC does not require any special functions other than
the block cipher.

Moreover, RMAC unleashes the full power of the AES in MAC computation,
thus making the need for 256-bit block ciphers a very remote perspective. Quite
interestingly, the proof is stronger when using 256-bit keys in AES.
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